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Prognostic significance of
calcium-related genes in lung
adenocarcinoma and the role
of TNNC1 in macrophage
polarization and
erlotinib resistance
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Medicine, Shanghai, China, 2Department of Cardiothoracic Surgery, The Fourth Affiliated Hospital of
Soochow University, Suzhou, China, 3Department of Thoracic Surgery, Xuzhou Central Hospital,
Clinical School of Xuzhou Medical University, Xuzhou, China, 4Department of Respiratory Medicine,
Nanjing Second Hospital, Nanjing University of Chinese Medicine, Nanjing, China, 5Department of
Jurong Hospital Affiliated to Jiangsu University, Zhenjiang, China, 6Department of Cardiothoracic
Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
Background: Calcium signaling is critical in tumorigenesis. This study analyzed

the characteristics of a calcium-related prognostic genes (CRPGs) signature in

lung adenocarcinoma (LUAD) for prognostic value and explored TNNC1 as a

potential therapeutic target for erlotinib resistance.

Methods: Clinical and RNA sequencing data from LUAD patients were obtained

from the TCGA and GEO databases. CRPGs were identified through univariate

Cox and Kaplan-Meier survival analyses. Calcium-related subtypes were

determined via unsupervised clustering. A prognostic signature was

constructed and validated using external datasets. Differences in immune

infiltration and potential mechanisms in LUAD were explored using seven

algorithms. The relationship between signature genes, chemotherapy

sensitivity, and potential targeted therapies was evaluated. Potential drug

targets were identified using Mendelian randomization (MR) and phenome-

wide association studies (PheWAS). The association between TNNC1, erlotinib

resistance, and macrophage M2 polarization was investigated through in

vitro experiments.

Results: The study identified 33 CRPGs and four subtypes among LUAD patients.

The prognostic signature, comprising nine CRPGs, accurately predicted 1-, 2-,

and 3-year overall survival. TNNC1 was identified as a crucial tumor suppressor

gene and potential drug target. Down-regulation of TNNC1 decreased the IC50

value of erlotinib in LUAD cells and inhibited macrophage M2 polarization.

Conclusion: This study developed a reliable prognostic signature based on nine

CRPGs for predicting LUAD patient outcomes. TNNC1 may enhance LUAD cell

resistance to erlotinib through macrophage polarization to the M2 phenotype.
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1 Introduction

Lung cancer (LC) is a leading cause of cancer mortality

worldwide, with a five-year relative survival rate of less than 20%

(1). Lung adenocarcinoma (LUAD) accounts for roughly 50% of LC

cases, with incidence rates rising annually (2). Although

advancements in LUAD treatments, such as targeted therapies

and immunotherapy, have been made, only a small subset of

patients benefit, and overall survival (OS) rates remain low. Early

metastasis and late diagnosis significantly contribute to the high

mortality associated with LUAD (3). Therefore, there is an urgent

need to develop biomarkers for early-stage diagnosis and treatment

of LUAD.

Calcium ions play a crucial role in tumor development,

influencing processes such as cell proliferation, differentiation,

and apoptosis (4). Intracellular calcium homeostasis is

meticulously regulated by ion channels, ATPase pumps, and

exchangers (5). Dysregulation in these channels or pumps is

linked to carcinogenesis. For example, malfunctions in STIM and

ORAI1-mediated calcium storage and transport signaling can

impede physiological and pathophysiological activities, such as

breast tumor cell migration and metastasis (6), as well as vascular

smooth muscle cell proliferation and migration (7). The expression

of calcium-related proteins varies among cancer subtypes; for

instance, TRPV6 overexpression is significantly associated with

the triple-negative breast cancer subtype due to increased TRPV6

gene copy numbers (8, 9). However, the prognostic significance of

calcium-related gene expression in LUAD is underexplored.

