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Core features and inherent
diversity of post-acute infection
syndromes
Alain Trautmann*

Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris-Cité, Paris, France
Post-acute infection syndromes (PAIS), i.e., long-lasting pathologies subsequent

to infections that do not properly resolve, have both a common core and a broad

diversity of manifestations. PAIS include a group of core symptoms (pathological

fatigue, cognitive problems, sleep disorders and pain) accompanied by a large set

of diverse symptoms. Core and diverse additional symptoms, which can persist

for years, exhibiting periods of relapses and remissions, usually start suddenly

after an apparently common infection. PAIS display highly variable clinical

features depending on the nature of the initial pathogen, and to an even larger

extent, on the diversity of preexisting individual terrains in which PAIS are rooted.

In a first part, I discuss biological issues related to the persistence of microbial

antigens, dysregulated immune responses, reactivation of latent viruses, different

potential self-sustained inflammatory loops, mitochondrial dysfunction,

metabolic disorders in the tryptophan- kynurenin pathway (TKP) with impact

on serotonin, and consequences of a dysfunctional bidirectional microbiota-

gut-brain axis. The second part deals with the nervous system dependence of

PAIS. I rely on the concept of interoception, the process by which the brain

senses, integrates and interprets signals originating from within the body, and

sends feebacks aimed at maintaining homeostasis. Interoception is central for

understanding the origin of fatigue, dysautonomia, dysfunctioning of the

hypothalamus-pituitary-adrenal (HPA) axis, and its relation with stress,

inflammation or depression. I propose that all individual predispositions leading

to self-sustained vicious circles constitute building blocks that can self-assemble

in many possible ways, to give rise to both core and diverse features of PAIS. A

useful discrimination between different PAIS subtypes should be obtained with a

composite profiling including biomarkers, questionnaires and functional tests so

as to take into account PAIS multidimensionality.
KEYWORDS

post-acute infection syndromes, long Covid, ME/CFS, inflammation, stress,
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Introduction

In most cases, an acute common infection lasting a few days is

followed by the progressive resolution of this infection, with no

persisting symptoms, even though the immune system keeps a

memory of the infectious event (1). This memory may be registered

both in the adaptive immune system (memory T and B cells), and in

the innate immune system (trained immunity), through epigenetic

modifications of innate immune cells, epithelial cells, and their

corresponding stem cells. However, in a minority of patients, an

infection may not properly resolve, leading to a post-acute infection

syndrome (PAIS), a persistent pathology that may last for years (2–

5).The review focuses on three PAIS, i.e. long COVID, long Lyme/

PTLDS (post-treatment Lyme disease syndrome) and myalgic

encephalomyelitis/chronic fatigue syndrome (ME/CFS).

If long COVID is, by definition, induced by SARS-CoV-2 and

long Lyme by Borrelia, the case of ME/CFS is far less clear. Its core

symptoms (extenuating fatigue, post exertional exacerbation,

cognitive dysfunction, sleep disorders and pain) are shared with

the other PAIS (6–8), but no unique, identified pathogen appears

responsible for its triggering. In most cases, its post-infectious

origin appears highly likely in view of sudden epidemics of ME/

CFS, which have been listed by Warren Tate and colleagues (8), and

have been observed in Los Angeles (1934), in Iceland (1946–1948),

at the Royal Free Hospital in London (1955), at the Incline Village,

in Nevada (1984), and in Tapanui, New Zealand (1984). In each

case, no pathogen was clearly identified. EBV (Epstein-Barr virus)

appears as a likely and frequent candidate for ME/CFS triggering (9,

10), but it is not the only possible ME/CFS inducer. The great

difficulty in diagnosing ME/CFS has led to many successive

definitions of this disease. Rather than a distinct, well-defined

PAIS, ME/CFS may be viewed as an ensemble of PAIS that could

be triggered by different pathogens, and that may include severe

forms of long COVID and long Lyme. Thus, the frontiers between

between ME/CFS and other PAIS are far from being sharp.

However, in what follows, and in particular in Table 1, which will

be described later, the term ME/CFS will point to long diseases in

which the triggering pathogen is neither SARS-CoV-2 nor Borrelia

(otherwise, they would be called long COVID or long Lyme). The

heterogeneous nature of this ensemble could have contributed to

the poor recognition of the severity of the disease. For ME/CFS

recognition, long COVID will be a game changer and, in return, the

abundance of data and analyses concerning ME/CFS could help the

understanding of mechanisms underlying other PAIS.

All PAIS display a striking heterogeneity. Indeed, for each PAIS,

the number of symptoms, as well as their severity, vary greatly

depending on individuals. Heterogeneity intrinsic to each PAIS

represents a major obstacle to the design and implementation of

clinical trials. To be able to properly manage PAIS, it is necessary to

address this heterogeneity and, first and foremost, to try unravel its

origin, rooted in a bidirectional interaction between the brain and

the others parts of the body. This review aims at providing a broad

view of PAIS, ranging from the molecular/cellular level to the whole

organism, to provide a theoretical background and to introduce

notions that could help understanding how PAIS can have both
Frontiers in Immunology 02
TABLE 1 Core and diverse PAIS symptoms.

Symptoms Long
COVID

ME/
CFS

Long
Lyme/
PTLDS

Core symptoms

Fatigue ++ ++ ++

Brain fog (impaired memory,
impaired attention)

++ ++ ++

Myalgia ++ ++ ++

Unrefreshing sleep ++ ++ ++

Headaches ++ ++ ++

Diverse symptoms

Cardiothoracic symptoms

Palpitations ++ ++ ++

Post-exertional malaise (PEM)
(exhaustion after physical or
mental exercise)

++ ++ p

Shortness of breath ++ p +

Orthostatic intolerance (POTS) ++ + p

Cough + – p

Myocarditis, pericarditis p – +

Neurologic and neurocognitive symptoms

Vertigo or ataxia ++ ++ +

Hot and cold spells + ++ +

Radiculitis + – ++

Paresthesia, tinnitus,
sensitive disturbances

++ + ++

Facial paralysis – – +

Motor disturbances + p

Muscle and joint symptoms

Joint pain, arthritis + ++ ++

Muscle weakness + ++ +

Digestive symptoms

Nausea ++ ++ +

Diarrhea or constipation + ++ +

Epigastralgia, reflux + p

Intestinal pain + p +

Poor appetite + p +

Bloating + p +

Ear noose throat symptoms

Aching throat + + +

Decreased smell and taste ++ – –

Hypersensitivity to noise, odors + + +

(Continued)
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clear core features and a large set of diverse symptoms. These issues

will be addressed at two levels. Part I will deal with topics related to

immunity, inflammation, microbial persistence, mitochondrial

dysfunction and metabolism, Part II with the involvement of the

nervous system in PAIS, and in a dysfunctional interoception. The

microbiota-gut-brain axis issue will make the transition between the

two parts.
Frontiers in Immunology 03
Part I. Immunity/inflammation and
metabolism in PAIS

Most symptoms of a PAIS are shared with
other PAIS

Table 1 summarizes the symptoms most frequently reported in

long COVID, ME/CFS and long Lyme/PTLDS. One can see that,

with variable frequencies, most symptoms are shared by the

different PAIS, and that there are very few disease-specific

features. For instance, SARS-CoV-2 is a virus with a respiratory

and ear nose throat transmission, which affects the olfactory

mucosa and has a facilitated neuroinvasion potential (11–16). In

addition, it has a strong tropism for blood vessels and digestive

tissue due to its specific binding to the ACE2 receptor, well

expressed in those tissues. In line with these specific features, a

number of long COVID symptoms (eg, anosmia, frequent dyspnea,

vascular and coagulation issues) are not shared by other PAIS (6, 7).

As for Borrelia-induced PAIS, i.e., long Lyme/PTLDS, the tropism

of Borrelia for connective tissues likely accounts for the frequent

occurrence of Lyme-associated arthritis, myalgia and paresthesia

(8). In long Lyme, persistent disorders and symptoms associated

with this tropism could be due to local bacterial persistence, and/or

to self-sustained local disorders initially triggered by Borrelia.

This table was constructed on the basis of informations

provided by patients and doctors who are expert in one of these

diseases, and on published papers, in particular (6–8, 17–25).
PAIS triggering and perpetuation

In this review, I propose that PAIS should be regarded as a set of

pathologies affecting the proper resolution of infection-induced

inflammatory and neuro-immune responses. I make the

hypothesis that the susceptibility to PAIS depends on each

individual terrain, including genetics, epigenetics, lifestyle,

infectious history, and so on. The infectious agent would trigger a

PAIS only when there is an appropriate preexisting individual

terrain, which is highly diverse. It is this diversity which would

explain the great heterogeneity of PAIS manifestations. These

individual susceptibilities may have gone unnoticed before the

deleterious triggering infection, except for discreet warning signs.