Calcium signaling dysregulation has emerged as a widespread

adaptation in various malignancies, with discrete alterations occurring

at different stages of cancer progression (10). In prostate cancer, altered

calcium homeostasis depends on changes in the ratio of influx/efflux

and storage of calcium compared with non-tumoral cells, with

alterations in plasma membrane and endoplasmic reticulum channels

being primarily responsible for abnormal intracellular calcium levels

(11). In breast cancer, calcium-dependent kinases such as CaMKK2 are

expressed in both cancer cells and stromal cells, contributing to tumor

growth and immune-suppressive status in the tumormicroenvironment

(12). High extracellular calcium levels have been associated with more

aggressive and invasive breast cancers and increase the risk of bone

metastasis in both breast and prostate cancers. Of particular interest to

our study is the troponin C family member TNNC1, a calcium-binding

protein classically associated with muscle contraction regulation. Recent

evidence suggests troponin family members exhibit abnormal

expression in various tumors, with TNNC1 specifically demonstrating

tumor-suppressive properties in certain cancer types. The dysregulation

of calcium homeostasis is now recognized as an emerging feature of
02
cancer, playing essential roles in the initiation and progression of

malignant diseases, with the endoplasmic reticulum functioning as a

major intracellular calcium store that modulates calcium homeostasis in

coordination with other organelles (13). Targeting calcium signaling

mediators has become a promising strategy for developing novel

anticancer therapies across multiple cancer types (12). However, the

prognostic significance of calcium-related gene expression, particularly

TNNC1, in LUAD remains underexplored.

Erlotinib, a first-generation epidermal growth factor receptor

tyrosine kinase inhibitor (EGFR-TKI), has demonstrated efficacy in

NSCLC patients with sensitizing mutations (14). However, most

patients eventually develop acquired resistance, leading to

treatment failure (15). Thus, exploring EGFR-TKI resistance

mechanisms and identifying genes to overcome resistance in

NSCLC is critical for therapeutic advancements.

In this study, we identified 33 calcium-related prognostic genes

(CRPGs) and categorized them into four distinct clusters (C1, C2,

C3, C4) based on unique prognostic, biological, and immunological

characteristics. Using LASSO-Cox regression analysis, we refined

these CRPGs and developed a calcium-related risk score prognostic

signature, termed CRPGscore, comprising nine key CRPGs.

Independent test and validation sets confirmed the accuracy

and specificity of this signature, suggesting its potential as

an independent prognostic factor for OS in LUAD. Stratified

analyses revealed that the high-risk group had significantly

shorter OS durations compared to the low-risk group (P < 0.05).

Additionally, the CRPGscore inversely correlated with immune cell

content. Using Connectivity Map (CMap) analysis, we identified

potential compounds and chemotherapy agents that could target

this signature and modulate its carcinogenic effects. MR and

PheWAS analyses identified TNNC1 as potential drug targets for

LUAD. Furthermore, through eight machine learning models, we

identified TNNC1 as a key tumor suppressor gene in LUAD. In vitro

experiments demonstrated TNNC1 may enhance LUAD cell

resistance to erlotinib through macrophage polarization to the

M2 phenotype.
2 Materials and methods

2.1 Data collecting

The training set consisted of gene expression data (HTSeq-FPKM)

and associated clinical information from the TCGA database,

including 458 LUAD patients with complete follow-up data and a

follow-up duration longer than 30 days. Patients lacking

comprehensive survival information were excluded. The validation
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set followed identical inclusion criteria and incorporated datasets

GSE68465 (439 LUAD patients) and GSE72094 (386 LUAD

patients) from the GEO database. Data from the TCGA-LUAD,

GSE68465, and GSE72094 datasets were harmonized using the

“Combat” algorithm from the R package “sva” (16). We have

supplemented detailed steps and parameter settings for integrating

data from different platforms using the “Combat” algorithm to ensure

transparency and reproducibility of the data integration process.

Specifically, we have supplemented detailed steps and parameter

settings for integrating data from different platforms using the

“Combat” algorithm. Specifically, to eliminate batch effects between

the TCGA-LUAD, GSE68465, and GSE72094 datasets, we employed

the “Combat” algorithm from the R package “sva” for data integration.