For instance, in patients suffering from ME/CFS or long COVID,

childhood infectious illnesses have been reported as abnormally

frequent, symptomatic and long to heal (up to 2 months) (26).

As will be examined in detail in this review, a whole range of

different susceptibilities may facilitate the development of a PAIS.

For instance, a propensity to make an excessively intense innate

immune response, or on the contrary the unability to control an

infection, the pathogen persistence (potentially due to the previous

cause), or a suboptimal functioning of mitochondria, leading to an
TABLE 1 Continued

Symptoms Long
COVID

ME/
CFS

Long
Lyme/
PTLDS

Ophtalmologic symptoms

Blurred vision + + +

Eye dryness ++ ++

Chronic ear pain or otitis + +

Hypersensitivity to light + + +

Cutaneous symptoms

Cutaneous lesions such as rash,
eczema, urticaria

+ p p

Hair loss + ++

Spontaneous cutaneous hematomas + +

Urino genitary symptoms

Urinary impairments + + p

Menstruation and libido disorders + p +

Psychological and psychiatric symptoms

Increased emotionality and irritability ++ p ++

Secondary anxiety ++ + +

Secondary depression + + +

Other

Profuse sweats + + +

Hypersensitive to sound, smells, food
and medicines

++ + ++

Painful lymph nodes – + p

Mild fever + p +

Flu-like symptoms + + +

Recurrent infections + + p

Gain or loss of weight ++ p +

Reactivation of autoimmune disorders
such as thyroiditis

+ +
++ Very frequent (>50%).
+ Frequent. (20-50%).
p Present, but at an unknown frequency.
- Absent.
Empty The information is lacking.
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excess production of reactive oxygen species (ROS), or a suboptimal

functioning of the neurovegetative nervous system, facilitating the

triggering of dysautonomia, or a propensity do develop

autoimmune diseases. It will be shown that these various and non

excusive susceptibilities may lead to a set of positive feedback loops

that can become self-sustained, even in the absence of a persistent

pathogen, but more efficiently in case of pathogen persistence. It

will also be proposed that several of these different vicious circles

may self-assemble in ways that facilitate disease perpetuation.

The diversity of the terrain weaknesses at the origin of PAIS

development, and the perpetuation mechanisms that are installed

are likely to explain the diversity of long-term evolution of these

diseases. In one study, after one year of long COVID, no

improvement was reported by 63.7% of the patients (25). In

another report, after a two-year follow-up of long COVID

patients, 91% of them were slowly improving with time, 5%

rapidly improving, and 4% of patients remained in a severe stable

state (27). According to a careful longitudinal study on the last 6

months period (28), only 2% of ME/CFS patients considered that

their health was improving. For the vast majority (68%) of the

patients, the disease fluctuates, in a relapsing-remitting fashion,

whereas for 30% of the patients, the disease either slowly worsens

over time or is persistent, but never improves. Thus, for 98% of

the ME/CFS patients, this disease appears very long-term

or permanent.

Despite the fact that the existence of flares and remissions is a

common and important feature of PAIS, the oscillating systems

underlying these flares are far from being understood. Note

however that a clever model of flares and remissions in multiple

sclerosis (MS) has been proposed by the team of Uri Alon (29). In

this excitable model of the immune system, with stochastic flares, a

key role is given to the interaction between auto-reactive T cells and

regulatory T cells (TReg). The model describes a positive feedback

(more cytotoxicity releases more auto-antigens) and a negative one

(cytotoxicity stimulates immunoregulatory TReg). Several

experimental observations on flares and remissions in MS were

correctly predicted by this model. It has also been proposed that

flares in multiple sclerosis could correspond to phases of

reactivation of the latent herpesvirus HHV-6 (30). Given the

frequent occurrence of reactivated latent viruses in PAIS (see

later), the generality of such a mechanism deserves to be

examined. I suggest that other possible flares inducers could be

infections by other pathogens, or excessive cognitive or physical

efforts. The discovery of other flare inducers and alternative

oscillating models is eagerly awaited.
PAIS may be induced by many different
pathogens

PAIS may be induced by a broad array of pathogens. As shown

in Table 2, most PAIS-inducing pathogens are RNA viruses, but

many RNA viruses, like measles virus, do not trigger PAIS.

Additional PAIS-inducing pathogens include one DNA virus,

EBV, and a bacteria (Borrelia).
Frontiers in Immunology 04
Pathogen persistence and reactivation of
latent viruses in PAIS

A major possible cause of PAIS resides in the non-eradication

and persistence of the pathogen, which could sustain a long lasting

inflammatory/immune response (64). Signs of viral persistence have

been reported in different tissues and cells of long COVID patients,

particularly in the gut (32, 34, 65, 66), brain or cardiac tissue (36),

monocytes (67), and in megacaryocytes and platelets (68). Platelets

could well be transient carriers of the virus and megacaryocytes the

corresponding virus reservoirs, as it has been shown for HIV (69).

In animal models of COVID, virus persistence as also been

demonstrated in the central nervous system (12) and in

pulmonary tissues (70). Diane Griffin has recently established a

comprehensive summary of the different viruses able to lead to

RNA persistence and to PAIS, of the location of RNA reservoirs

(mostly intracellular), of affected organs, and of clinical

consequences associated with this persistence. Notably, even in

the absence of viral replication, the mere persistence of intracellular

viral RNA may be sufficient to chronicize an innate immune

response (71). Numerous viruses have a demonstrable potential

for persistence. This is the case not only for SARS-CoV-2, but also
TABLE 2 PAIS may be triggered by a variety of pathogens.

Pathogens Disease
names

Sites of patho-
gen persistence

References

Viruses

SARS-CoV-2 Long
COVID,
PASC

Lung, brain, gut, heart,
lymphoid tissue, ear
nose throat tissue.

(2, 31–37)

SARS SARS (38, 39)

Ebola post-
Ebola
syndrome

Testes, eye, brain (40–43)

Dengue brain (44, 45)

Polio Post-
polio
Syndrome

Brain, spinal chord (46–48)

Other
enteroviruses

ME/CFS
Viral
heart disease

Stomach, heart (49–51)

Chikungunya Chikungunya
chronic
disease

Joints (52–54)

West
Nile virus

Kidney, brain (55–57)

H1N1
influenza

ME/CFS No evidence (58)

EBV ME/CFS B cells (9, 10)

Non viral pathogen

Borrelia Post-
treatment
Lyme Disease

Brain, synovial fluid (59–63)
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for herpesviruses (EBV, CMV, HHV-6) (72), for EBOLA (40, 41),

for enteroviruses (73), or Chikungunya (74). In long Lyme/PTLDS,

the persistence of Borrelia, the initiating pathogen, has also

occasionally been reported (75, 76).

The elevated plama level of anti-SARS-CoV-2 IgA observed in

severe long COVID could be a sign of virus-induced mucosal

persistent inflammation (77, 78). An elevated level of IFN-a in

the blood may also be evocative of virus persistence. For

comparison, untreated HIV patients have an elevated level of

IFN-a, which rapidly drops following tritherapy (79). However,

an elevated IFN-a is not necessarily virus-induced, as it has also

been reported in Borrelia-induced long Lyme/PTLDS (80, 81).

To the possible persistence of the initial pathogen that triggered

the PAIS, one should add the reactivation of latent viruses such as

EBV, HHV-6 or VZV (82–85), all frequently observed in PAIS,

possibly as a result of a reduced efficiency of their control by the

immune system. It is plausible that this reactivation may further

contribute to the disease chronicity. Moreover, additional

pathogens may emerge, following the translocation of gut bacteria

in the blood through an inflamed, damaged gut mucosa (as

discussed later). In all these cases, the pathogens to be neutralized

are not only the initial one but also its followers. Similarly, increased

transcription of human endogenous retroviruses (HERV) has been

reported in several PAIS (86), and in MS. This has led to an

encouraging clinical trial for the treatment of MS with temelimab,

an anti-HERV monoclonal antibody (87). However, a recent trial

with temelimab has been unsuccessful in long COVID.1

Taken together, these data show that PAIS may be induced by a

large set of diverse pathogens, and different phenomena may

contribute to the disease severity. They include namely pathogen

persistence, reactivation of latent viruses, and a series of self-

sustained loops and cascades of events, which will be

discussed below.
Mechanisms underlying the diversity
in the clinical presentation of PAIS

Poorly fitted immune responses

There is an increased risk of developing long COVID for

patients who suffered from a very symptomatic form of COVID-

19 and have been hospitalized (88–90). Some of these severe forms

appear associated with insufficient innate immune responses,

involving namely IFN-a (91, 92). However, even though

symptoms associated with the acute phase of COVID are

predictors of the probability of developing long COVID (91–94),

a number of cases of long COVID have been observed after

moderate initial COVID (95).