First, we performed log2 transformation on the gene expression

matrices of the three datasets to obtain approximately normally

distributed expression values. Subsequently, we identified and

retained genes common to all three datasets to construct a merged

expression matrix containing all samples. When using the ComBat

function, we set the parameter par.prior=TRUE to enable the

empirical Bayesian method for enhancing the robustness of batch

effect correction, while setting mean.only=FALSE to adjust both

location and scale parameters simultaneously. To preserve

biologically significant variation, we incorporated important clinical

covariates (such as age, gender, and tumor stage) using the mod

parameter, ensuring that the influence of these variables was retained

during the batch correction process. After batch correction, we verified

the effective removal of batch effects using principal component

analysis (PCA) and t-SNE visualization methods, confirming that

samples no longer clustered according to their original datasets but

rather distributed based on their biological characteristics.

To further investigate the mechanisms of erlotinib resistance

(ER), we incorporated resistance data from four GEO datasets of

LUAD cell lines:

GSE75308-PC9: This dataset contains gene expression profiles of

PC9 cell line and its erlotinib-resistant derivatives, generated using

the Illumina HumanHT-12 V4.0 expression microarray platform. It

comprises 12 samples (6 sensitive and 6 resistant strains).

GSE67051-PC9: This dataset includes gene expression data of PC9

cell line at different time points of erlotinib exposure, using the

Affymetrix Human Gene 1.0 ST array platform. It contains 15

samples, documenting the dynamic process of resistance acquisition.

GSE67051-HCC827: Expression data of HCC827 cell line and

its resistant derivatives from the same study, using the identical

Affymetrix platform, comprising 12 samples.

GSE123031-PC9: This dataset contains RNA-seq data of PC9

and various acquired resistant PC9 variant cell lines, generated

using the Illumina HiSeq 2500 platform, comprising 9 samples.

These cell line datasets were downloaded from the GEO

database and processed using the same standardization

procedures as the primary clinical datasets. For microarray data,

we employed the RMA algorithm for background correction and

normalization; for RNA-seq data, we applied the same HTSeq-

FPKM normalization method used for TCGA data. Prior to
Frontiers in Immunology 03
integrative analysis, all cell line datasets underwent batch effect

correction using the Combat method as described above.

A comprehensive flowchart of the study is depicted in Figure 1.
2.2 Specimens and cell lines

Tissue samples were obtained from the Fourth Affiliated

Hospital of Soochow University. Clinical data for these patients

were retrieved from their medical records. This study was approved

by the Ethics Committee of the same institution, and informed

consent was obtained from all participants. Additionally, the study

adhered to the ethical principles outlined in the Declaration of

Helsinki, as published in the British Medical Journal (July 18, 1964).

The PC9 and THP-1 cell lines were acquired from the Shanghai

Institutes for Biological Sciences (Shanghai, China). An erlotinib-

resistant PC9 cell line (PC9-ER) was developed over six months by

progressively increasing the erlotinib concentration from 0.1 mM to

40 mM using a stepwise incremental method. Both PC9 and PC9-ER

cells were cultured in DMEM supplemented with 10% fetal bovine

serum and antibiotics, maintained in a humidified atmosphere with

5% CO2 at 37°C. THP-1 cell line was maintained in RPMI 1640

medium supplemented with 10% heat-inactivated fetal bovine

serum, 2 mM L-glutamine, and 1% penicillin/streptomycin in a

humidified incubator at 37°C with 5% CO2.
2.3 Identification of calcium-related
prognostic genes

Calcium-related genes were sourced from GeneCards, selecting

those with a relevance score ≥ 8. Univariate Cox survival analysis and

Kaplan-Meier (KM) survival analysis were performed on the TCGA-

LUAD, GSE68465, and GSE72094 datasets using the “survival”

package. A stringent P-value threshold of < 0.001 was applied to

ensure result reliability, leading to the identification of 33 CRPGs.
2.4 Unsupervised clustering to identify
CRPG subtypes and assess their value in
LUAD

Unsupervised clustering was conducted using the

“ConsensusClusterPlus” R software package to identify novel

subtypes (17). Subtypes were analyzed using the “survival” and

“survminer” packages, employing KM survival analysis and log-rank

tests. Mesenchymal and immune cell presence in malignant tissues

was estimated using the ESTIMATE algorithm, with tumor purity

calculated for different molecular subpopulations (18). Immune cell

abundance across molecular subpopulations was assessed using MCP-

Counter (19). The GSVA algorithm was employed to investigate

significant TME characteristic differences (20, 21). Additionally,

HLA gene expression levels were compared between subtypes.
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2.5 Construction, validation and application
of the prognostic signature

LASSO-Cox regression analysis was utilized to refine the 33

CRPGs, eliminating collinearity with TCGA LUAD patients serving

as the training set. This process led to the development of a calcium-

related risk score prognostic signature, calculated by multiplying the

b (Coef) values by the expression levels of CRPGs. The risk score

formula used was: Risk score = (b1*CRPG1 + b2*CRPG2 +

b3*CRPG3 +… + bn*CRPGn), where b signifies the CRPG

coefficient (22, 23). The median risk score was used as a cut-off

threshold to classify patients into high- and low-score groups. KM

survival analyses were carried out to evaluate these groups further.

The accuracy of the risk model was measured by calculating the

area under the curve (AUC) for predicting 1-, 2-, and 3-year

OS outcomes.

Validation sets GSE68465 and GSE72094 were similarly

analyzed. Univariate and multivariate regressions, visualized
Frontiers in Immunology 04
through forest plots, as well as KM survival analyses, were

conducted to verify the validity of the signatures. Stratified

analyses of clinical variables, including age, gender, stage, and T

and N classifications, were performed to compare OS between the

high- and low-risk groups.
2.6 Immune landscape analysis related to
the CRPGs-associated risk model

To assess immune infiltration in patients, seven algorithms were

employed: MCPcounter (19), CIBERSORT (24), xCell (25), TIMER

(26), EPIC (27), Cibersort-ABS (28), and QUANTISEQ (29). These

algorithms were used to compare the high-risk and low-risk groups,

identifying differences in immune infiltration. Pearson correlations

determined the relationship between risk scores and immune cell

content. Normalized enrichment scores (NES) were calculated

using the Hallmark gene set with the ‘GSEA’ package to compute
FIGURE 1

The flowchart of the overall study.
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NES and false discovery rate (FDR). Gene set enrichment analysis

(GSEA) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

analyses were performed on the Hallmark gene set for both high-

risk and low-risk groups.
2.7 Connectivity map analysis

Drug sensitivity analysis was carried out using the GSCA

database, based on gene expression data (30). GSCALite provided

a collection of 750 small molecule drugs from GDSC and CTRP,

using gene expression data to identify differentially expressed genes

associated with these drugs in samples with various risks of drug

response. Among these differential genes, the top 150 that were

significantly up-regulated or down-regulated were selected as

signature-related markers. The CMap_gene_signatures. RData file,

obtained from the database website (https://www.pmgenomics.ca/

bhklab/sites/default/files/downloads), containing 1,288 compound-

related features, was used to calculate the matching score. The

analysis methodology adhered to those described in previous

publications (31, 32).
2.8 Machine learning methods for filtering
feature model construction and validation

We applied the train function from the caret package to train

multiple machine learning models and used the explain function

from the DALEX package to interpret these models. The predict

function was used to evaluate the accuracy of each model and

generate ROC curves, while the variable_importance function from

the DALEX package was employed to calculate the importance

of variables within the models. Reverse cumulative residual

distribution plots and residual boxplots were generated to assess

model performance. The top 10 most important genes for each

model (as shown in the variable importance ranking plot) were

identified. The root mean square error (RMSE) was used as the loss

function, indicating the degree to which excluding a variable

impacts the predicted values of the response variable, where

larger RMSE values imply greater variable importance.
2.9 Mendelian randomization analysis