For eliminating the virus, an efficient antibody response,

properly supported by CD4+ T cells appears required (96).
1 https://www.mypharma-editions.com/geneuro-annonce-les-resultats-

de-lessai-gnc-501-dans-le-syndrome-post-COVID-19.
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However, long COVID patients often have high level of anti-

SARS-CoV-2 antibodies, which shows that a good antibody

response may not be sufficient (97). An insufficient antiviral

antibody esponse may also be problematic, as shown by the

recent observation that two subgroups may be distinguished in

long COVID: some patients are seropositive (with the presence of

serum antibodies directed against multiple SARS-CoV-2 proteins),

while others remain seronegative (98). Seronegative patients also

had fewer SARS-CoV-2-specific CD4 T cells than seropositive

patients or controls; their global adaptive immune response

was ineffective.

It appears that a well fitted immune response is required for

preventing PAIS development. Stimulating hypotheses may be

drawn from the observation that bats can be persistently infected

with many viruses without showing clinical symptoms (99). Bats are

equipped with an apparently optimized anti-viral IFN-a response,

in terms of amplitude (neither too weak nor oversized) and kinetics

(preexisting rather than delayed) (100, 101). Note that, while the

level of IFN-a in human serum is almost nil in the absence of

infection, there is a low but detectable level of IFN-a in bat serum

(102, 103). The existence of a weak baseline IFN-a-dependent
signal (104) leading to an inflammatory tone (105) seems

essential to enable an effective anti-infectious response, just like

engine warm up right before a car race. Indeed, as a general rule, the

absence of an inflammatory tone leads to a blunted efficacy of the

immune response (106). These features contribute to the

exceptional resistance of bats to viral infections, together with

other features such as a better resistance to oxidative stress (107).

In a mirror view, one can speculate that a poorly fitted immune

response, either too weak to control the pathogen, or associated

with an excessive inflammation, may contribute to the triggering

of PAIS.

Murine studies have demonstrated the existence of a link

between vigorous anti-infectious responses and propensity to

develop autoimmune diseases (108). The same association may be

observed in women (109). The anti-infectious response of women is

usually more vigorous than that of men. One of the reasons why

acute COVID has killed more men than women could lie in the fact

that the IFN-a response to a viral infection is stronger in women

than in men (110, 111). This fact is likely linked to the influence of

oestrogens and to the fact that a large part of the immunity genes

are located on the X chromosome (112). Thus, compared to men,

women have a better ability to fight an infection but a poorer ability

to resolve infection-induced immune responses.
Autoimmunity

Most autoimmune diseases (113–115), as well as PAIS, appear

after infections from which a majority of people recover without

sequaele. This suggests that autoimmune diseases and PAIS could

possibly share common predisposing terrains. They correspond to

distinct but related diseases, given that autoimmunity is by

definition the dominant problem in one case, and not in the

other, even if autoreactivity may play a role in PAIS. A key link

between infection and autoreactivity is the existence of pre-existing
frontiersin.org
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quiescent auto-reactive T cells, which may be initially activated by

their cytokine receptors to IL-2 or IL-15, during an anti-infectious

immune response. These bystander auto-reactive T cells are then

amplified upon recognition of self antigens (116, 117).

There is no shared signature of autoreactivity that would be

specific for long COVID patients (118), and the functional

importance of autoimmunity in PAIS such as long COVID, ME/

CFS or long Lyme/PTLDS remains to be established. However, signs

of autoimmunity have been reported in the different PAIS. Thus,

anti-neural antibody reactivity was found to be significantly higher in

the long Lyme/PTLDS group than in the post-Lyme healthy one

(119). Autoantibodies against G-protein coupled receptors are found

in ME/CFS patients and in patients with persistent long-COVID-19

symptoms (120, 121). Even though some new autoantibodies are

shared in post-COVID people with or without persisting symptoms

(118), persistently positive anti-nuclear autoantibodies at 12 months

post-COVID are associated with persisting symptoms and

inflammation in a subset of long COVID patients (122), and

several peripheral nervous system antibodies demonstrate

statistically significant differences depending on severity (123). An

autoimmune reactivity against tight junctions (zonulin and occludin)

and neuronal antigens has also been reported in long COVID. Note

that in addition to canonical (barrier-related) functions, zonulin and

occludin have other key, noncanonical functions that allow them

namely to regulate epithelial apoptosis and proliferation and to

facilitate viral entry (124).

Finally, a possible contribution of coronavirus-induced

autoantibodies to long COVID has been recently suggested by the

demonstration that transfer of IgG from long COVID patients to

mice replicates some neurological symptoms, pointing to a

causative role of IgG in long COVID pathogenesis (125, 126).

The question of toxic IgG remains a potentially important but yet

unsolved issue, which deserves to be examined in the different PAIS.

Taken together, these findings underline the existence shared

features between (post-infectious) autoimmune diseases and post-

acute infection syndromes.
PAIS and inflammation

The importance of inflammation in PAIS remains a disputed

issue for several reasons. One is linked to the objective diversity of

inflammatory signs. Depending on the PAIS severity and on the

individual, standard inflammatory tests such as CRP, may be

completely normal or slightly elevated. For instance, for long

COVID, CRP level is normal in moderate forms, and frequently

positive in severe forms (127–129). Note however that a well

resolved viral infection, without associated persisting symptoms,

also creates an immunological scar with persisting immune

activation and increased cytokine production several months after

symptom resolution (130, 131). Biomarkers associated with long

COVID thus have to be compared to biomarkers associated with

properly resolved COVID.

The link between PAIS and inflammation has been mostly

documented for long COVID, as will be seen below. However,
Frontiers in Immunology 06
neuroinflammation has also been evidenced by 11C-(R)-PK11195

PET imaging to be associated with ME/CFS (132), and shown to

contribute to the pathophysiology of this disease (133, 134). As for

neuroborreliosis, it is associated with the elevation of inflammatory

cytokines in the CSF, like IFN-g (135) or TNF-a (136). Such

inflammatory cytokines may either cross the blood-brain-barrier,

especially if it is damaged, or be produced in situ by reactive

astrocytes and microglia (137). Moreover, long Lyme patients are

familiar with the Jarisch-Herxheimer Reaction, a potentially intense

inflammatory response, which can be elicited by an antibiotic

treatment of a persistent borreliosis (138).

Several teams, using different sets of biomarkers, have

distinguished inflammatory and non-inflammatory subsets of

long COVID patients (129, 131). There is so far no inflammatory

marker that has been systematically found in PAIS, but it should be

remembered that a persistent inflammation affecting an organ, e.g.,

neuroinflammation, may remain local and may only minimally be

reflected in blood biomarkers. However, inflammation-related

vascular problems have been frequently reported. Thus, elevated

levels of some blood biomarkers such as VEGF underline the

frequent occurrence, in long COVID, of endothelial vasculitis

(139, 140), dysregulated blood coagulation, with fibrin amyloid

microclots and platelet pathology (141), vascular damage, repair

and remodeling (142), thromboinflammation and dysregulation of

the complement cascade (143).

Let me now examine how the dysfunctioning of different cells of

the immune systemmay contribute to long COVID and other PAIS.
Neutrophils and platelets

Neutrophils are key cells involved not only in acute but also in

chronic inflammation. In the event of infection, neutrophils are

swiftly activated and produce ROS, which may contribute to

decondensing mitochondrial and cellular DNA. The expulsed

chromatin, coated with antimicrobial proteins, forms NETs

(neutrophil extracellular traps), able not only to trap pathogenic

microorganisms, but also to propagate inflammation and to favour

the induction of microclots following platelet binding (144, 145).

NETs have been shown to be involved in acute (146) and long

COVID (147). In long COVID, activated platelets, monocytes and

endothelial cells interact to create a prothrombotic environment

and induce vasculitis (141, 148–150). In ME/CFS patients,

microclots (151), as well as an improper platelet activation after a

physical effort (152) have also been reported.
Mast cells, histamine and PAIS

Mast cells, innate immune cells found in connective tissues

throughout the body, are most prevalent at tissue-environment

interfaces and perivascularly. This allows them to play a key role in

fast anti-infectious inflammatory responses. They possess multiple

cell-surface receptors which react to various stimuli and, after

activation, release numerous mediators including histamine,
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heparin, cytokines, prostaglandins, leukotrienes and proteases

(153). However, their contribution to inflammation may

sometimes become excessive, for instance in allergy.

The fact that an atopic terrain is a risk factor for long COVID

(154, 155), and that mast cell activation symptoms are frequently

present in long COVID, has led to the use of anti-histaminic

treatments which have proven their efficacy, for some patients, on

several long COVID symptoms, including fatigue, digestive and

neurocognitive symptoms (156–158) (and Dominique Salmon,

personal communication). It has been proposed that COVID-19

infection could lead to the activation of normal mast cells by

persistent viral particles or spike proteins, or to exaggeration of a

preexisting but undiagnosed mast cell activation syndrome (159,

160). No study to date has examined the presence of anomalous

mast cell activation in patients with long Lyme/PTLDS (17).
T cells and the T cell, B cell and monocyte
triangle

The CD8 T cells of patients suffering form ME/CFS or long

COVID have an exhausted phenotype (161–163). Patients suffering

from long COVID harbored increased frequencies of CD4+ T cells

with homing receptors adressing to inflamed tissues, and a Th2 bias

(163). A key implication of T cells in long COVID, compatible with

virus persistence, could be demonstrated by whole-body positron

emission tomography imaging with a selective tracer that allows for

anatomical quantitation of activated T lymphocytes (34). In

numerous parts of the body, tracer uptake (and therefore T cell

activation) was higher in the postacute COVID-19 group (with or

without continuing symptoms) than in prepandemic controls.

Moreover, T cell activation in the spinal cord and gut wall was

associated with the presence of long COVID symptoms.

In inflammation and autoimmune processes, T cells, B cells (and

the antibodies that they produce) and inflammatory monocytes/

macrophages may form a cellular network acting in a pathogenic

way. All three cell types can interact with the others and fuel a vicious

activation circle (164). In particular, activated Th1 T cells produce

IFN-g, which can activate monocytes/macrophages, which in return

may activate T and B cells via antigen presentation, whilst B cell-

derived antibodies are able to activate monocytes/macrophages

expressing the FcgRI receptor. In addition, activated T cells express

CD40L, which can activate the CD40 receptor expressed by B cells

and by monocytes/macrophages. Altogether, this first self-sustained

inflammatory loop could have a particular importance in the brain,

i.e., in neuroinflammation. Such a loop is of utmost importance in

autoimmune diseases. It is not a specific feature of PAIS, but it may

play an important role in PAIS, at least in some patients.
Brain imaging of neuroinflammation or
hypometabolism

Inflammatory cytokines are able to cross an intact blood-brain

barrier. They can cross even more easily an inflamed, damaged one,
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and activate cytokine receptors on neurons (165), astrocytes (166)

microglia (167), and brain mastocytes (168). Microglia are brain

resident macrophages. They may function, like any other type of

macrophage, either in a resting, homeostatic, anti-inflammatory

mode, or, on the contray, in an activated, pro-inflammatory one

(169, 170) susceptible of amplifying and prolong a peripheral

inflammation-induced neuroinflammation. Importantly,

microglial cells can both produce and be activated by

inflammatory cytokines like IL-6, TNF-a and IL-1b (also

produced by inflammatory monocytes) (171). This constitutes a

second potential self-sustained inflammatory loop.

Brain imaging has provided key informations on PAIS-

associated neuroinflammation, on long COVID-associated

hypometabolism, and even on COVID-induced changes in brain

structures. Neuroimaging has revealed the presence of

neuroinflammation in MS, as reviewed in (172), in long Lyme

(173), as shown by imaging glial activation, using [11C]DPA-713

PET, and in ME/CFS, as reviewed in (174). Subgroups of long

COVID patients frequently display a correlation between

inflammation biomarkers and fatigue plus cognitive impairmen

(88, 127, 175). In addition, 18F-FDG PET imaging allowed to show

the presence of extensive and durable hypometabolism in several

brain regions of long COVID patients (176, 177), in particular in the

pons and the right amygdala (178). Brain regions that were

hypermetabolic during acute COVID turn out to become

hypometabolic in long COVID (179). An analysis of changes in

MRI-derived brain structure induced by long COVID has evidenced

a reduction in grey matter thickness and tissue contrast in the

orbitofrontal cortex and parahippocampal gyrus, associated with

cognitive problems (180).
Mitochondrial dysfunction in PAIS

As mitochondria constitute the key ATP power plant, i.e., the

energy provider in our cells, the importance of their dysfunction in

PAIS and other diseases characterized by a hypometabolic state and

fatigue could well be crucial. Indeed, defects in mitochondrial

function (deficiency in ATP production, excessive mitochondria-

derived ROS production) in PBMCs of ME/CFS patients have been

well characterized (181, 182). The PBMCs of ME/CFS patients have

a reduced ability to elevate their respiration rate to compensate in

times of physiological stress (183). In the blood of ME/CFS patients,

there is an abnormally high level of FGF-21 (Fibroblast Growth

Factor-21), which is not only a growth factor but also a hormone

(184). FGF-21 is a powerful regulator of glucose and lipid

metabolism, which is significantly increased under certain

conditions, such as mitochondrial dysfunction (see (185) for a

review). The plasma level of FGF-21 is also significanly higher in

the plasma of long COVID patients with important cognitive

problems (186). In a cohort of ME/CFS patients, the degree of

mitochondrial dysfunction in neutrophils was strongly correlated

with the severity of the illness (187). Admittedly, correlation does

not imply causal relationship. However, such striking correlations

suggest that the hypothesis of mitochondrial dysfunctioning in ME/
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CFS deserves deing pursued. Importantly, crucial fatigue, exercise

intolerance and myalgia are not specific of ME/CFS, but are shared

by patients suffering from primary mitochondrial diseases with

mutations in either nuclear or mitochondrial DNA (188).

In mitochondrial dysfunctioning, a key issue is that of ROS.

Indeed, ATP synthesis in mitochondria is systematically associated

with ROS production and potential oxidative stress. Mitochondria

have an efficient ROS buffering system including GSH, thioredoxin or

CoenzymeQ10 (CoQ10) (189–191), and as long as ROS are eliminated

by endogenous antioxidants, there is no oxidative stress. However, in

the blood of ME/CFS patients, excessive oxidative stress response to

exercise can be measured via different plasma markers (192), and in

mitochondria from ME/CFS patients, defects have been detected in

CoQ10 and in Complex V (aka ATP synthase) (182, 190). Compared

to healthy controls (HC), ME/CFS patients display a pattern of cellular

hypometabolism characteristic of impaired mitochondrial function

(193). Excessive unbuffered ROS levels damage mitochondria,

leading to less ATP and more ROS production, which creates a

potential third self-sustained inflammatory loop. In addition, ROS-

induced ROS release is a self-amplified phenomenon (194, 195).

Cardiolipin is a particularly abundant phospholipid in the inner

membrane of mitochondria and thus, an increase in anti-cardiolipin

auto-antibodies may reveal damage in mitochondria membranes. Such

anti-cardiolipin antibodies are increased in ME/CFS (196, 197), long

COVID (147) and MS patients (198).

There is a tight link between ROS and inflammatory cytokines.

Indeed, both TNF-a and IL-1b can stimulate ROS production and

inhibit mitochondrial respiration, whilst increasing glycolytic

activity and lactate production (199). Thus, inflammation impairs

oxidative phosphorylation and impose a higher reliance on

glycolysis, which is much less efficient for energy production.

The potential role of mitochondrial dysfunction in PAIS other

than ME/CFS has not yet been widely explored. However, such a

dysfunction has been described in metabolomic analyses of long

COVID (186, 200). In long COVID patients, an excessively increased

blood lactate accumulation during exercise has been reported (201).

A similar finding had been previously reported in ME/CFS patients

(202). Moreover, using proton magnetic resonance spectroscopic

imaging with (1)H MRSI, significantly higher levels of ventricular

cerebrospinal fluid lactate are found inME/CFS patients compared to

healthy controls (203). Given the vicious circle between ROS

production and mitochondrial dysfunction mentioned above, it has

been reasonably hypothesized that, in some individuals with pre-

existing sub-optimal mitochondrial function, an infection can tip the

host into a chronic and self-perpetuating metabolically imbalanced

non-resolving state characterized by mitochondrial dysfunction,

where ROS continually drive inflammation (204).
PAIS metabolic disorder in the tryptophan-
kynurenin pathway with impact on
serotonin

Tryptophan (trp) is a key precursor of serotonin (5-HT), which

may be produced in the gut and in the brain. In the gut, it is
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synthetized by enterochromatin cells, and rapidly stored in blood

platelets. The high and selective expression of the 5-HT3 serotonin

receptor on sensory neurons of the vagus nerve allow a fast central

detection of peripheral serotonin changes (205). The blood-brain-

barrier can be crossed by Trp, but not by serotonin (206). Therefore,

cerebral serotonin is synthetized in the brain, where it plays a major

role in mood regulation and, after transformation in melatonin, in

sleep regulation (155, 156), as summarized in Figure 1. A deficit in

plasma serotonin has been reported in acute COVID, as well as in long

COVID, compared to resolved COVID (205). However, two recent

papers have strongly challenged the reality of this deficit (207, 208).