MR analyses were conducted using the R package TwoSampleMR

V0.5.6.24 (33). LUAD data, identified by code ieu-a-984, were sourced

from the Open GWAS IEUwebsite (https://gwas.mrcieu.ac.uk/) as the

outcome, while cis-eQTL data from eQTLGen served as the

exposure (34). Screening criteria for the exposure file included a

p-value threshold of 5e-8, a correlation coefficient of 0.001, a

distance of 10,000 kb, and a minor allele frequency greater than

0.01, focusing on cis-loci within 1 MB upstream and downstream of

the gene center. After data loading, outcome harmonization was

performed using built-in functions. MR estimates for each SNP
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were calculated using the Wald ratio method, while the inverse-

variance weighted (IVW) method was applied when multiple SNPs

were present to compute a weighted mean of the ratio estimates,

with weights based on the inverse variance of the ratio estimates.

Horizontal pleiotropy was assessed by evaluating whether the MR

Egger intercept significantly differed from 0 when at least three

SNPs were analyzed. Cochran’s Q tests assessed heterogeneity

among Wald ratios (35). Significance was determined using FDR-

corrected p-values, with an FDR threshold set at less than 0.05.

Statistically significant findings in replication studies were

recognized when nominal p-values were below 0.05.
2.10 Phenome-wide association analysis

To assess the horizontal pleiotropy of potential drug targets and

possible side effects, we performed PheWAS using the AstraZeneca

PheWAS Portal (https://azphewas.com/). Multiple testing

corrections were applied, and a significance threshold of 1E-8 was

established, as recommended by the AstraZeneca PheWAS Portal,

to minimize the risk of false positives (36).
2.11 RNA extraction and quantitative real-
time PCR

Experiments were executed following the manufacturer’s

protocols. Total RNA from cells or tissues was extracted using the

TRIzol reagent (Invitrogen, Carlsbad, CA). Reverse transcription

was conducted with the PrimeScript RT kit (Takara, Cat: RR036A,

KeyGEN) to synthesize cDNA, which was subsequently subjected to

qRT-PCR analysis. Each qRT-PCR trial was performed in triplicate,

and results were normalized to b-actin using the 2-DDCt method. The

primer sequences utilized for qRT-PCR analysis were as follows:

ACTIN forward, 5′-GTCATTCCAAATATGAGATGCGT-3′;
ACTIN reverse, 5′-GCATTACATAATTTACACGAAAGCA-3′;
TNNC1 forward, 5′-GTCTGACCTCTTCCGCATGT-3′; TNNC1
reverse, 5′-ATGAGCTCCTCGATGTCGTC-3′.
2.12 Western blot analysis

Total protein was extracted from the cells using RIPA lysis

buffer containing protease inhibitors. Protein concentration was

determined using a BCA Protein Assay Kit. Equal amounts of

protein (30 mg) were separated by 12% SDS-PAGE and transferred

to PVDF membranes. The membranes were blocked with 5% non-

fat milk in TBST for 1 hour at room temperature and then

incubated with primary antibodies against TNNC1 (1:1000) and

HA-tag (1:2000) overnight at 4°C. After washing with TBST, the

membranes were incubated with HRP-conjugated secondary

antibodies (1:5000) for 1 hour at room temperature. Protein

bands were visualized using an enhanced chemiluminescence

detection system. GAPDH served as a loading control.
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2.13 siRNA construction and cell
transfection

Small interfering RNA (siRNA) targeting TNNC1 (RiboBio,

Guangzhou, China) was transfected into PC9 or PC9-ER cells using

Lipofectamine 3000 (Invitrogen, Carlsbad, CA, USA), following the

manufacturer’s instructions. Forty-eight hours post-transfection,

cells were harvested for qRT-PCR and other subsequent

experiments. The siRNA sequences were as follows: si1-TNNC1

sense sequence, 5′-CGGUAGAGCAGCUGACAGA-3′; si2-TNNC1
antisense sequence, 5′-AAGAUAAUGCUGCAGGCUA-3′; si-NC
sense sequence, 5′-UAACGACGCGACGACGUAAtt-3′; si-NC

antisense sequence, 5′-UUACGUCGUCGCGUCGUUAtt-3′.
2.14 Construction of TNNC1
overexpression system

The TNNC1 overexpression system was constructed using

lentiviral vectors. The full-length coding sequence of human

TNNC1 was amplified by PCR and cloned into a lentiviral

expression vector with an HA-tag. The recombinant plasmid was

verified by DNA sequencing. Empty vector was used as a control.