As shown in Figure 1, trp may be metabolized either in serotonin

or in kynurenine (kyn). As indoleamine 2,3-dioxygenase (IDO) is a

key enzyme for the degradation of trp in kyn, IDO activity is reflected

in the trp/kyn (TKR) ratio. Kyn-derived kynurenic acid (KYNA) is an

efficient anti-inflammatory molecule (see Figure 1). Upon

inflammation, as IFN-g can activate IDO (209), there is an

immunoregulatory induction of IDO activity, and therefore a

depletion of trp available for serotonin synthesis. A serum decrease

in trp, an increase in kyn, or an decrease in the TKR ratio are

hallmarks of inflammation (210). It is interesting to mention that

IDO can also be induced by bacterial lipopolysaccharides (LPS) (211),

considering the microbial translocation phenomenon characteristic

of long COVID, ME/CFS, and possibly other PAIS. In long COVID

and in ME/CFS, alterations of these biomarkers have all been

reported (127, 200, 212, 213). Note that patients treated with IFN-

a also show a strong decrease in the serum TKR ratio (214). Thus, an

abnormally low plasma level of trp, as observed in long COVID and

ME/CFS, could be viewed as an additional sign of persisting

inflammation, with potential consequences on mental health.
Influence of the gut-microbiota system in
PAIS

The inflammatory state of the intestinal mucosa and of the

enteric immune system has a considerable influence on the overall

immune/inflammatory system (1, 105, 215), including on

neuroinflammation (216). The intestine and its associated

microbiota can produce anti-inflammatory molecules. In

particular, short-chain fatty acids (SFCA), such as butyrate and

propionate, are produced in the intestine by the fermentation of

dietary fibers (217, 218), and can induce TRegs (219, 220). The

composition of gut microbiota, in particular the abundance of

SFCA-producing bacteria, is altered in long COVID (221), in long

Lyme (222), in ME/CFS (221, 223, 224) and in MS (225).

In different chronic inflammatory or viral diseases, a rupture of the

integrity of the intestinal mucosal barrier is observed, affecting the tight

junctions and allowing the translocation of commensal bacteria in the

blood. This microbial translocation may also concern fungi (226), and

be partly due to autoimmunity against components of the tight

junctions (227). In post-acute viral syndromes, a loss of integrity of

the gut mucosal barrier follows the virus-induced local inflammation

(228–231). A loss of gut mucosa integrity has also been reported in

ME/CFS patients (232, 233). In addition, whatever the initial infectious
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agent, an inflamed, damaged gut mucosa allows microbial

translocation, accompanied by the release of the bacterial and

inflammatory endotoxin LPS. This may create a self-sustained

inflammatory phenomenon, accompanied and amplified by

dysbiosis. It represents fourth potential self-sustained

inflammatory loop. Such a microbial translocation could play an

important role in autoimmune diseases (234), PAIS (228, 235, 236), as

well as in HIV (229, 230).

Informative plasma markers of intestinal permeability are

occludin and zonulin, which contribute respectively to the tight

junction structure and to the regulation of their opening. Zonulin

level rises sharply during severe acute COVID (236), a situation

known to reflect a breakdown in the integrity of the intestinal barrier.

In long COVID patients, plasma zonulin remains elevated, and

fungal translocation from the gut to the blood can be evidenced

(226), and elevated auto-antibodies against zonulin and occludin

have been reported, as mentioned earlier (227). A clinical trial

(NCT05747534) is currently being performed for evaluating the

efficiency of lazarotide, an inhibitor of paracellular permeability, on

children and young adults suffering from long COVID. Taken

together, targeting the gut microbiota to reduce inflammation

associated with PAIS appears as a relevant strategy, already

proposed for MS (237), which is worth considering in future studies.

Concerning the microbiota-gut-brain (MGB) axis, the anti-

inflammatory effects of SFCA produced by gut microbiota may

affect multiple organs, including the lungs (238) and the brain (239–

241). Other afferent blood-borne molecules on the MGB axis

include bacterial antigens (242) and inflammatory cytokines such
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as IL-6, IL-1b and TNF-a, which may be produced in a context of

gut inflammation. An additional mode of communication from the

gut to the brain includes the enteric nervous system (ENS) and

sensory neurons expressing receptors to TNF-a, IL-1b or IL-6

(243), and to 5-HT (244), which is abundantly produced at the

gut level (245) (upwards black arrows in Figure 2). In the other

direction, the brain may exert an influence on the gut, either via the

autonomic and enteric nervous systems (downwards black arrows

in Figure 2), or via activation of the Hypothalamus-Pituitary-

Adrenal (HPA) axis (downwards red arrows in Figure 2), which

will be examined in detail later. For instance, it has been shown that

psychological stress leads to HPA-dependent monocyte-mediated

exacerbation of gut inflammation (246, 247), and can alter the

composition of the microbiota (248), a phenomenon possibly due to

the presence of neurotransmitter receptors on bacteria (245).

In summary, given the major influence of the gut and its

microbiota on the overall immune/inflammatory system and on

neuroinflammation, and considering the importance of the MGB

axis, one can foresee that well designed diets, complements or

treatments aiming at reducing dysbiosis and gut inflammation may

have a beneficial effect on different PAIS.
Part II. Nervous system dependence
of PAIS

Post-acute infection syndromes cannot be viewed only from a

molecular/cellular point of view, nor from a purely psychic one.
FIGURE 1

Food-derived tryptophan (trp) can be degraded in kynurenine, which can either give rise to neurotoxicity (via quinolinic acid) or to anti-inflammatory
effects (via kynurenic acid). Trp is necessary to the synthesis of serotonin, both in the gut and in the brain. This synthesis is inhibited by inflammation.
Gut-derived serotonin cannot cross the blood brain barrier, but may have positive effects on memory, cognition and sleep via stimulation of 5-HT3
receptors on the vagus nerve (Wong et a., 2023). Brain-derived serotonin has inhibitory effects on depression and pain.
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These two dimensions of PAIS must be taken into account, in order

to have a chance of deciphering interactions between them. This key

issue is absolutely required, but quite challenging, since these two

dimensions correspond to traditionaly different epistemic fields.
Interoception and the neuro-immune
system

In what follows, we will see that in PAIS, the bidirectional

exchange of information between the brain and the other organs is

deeply perturbed, in other words interoception no longer works

properly. A failed interoception is not specific of PAIS, but it plays a

major role in PAIS. It is recalled that interoception is a process by

which the brain senses, integrates and interprets signals originating

from within the body, and sends feebacks aimed at maintaining

homeostasis (249). It involves both the central and the autonomic

nervous systems (CNS and ANS). ANS includes the sympathetic,

parasympathetic and enteric nervous systems. Interoception

involves brain regions belonging to three main levels: cerebral

cortex, limbic system and brainstem (Figure 2). The main

interoceptive cortical regions are the insula, the cingulate gyrus,

the somatosensory cortex and some zones of the frontal cortex (250,

251). In the limbic system, the amygdala, the hippocampus and the
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hypothalamus are of particular importance for interoception.

Interoceptive signals from the periphery converge on brainstem

nuclei such as the NTS (nucleus of the tractus solitarius) and the

PBN (parabrachial nucleus) (249). These brainstem nuclei are key

for the detection of inflammatory stimuli, and project higher in the

brain, namely on the PVN (paraventricular nucleus) of the

hypothalamus (252) and on the amygdala (253). In the reverse,

brain to body direction, the DMV (dorsal motor nucleus of the

vagus) controls visceral motor and respiratory networks (254).

The interoceptive informations reaching the brainstem, limbic

and cortical parts of the brain allow the homeostatic adjustment of

body variables. Interoception has both an automatic, unconscious

component (visceral adjustments, not requiring necessarily a

cortical involvement) and a conscious one (e.g., behaviour

changes). The fact that the brain is informed of a peripheral

inflammation and can in turn act on this inflammation may be

illustrated in many ways. First, there is the neuroendocrine HPA

axis (133), examined in detail later. In addition, the ANS controls

the vagus-mediated nervous inflammatory reflex (255). More

recently, it has been shown that, still via the ANS, a peripheral

inflammation can induce the appearance in the insular cortex, of

inflammation-specific engrams associated with specific ensemble of

neurons. A subsequent activation of these very same neurons can

trigger a peripheral inflammation at the same location as the
FIGURE 2

Bidirectional information exchange between the brain and the other organs is supported by neurons (black arrows) and blood (red arrows). Three
parts of the brain (cortex, limbic system and brain stem) are involved in this dialog underlying interoception and homeostasis. Abbreviations: ACh,
acetylcholine; ACTH, adrenocorticotropic hormone; DMV, dorsal motor nucleus of the vagus; NA, noradrenaline; NTS, nucleus of the tractus
solitarius; PBN, parabrachial nucleus; PFC, prefrontal cortex; PVN, paraventricular nucleus of the hypothalamus. In the ANS, the afferent information
converges on the NTS, whereas the efferent one is controlled by the DMV. The gut-microbiota system may produce both inflammatory (IL-6, TNF-
a, IL-1b) an anti-inflammatory SFCA molecules, and the information sent to the brain via the blood and via the stimulation (e.g. by IL-6, IL-1b, TNF-a
or 5-HT) of sensory fibers. Inflammatory cytokines can also be produced at inflammatory sites.
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original one (256). More precisely, the physiological trace storing

immune/inflammation-related information, the ‘‘immunengram,’’

is distributed between epigenetically modified neurons in the brain

and immune memory cells residing in peripheral tissues (257).