Lentiviral particles were produced in HEK293T cells by co-

transfection with packaging plasmids. PC9 cells were infected

with lentivirus containing either TNNC1-HA or empty vector

control, and stable cell lines were established by puromycin

selection (2 mg/mL) for 2 weeks.
2.15 Colony formation assay

Cells were seeded at a density of 4 × 102 cells per well in a 6-well

plate. After overnight stabilization, cells were treated with erlotinib

and incubated at 37°C until colonies formed and matured, with

media changes every three days. After 10 days, colonies were fixed

with 4% paraformaldehyde for 10 minutes, stained with crystal

violet for 30 minutes, washed with PBS, and imaged.
2.16 CCK8 assay

PC9 and PC9-ER cells transfected with si-TNNC1 or si-NC were

seeded in 96-well plates at a density of 2 × 103 cells per well and

incubated for 6–8 hours to establish baseline values. They were then

exposed to various concentrations of erlotinib for 72 hours.

Following treatment, 10 ml of CCK-8 solution was added to each

well and incubated for 2 hours. Cell viability was assessed by

measuring absorbance at 450 nm. For M2 macrophage

polarization, PMA-differentiated THP-1 cells (M0) were stimulated

with 20 ng/ml IL-4 and 20 ng/ml IL-13 for 48 hours.
Frontiers in Immunology 06
2.17 Macrophage differentiation

THP-1 cells were differentiated into macrophages using phorbol

12-myristate 13-acetate (PMA). The differentiation of THP-1

monocytes into macrophage-like cells was induced by PMA.

Briefly, THP-1 cells were seeded at a density of 5 × 105 cells/ml

in complete medium containing 50 ng/ml PMA for 24 hours to

induce initial differentiation into M0 macrophages. After PMA

treatment, the medium was replaced with fresh complete medium

without PMA, and cells were rested for an additional 24 hours. For

M2macrophage polarization, PMA-differentiated THP-1 cells (M0)

were stimulated with 20 ng/ml IL-4 and 20 ng/ml IL-13 for

48 hours.
2.18 Macrophage polarization assessment

Differentiated cells were washed twice with PBS and then

incubated with PBS containing 2 mM EDTA at 37°C for 10

minutes to detach cells from culture plates. After collection, cells

were centrifuged at 300 × g for 5 minutes, and the supernatant was

discarded. Cells were resuspended in 100 ml offlow cytometry buffer

(PBS containing 0.5% BSA and 2 mM EDTA). Fc receptor blocking

reagent was added and incubated at 4°C for 15 minutes to reduce

non-specific binding. Fluorochrome-conjugated antibodies were

then added: anti-human CD206-PE (1:50 dilution) and anti-

human CD163-APC (1:50 dilution), and incubated at 4°C in the

dark for 30 minutes. Following incubation, cells were washed twice

with flow cytometry buffer and resuspended in 300 ml of flow
cytometry buffer. Cell analysis was performed using a flow

cytometer (BD FACSCalibur), with a minimum of 10,000 events

collected per sample. Data were analyzed using FlowJo software

(Tree Star Inc.), and M2 macrophage polarization was assessed by

measuring the percentage of CD206 and CD163 positive cells and

their mean fluorescence intensity (MFI). Appropriate isotype

control antibodies were used as negative controls.
2.19 Statistical analysis

Data analysis was conducted using R4.1 software. T-tests were

employed for normally distributed data, while the Wilcoxon rank-

sum test was used for non-normally distributed data. The Kruskal-

Wallis test and one-way analysis of variance (ANOVA) served

as non-parametric and parametric methods, respectively, for

intergroup comparisons. Univariate Cox survival analysis and

Kaplan-Meier survival analysis were conducted using the “survival”

package. Data analysis and graphical representation were facilitated

by GraphPad Prism 9. All experiments were independently repeated

at least three times. A statistical significance level of P < 0.05

was considered.
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3 Results

3.1 Identification of calcium-related
prognosis genes in LUAD

A comprehensive flowchart of the study is depicted in Figure 1.