This illustrates how the distinct features of the nervous and the

immune systems complement each other to form an efficient neuro-

immune system. Unlike the nervous system, with the brain as a

central control structure, the immune system has no command

post. On the other hand, the mobile cells of the immune system,

which patrol the entire body, are capable of providing the immobile

brain with decisive information on the state of all parts of the

organism. This information is integrated by the brain which can

then orient the functioning of the immune system. Thus, in order to

apprehend the structural basis of interoception, one must take into

account three brain levels: the cerebral cortex, limbic system and

brainstem, and also consider the tight links between the nervous

and immune systems, connected through slow blood circulation

and fast neuronal activity.
Dysautonomia, POTS and PEM

In PAIS, dysautonomia, i.e., a dysfunction of the ANS reveals a

loss of equilibrium between its sympathetic, ergotropic and its

parasympathetic, trophotropic components, with an impaired

vagal, parasympathetic activity (258, 259). The PAIS-associated

dysautonomia may affect multiple organs (lungs, heart, stomach,

gut, kidney) and blood vessels. It may appear as an orthostatic

intolerance, i.e., an inability to adapt hemodynamic parameters

(cardiac frequency, blood pressure) to a vertical position, revealing a

defective baroreflex-cardiovagal function. It may be unraveled

either as Postural Orthostatic Tachycardia Syndrome (POTS), or

as orthostatic-induced hypotension (260).

Exercise intolerance can even lead to Post-Exercise Malaise

(PEM), a delayed and abnormal worsening of various symptoms

and loss of energy following minimal physical or cognitive stressors

or other triggers that would have been tolerated normally before

disease onset (261, 262). POTS and PEM affect a fraction of patients

suffering from ME/CFS or long COVID (6, 263, 264). PEM, also

called Post-Effort Symptom Exacerbation (PESE) (265), can be best

evidenced and provoked by two CardioPulmonary Exercise Test

(CPET) 24 hours apart. In such a study with a cohort of ME/CFS

patients compared to HC, a metabolomic analysis revealed in the

ME/CFS patients, metabolic disruptions in lipid-related as well

as energy-related pathways (266), reinforcing the relevance of

the mitochondrial dysfunction hypothesis. A double CPET

allows to distinguish clearly PEM/PESE from simple effort

deconditioning (267).

Muscle abnormalities observed after induction of PEM (268)

suggest that exercise may cause muscle injuries that do not heal

normally in these patients. Note that the heat shock protein hsp70 is

required for proper muscle healing (269). In post-infection ME/CFS

patients, the plasma level of hsp70 was approximately 4 times lower

than in HC (270). Moreover, after a maximal exercise, the hsp70

level shows a > 50% increase in HC, whereas a 15-30% decrease was
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observed in ME/CFS patients (270). This shows that muscle repair

after exercise may be compromised in ME/CFS patients, and this

could contribute to PEM.

In summary, dysautonomia reveals an inappropriate

sympathetic/parasympathetic balance. It is reflected in Heart Rate

Variability (HRV), which will be explained later. Dysautonomia

may give rise to symptoms like POTS or PEM and may explain a

large number of symptoms of PAIS such as hyperventilation,

digestive, cutaneous and vascular, perpipheral neurological

symptoms. In addition, PEM may be aggravated by problems in

muscle repair. Clear manifestions of dysautonomia have been

frequently reported for ME/CFS and long COVID, but much less

so for long Lyme/PTLDS, for which further research on this topic

would be welcome.
The HPA axis and its relation with
inflammation

As already mentioned, another major element of the brain-body

dialog is the HPA axis (133, 271). A stress can trigger the release of

Corticotropin-Releasing Hormone (CRH) by the hypothalamus,

inducing the immediate production of AdrenoCorticoTropic

Hormone (ACTH) by the pituitary, triggering in turn the release

by the adrenal gland in the blood of adrenaline and cortisol. This

response helps coordinating a series of physiological responses that

range from an increase in heart rate to the suspension of digestion

and of immune responses. It is anti-inflammatory and reduces pain

sensitivity (272). Importantly, an elevation of cortisol in the brain

circulation (in particular in the PVN and pituitary) results in an

inhibition of HPA activation (Figure 2). The importance of such a

negative feedback has been well described in the case of HPA axis

dysfunctioning following traumatic brain injury (273), and thus

contribute to a persistent dyshomeostatic state.

The stress can be mental or triggered by an infection/

inflammation, an accident or a brain injury (133, 253, 273).

Events triggered by these different types of causes can converge

on the PVN of the hypothalamus. The PVN receives major inputs

from the amygdala, which plays a key role in the management of

emotional stimuli (253, 274), and from the PBN in the brainstem, a

hub nucleus for the detection of inflammatory stimuli (252). Thus,

the PVN is a major integrator of different types of stresses

(Figure 2). Together with the inflammatory reflex of the ANS,

(vagal, or cholinergic anti-inflammatory pathway) (255), the

activation of the homologous HPA axis is crucial for preventing a

potentially lethal cytokine storm, for instance in preventing severe

acute COVID (275).

The stress-induced activation of ANS and endocrine outputs for

a timely mobilization of energy resources are necessary for survival.

However, exposure to traumatic or chronic stress can lead to

autonomic imbalance, impaired negative feedback of the HPA

axis, and illness (276). Thus, chronic stressful stimulations,

whether of mental or physical origin, cause dysfunction of the

HPA axis (133, 262). Chronic stimulation appears to gradually

desensitize the HPA axis, impairing in particular its anti-
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inflammatory function, so that the body becomes unable to respond

properly to new stressors. This is why chronic stimulation of the

HPA axis is pro-inflammatory, whereas its acute stimulation is anti-

inflammatory (277, 278). A model has been proposed (279) to

explain the observation that prolonged stress makes the HPA less

resilient to the next stress (280, 281).

When an infection or another stress is quickly resolved, the

HPA axis returns to its normal functioning, which consists in being

poised to be activated and deactivated quickly. Every day, cortisol

levels show fluctuations whenever necessary to manage even low

intensity events, such as waking up at the end of a night sleep, which

may be viewed as a minor daily stress. The conspicuous blood

cortisol awakening response is the net daily increase in blood

cortisol within 1 hour of awakening (282). This cortisol arousal

response is remarkably absent in patients suffering from a severe

form of ME/CFS (20), from traumatic brain injury (273), from Post-

Traumatic Stress Disease (PTSD) (283). The loss of this arousal

response is a clear sign of HPA axis dysfunction, and an illustration

of the fact that stress is poorly managed in PAIS. The question of

basal blood cortisolaemia remains an unsolved question. In the

current SARS-CoV-2 pandemic, hypocortisolaemia has been

reported in one study (97), but not confirmed in other reports

(284, 285). From our point of view, basal cortisol in the blood may

not be a very relevant parameter, since its value changes all day long.

The pertinent parameter should be the responsivity of the HPA axis

network, as revealed by the magnitude of the cortisol awakening

response, or the response to an evoked stress. For instance, it has

been shown that after an experimental psychologic stress, the

evoked cortisol response in fatigued breast cancer survivors is

much smaller than that in nonfatigued ones, pointing to the

involvement of the HPA axis in cancer-related fatigue (286).

For a better characterization of the relation between stress and

the neuroendocrine system, the concept of allostatic load has been

proposed. McEwen has defined allostatic load as the cost of chronic

exposure to fluctuating or heightened neural or neuroendocrine

response resulting from repeated or chronic environmental

challenge that an individual reacts to as being particularly

stressful (287). He has later described which cascade of events

could explain the existence of a very interesting link between a

psychic stress and a metabolic stress, including a mitochondrial

one (288).

In summary, key aspects of body homeostasis, including the

bidirectional functioning of the microbiota-gut-brain axis, rely on

two parallel regulation systems, one purely nervous, the ANS, the

other neuroendocrine, the HPA axis. A common hub for the two

systems is the PVN of the hypothalamus, put into play following

diverse perturbations like inflammation, and physical or

psychic stress.
Pathological and physiological fatigue

Fatigue is a major issue in PAIS. It is is caracteristized by a

prolonged exhaustion state, uneasily relieved by rest and often

exacerbated by physical or intellectual effort and emotions. Its
Frontiers in Immunology 12
precise origin and specificities (peripheral, central, objective or

perceived) remain debated. To clarify this issue, let us first recall

the difference between physiological and pathological fatigue. The

physiological fatigue that anyone is familiar with is an internal state

that prevents over-exertion and allows re-allocation and restoration

of energetic resources. It is alleviated by rest and/or sleep. Contrary

to a common misunderstanding, physiological fatigue is radically

different from the pathological fatigue which can deeply alter the life

of people suffering from PAIS, PTSD, cancer, neurodegenerative

diseases, denutrition, aging or prolonged absence of physical

activity. Pathological fatigue may be partially alleviated, but never

eliminated, by physical, intellectual and emotional rest and/or sleep

(non-restorative sleep).

Physiological fatigue corresponds to a homeostatic process,

selected by evolution for its usefulness, whereas pathological

fatigue unravels a dyshomeostatic state, which reflects a combined

dysfunctioning of numerous potential systems, revealed by both

physiological issues (chronic inflammation, mitochondrial

dysfunctioning, cardio-pulmonary pathologies, endocrinopathies,

vitamin deficiencies) and interoceptive processes, with

inappropriate corrections by the brain of biological perturbations.

What follows is an attempt to take into account these two roots

(purely physiological and interoceptive) of pathological fatigue, and

to try deciphering how they interact with each other.

There is no clear boundary between peripheral and central

components of fatigue. For instance, in patients suffering from a

PTSD like Gulf War Illness, with a key cerebral contribution, a

mitochondria dysfunction has been detected in muscle biopsies, and

the severity of the symptoms is correlated with that of the

mitochondrial dysfunction (289). The efficiency of HyperBaric

Oxygen Therapy (HBOT) in relieving symptoms of PTSD, in

particular cognition, up to 2 years after the HBOT treatment

(290), might be mediated by an effect on mitochondrial

functioning (290). HBOT has also allowed an improvement of

cognitive and psychiatric symptoms in long COVID patients (291,

292). However, publications on the usefulness of HBOT in PAIS

remain scarce, several clinical trails are on going and HBOT

information concerning potential toxicities and intolerance still

need to be improved.

At the brain level, fatigue arising from interoceptive networks

involves feelings of tiredness, lack of energy, and difficulty in

concentrating. To understand the origins of perceived fatigue, it is

important to take into account different kinds of potential cellular

stresses in periphery, and the information sent to the brain (via the

blood circulation, the vagus nerve and sensory inputs). This

information may then give rise on one hand to an interoceptive,

anti-inflammatory feedback signal sent to the inflamed region via

ANS-derived catecholamines and HPA axis-derived corticosteroids,

and on the other hand, to the involvement of limbic and cortical

brain regions, which modulate the interoceptive networks by

involving emotion, memory and cognition.

Given the permanent bidirectional communication between the

brain and the other parts of the body in interoceptive networks, it

would not be realistic to aim at fully disentangling the central and

peripheral components of fatigue. People suffering from MS who
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report elevated levels of fatigue exhibit alterations in interoceptive

networks functioning (particularly in the insula and dorsal anterior

cingulate cortex) (293). It is in the brain that fatigue is perceived,

but the location of the interoceptive sensors signalling deviations

from a balanced homeostatic state remains unclear. Muscular

fatigue and fatigue perception are both strongly influenced by

oxidative stress and inflammation (294). Interoceptive signals

may reach the brain in many ways. As shown in Figure 2, they

may first activate vagus nerve terminals which are located in the gut

and project on the NTS in the brainstem. The NTS sends outputs

higher in the brain, e.g. to the PVN of the hypothalamus and the

amygdala (253). In the reverse direction, CNS-derived cytokines

may induce muscular weakness. Indeed, infection and chronic

disease activate a systemic brain-muscle signaling axis in which

CNS-derived cytokines directly regulate muscle physiology, causing

muscle mitochondrial dysfunction and impaired motor function

(295). Thus, there are both central and peripheral sensors related to

perceived fatigue, and a complex bidirectional signalling between

muscles and brain has to be taken into account.
Nociception, inflammation and depression
associated with PAIS

We have seen above that the brain responses to stress and to

inflammation involve common structural and functional elements.

This neuro-immune connection is reinforced by the nociceptive

system, which plays two distinct roles: not only does it may inform

the brain of a peripheral disorder, but it is also plays an active role in

peripheral inflammation (296). Nociceptive neurons are endowed

with a series of receptors, such as innate immune system receptors,

like Toll-like receptors (TLR), which can directly detect the

presence of a pathogen and send danger signals to the immune

system, for instance through the secretion of neuropeptides that

activate immune cells. Indeed, many neurotransmitter receptors are

expressed by immune cells (297). Neurons and immune cells share

the same molecular vocabulary and language, which constitutes a

basis for the strong connexions that exist between inflammation,

stress, and pain.

There are tight links between inflammation and depression/

anxiety. Evidence for these links are multiple, as summarized by

(253): 1) Injecting mice with LPS or inflammatory cytokines

induces a depression-like behavior. 2) Inflammatory markers such

as IL-1b, IL-6, or CRP are on average higher in patients suffering

from severe depression. 3) The frequency of depression is higher in

patients suffering from chronic inflammatory pathologies such as

MS. 4) Patients treated with IFN-a suffer from significant side

effects including severe fatigue, anxiety, and depression. The

neurotoxicity of IFN-a is well established (298), as well as the

cognitive impairment induced by this cytokine (299). 5) Some

medications like fluoxetine (an inhibitor of 5-HT capture) have

both anti-inflammatory and anti-depressant effects (205, 300). An

anti-TNF-a antibody not only has an anti-inflammatory effect but

can also alleviate fatigue in patients suffering from rheumatoid

arthritis (301).
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Questionnaires and functional tests

How could the wide range of physiopathological phenomena

underlying PAIS symptoms be taken into account to help designing a

PAIS diagnosis tool? We have seen that different perturbations

associated with PAIS can be associated with different biomarkers,

which however reveal insufficient for an optimized PAIS diagnosis.

To improve this diagnosis, it is advisable to rely on questionnaires

and functional tests, in addition to biomarker measurements. A

Quality of Life questionnaire like SF-36 covers many health

parameters (302) clustered along 8 axes, including physical

functioning, social functioning, general health, vitality/energy/

fatigue. An unsupervised analysis of SF-36 data can lead to a 2D

representation based on principal component analysis, which has

allowed a fully non ambiguous distinction of ME/CFS patients and of

HC (303). For longitudinal studies requiring repeated questionnaires,

the shorter EQ-5D-5L Quality of Life questionnaire may be more

relevant (304). A large set of questionnaires may be used for assessing

specifically fatigue, anxiety, depression, quality of sleep, autonomic

dysfunction (see e.g (127, 305).

Clinical testing for POTS can easily be performed with an office-

based test, the 10-min NASA Lean Test (NLT), which only requires a

pulse oximeter and a blood pressure cuff. This test has recently been

described in detail and applied to patients suffering from either long

COVID or ME/CFS (306). This study has allowed to highlight the link

between orthostatic intolerance and cognitive impairment in long

COVID and a subset of ME/CFS patients, a phenomenon that may be

associated to both fatigue and dysautonomia. In the NLT, cognitive

testing is done with a smartphone application, the Defense Automated

Neurobehavioral Assessment (DANA) Brain Vital application. The 5-

minute DANA Brain Vital test suffices to quantify different reaction

time measurements and sustained attention.

One feature of dysautonomia associated with PAIS, the inability

to sustain an intense effort, can be measured during a CPET

(cardiopulmonary exercise test). In a CPET, one can determine

VO2max, i.e., the peak oxygen consumption during a maximum

effort, an objective measure of an individual maximum energy

producing capacity. In long COVID patients, this VO2max is 30-

45% lower than that in HC (268, 307). It is also abnormally low in

ME/CFS patients (308, 309). Note that a CPET may be at risk of

inducing a PEM, i.e., after a CPET, the patient may suffer for days or

even weeks of an exacerbation of the symptoms. Inducing on

purpose a PEM (266, 310) with potentially severe consequences is

ethically questionable unless appropriate precautions are taken,

which is feasible (311). PEM may also be revealed by the DePaul

Symptom Questionnaire (312).

Another measurable parameter is heart rate reserve, i.e., the

difference between the resting heart rate and the rate during a

maximal effort. Again, heart rate reserve is significantly smaller in

ME/CFS patients than in HC (309, 313). CPET allows also tomeasure

HRV (heart rate variability), which reflects how adaptable the body is

to sudden changes (in response to a stress or simply to a position

change). It is important to mention that HRV is a biomarker that can

be recorded and analyzed independently without needing another

study, such as CPET. It is a non-invasive method widely used in
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physiological and pathophysiological conditions. It allows for the

assessment of the body’s physical and mental health. A highly

variable heart rate indicates a good equilibrium between the

sympathetic and parasympathetic influences, so that the body can

adapt to many kinds of changes, whereas a low HRV (usually

resulting from a deficient parasympathetic contribution) implies a

deficient stress adaptability. Compared to that in HC, HRV is

significantly smaller in ME/CFS (314) and in long COVID patients

(315). Thus, a low HRVmay be a clear sign of dysautonomia. A large

number of studies (see e.g (316).) make use of HRVmeasurements in

the frame of the polyvagal theory of Stephen Porges (317). This

theory “speculates that mammalian, but not reptilian, brainstem

organization is characterized by a ventral vagal complex related to

processes associated with attention, motion, emotion, and

communication”. However, this central assumption has been

shown to be a major oversimplification (318). Within the frame of
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the polyvagal theory, HRV is used not only as a proxy of the general

activity of the ANS, but it can also mirror the emotion-cognition

interactions (319). This again is a major oversimplification, as the

theory (and the use of HRV as a general proxy) assumes namely that

consistent patterns in the activity of different vegetative efferents

(towards the heart, lung, gut etc…) should be observed, but this

prediction is frequently not verified (319). Because HRV corresponds

to a low cost, non-invasive, easy to record measurement, it has been

used in thousands of publications, which do not necessarily refer to

the polyvagal theory (320).
Conclusion

The difficulties in apprehending, diagnosing, and treating chronic

diseases like PAIS are first due to their multidimensionality. Decades of
FIGURE 3

Diverse individual predispositions (bold on pink background), after an infection, may lead to a whole series of functional vicious circles. These
predispositions- and infection-induced self-sustained circles constitute the building blocks of PAIS.
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reductionism and of hyper-specialization in scientific research have not

prepared most scientists and physicians to integrate data from quite

distinct epistemic fields. One cannot have a global view of PAIS

without taking into account phenomenons as diverse as fatigue,

hypometabolism, mitochondrial dysfunction, inflammation,

dysbiosis, autoimmunity, dysautonomia, orthostatic intolerance,

PEM, or poor stress coping, among other diverse and

multidimensional concepts.

A second problem for apprehending PAIS is that, whatever the

initial etiology, chronicity implies mechanisms of self-perpetuation,

not in a steady way, but involving in most cases flares and

remissions. Chronicity may involve a large set of potential

mechanisms, all rooted in individual predispositions. Figure 3

illustrates a series of examples of vicious circles potentially

triggered by a poorly resolved infection, depending on such

predispositions. I have mentioned earlier four types of potential

self-sustained inflammatory loops, one formed by the T cell, B cell

and monocyte triangle, a second one due to the fact that microglial

cells can both produce and be activated by inflammatory cytokines,

a third one due to excessive unbuffered ROS levels and damaged

mitochondria, leading to less ATP and more ROS production, and a

fourth one to bacterial translocation through a damaged gut

mucosa, which may sustain mucosal inflammation and

permeability. In addition, the microglial-gut-brain axis may be

dysfunctional in a bidirectional way (245). Moreover, an

inefficient immune system may favour viral persistence (321), or

reactivation of latent viruses, whereas an overreactive immune

system may lead to an excessive inflammation (89). Self-sustained

interactions between platelets, neutrophils, T cells and monocytes/

macrophages can favour the formation of microclots (141). In a

context of painful inflammation, nociceptors not only transmit an
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information to the brain, but can amplify inflammation (296, 322).

Thus, in addition fo pathogen persistence, a number of phenomena

may contribute to theperpetuation of PAIS.

A central problem for apprehending PAIS is related to the variety

of individual frailties (or risk factors) that may predispose to develop a

PAIS. In addition to the genetic background (e.g. related to mast cells

or mitochondria), a number of key factors depend on environment

and individual history, i.e., lifestyle, toxins, past infections that may

leave an immunological scar (1), with elements that are memorized

through epigenetics marking of hematopoietic stem cells (3) or in

immunengrams of the neuro-immune system (257). Simple chance

bystander activation of pre-existing auto-reactive T cells may also play

a role in infection-induced auto-immunity.

Figure 3 illustrates how each one of these predispositions and of

self-sustained circles may constitute building blocks that can self-

assemble in many possible ways (just like molecules can self-

assemble), to give rise to PAIS. These building blocks can be

viewed as forming a pavement (Figure 4A), at the bottom of a

basin of attraction, in the sense given by Conrad Waddington when

describing what he called the epigenetic landscape (323, 324). In this

figure, examples of individual frailties preexisting the disease are

marked in bold on a gray background. As depicted in Figure 4B,

health and PAIS could constitute two basins of attraction, the

transition form health to PAIS being triggered by an infection.

The interactions between different PAIS building blocks strengthen

the formation of a deep PAIS basin of attraction, i.e., a stabilized

dyshomeostatic state (204, 325, 326). In particular, core symptoms

(extenuating fatigue, cognitive problems, sleep disorders and pain)

not only strengthen but often exacerbate each other, leading to

isolation, depression, and sometimes even to a state that looks

like PTSD.
FIGURE 4

(A) PAIS building blocks may self-assemble to create a metaphoric pavement. Examples of individual frailties preexisting the disease are marked in
bold and pink. The other building blocks are examples of infection-induced symptoms. (B) This pavement forms the PAIS basin of attraction, distinct
form the Health basin of attraction. Basins of attraction are used in the sense used by Waddington to define an epigenetic landscape. Black and gray
lines correspond to high and low probabilities of going from one point of the epigenetic landscape to another one. (C) The self-assembled
pavements of two PAIS patients (red and green) may include both common core elements (yellow) and diverse ones.
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A given PAIS, e.g., long COVID, could be viewed as being itself

a group of several diseases, with different possible pavements, i.e.,

different self-assemblies of building blocks, at the bottom of PAIS

basins of attraction, and different depths of these basins. Figure 4C

shows that different basins of attraction may be paved by common

core building blocks and by variable ones. For each patient, an

optimal diagnosis would unravel the links between the disease and

his/her specific initial problematic terrain, which in most cases

remains uncharacterized. I propose that targeting a single

symptom/component of the disease, i.e., a single building block of

the PAIS basin of attraction is unlikely to modify its depth enough

to give a chance of escaping this attractor. The simultaneous

targeting of several building blocks of a given patient appears

necessary to make a recovery possible. Admittedly, it is much

easier to design clinical trials with a single potential treatment

than with a combination of treatments, but efforts should be made

in the direction of treatments that would be combined on

sound arguments.

Efficient clinical trials will require the prior characterization of

objective clusters of patients corresponding to different subtypes of

the disease. To this end, a key issue concerns the choice of

discriminating clustering factors. While proteomics allows the

identification of inflammatory and non-inflammatory clusters,

their overlap is such that these clusters are not of great help for

an individual diagnosis (129, 131, 327). A better clusterisation has

been obtained for long COVID, based on differentially methylated

CpGs, i.e., on an epigenetic signature in PBMCs (328), which, not

surprisingly, is at the basis of modifications of gene expression by

individual histories.

An even better discrimination of PAIS subtypes should be

obtained with a composite profiling taking into account PAIS

multidimensionality. The elements to consider in such a

composite profiling, for a principal component analysis, could be

for instance the following. 1) A set of well identified inflammatory

biomarkers (IL-6, TNF-a, IL-1b, IFN-a, neutrophil and NET

biomarkers) 2) Additional biomarkers including the awakening

cortisol response, zonulin, tryptophan, kynurenine 3) Key

quantified questionnaire-based symptoms (fatigue, ability to

concentrate and to memorize) and number of symptoms 4)

Functional tests including HRV, VO2max, orthostatic intolerance

and cognitive tests.

Such a new composite profiling is expected, following principal

component analyses and the use of AI to make the best use of a large

set of data in a multidimensional space, to provide a useful

subtyping of PAIS, opening the door to future individual

treatments based on a precision diagnosis.
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Serotonin reduction in post-acute sequelae of viral infection. Cell. (2023) 186:4851–
4867.e20. doi: 10.1016/j.cell.2023.09.013

206. Berger M, Gray JA, Roth BL. The expanded biology of serotonin. Annu Rev
Med. (2009) 60:355–66. doi: 10.1146/annurev.med.60.042307.110802
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