To ensure high sample quality, a rigorous screening process was

implemented, selecting only samples with complete survival data

and a follow-up duration exceeding 30 days. The R package “sva”

and the “Combat” algorithm were utilized to minimize non-

biological variations across the three datasets, culminating in the

inclusion of 1,283 patients (TCGA-LUAD=458, GSE68465 = 439,

GSE72094 = 386). Univariate Cox survival analysis (P < 0.001) and

KM survival analysis (P < 0.001) conducted on 392 calcium-related

genes with a relevance score of ≥ 8 led to the identification of 33

CRPGs (Figure 2A; Supplementary Table S1).
3.2 Evaluation of prognosis, immune
infiltration, and biological function of
CRPG clusters

Unsupervised clustering was applied to 1,283 LUAD tissues to

identify novel subtypes based on the expression profiles of 33

CRPGs. Through rigorous analysis using cluster consensus, a

consensus matrix, and a delta area plot, four clusters (C1, C2, C3,

C4) were identified (Figures 2B-D; Supplementary Table S2).

Principal component analysis (PCA) indicated significant

transcriptional variations of CRPGs across these clusters

(Figure 2E). All 33 CRPGs showed markedly different expression

levels among the clusters (P < 0.0001) (Figure 2F). KM survival

analyses and log-rank tests revealed substantial survival differences

between most cluster pairs (P < 0.005, Figure 2G). The Chi-Squared

test demonstrated diverse survival rates among clusters, with C3

exhibiting the highest survival rate at 73%, followed by C1 and C4

(58% and 63%, respectively), while C2 had the lowest survival rate at

45% (P = 5.57E-11, Figure 2H).

Further analysis of the subtypes revealed that C3 had the highest

HLA gene expression and lowest tumor purity, indicative of

stronger immune responses, whereas C2 displayed the highest

tumor purity and the lowest immune cell infiltration, correlating

with its poor prognosis (Figures 3A-D). GSVA and limma

differential analysis uncovered significant pathway variations

among the subtypes: C3 was enriched in immune response and T

cell activation pathways, while C2 was characterized by enrichment

in cell cycle and DNA replication pathways (Figures 3E-J). These

differences in molecular characteristics likely explain the observed

prognostic disparities and provide insight into potential precision

treatment strategies for each subtype.

These findings emphasize the role of the 33 CRPGs in

differentiating patients into four biologically distinct clusters,

underscoring their potential prognostic and therapeutic

significance. The molecular characteristic differences revealed by

subtype analysis provided the basis for our prognostic model
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construction. Next, we developed a prognostic scoring model

based on these 33 CRPGs and validated its predictive value in

multiple independent cohorts.
3.3 Construction and external validation of
calcium-related risk score prognostic
signature

Utilizing the TCGA-LUAD dataset as the training set, we applied

LASSO-Cox regression analysis to streamline the list of 33 CRPGs,

removing collinearity and optimizing prognostic characteristics

(Figures 4A, B). The process led to the development of a risk score

prognostic signature, calculated by multiplying the b (Coef) values by

the CRPG expression levels, resulting in the formula: CRPGscore =

(0.034 × S100P expression) + (0.109 × S100A10 expression) + (-0.031

× SLC34A2 expression) + (0.050 × CAMK2N1 expression) + (0.160 ×

PKP2 expression) + (-0.038 × CFTR expression) + (-0.006 × TNNC1

expression) + (0.113 × MAPK10 expression) + (0.132 × CDKN3

expression) (Figure 4C; Supplementary Table S3).

The biological roles of each CRPG within the signature further

underscore their importance in shaping the prognostic model. For

instance, S100P and S100A10, both calcium-binding proteins, are

involved in regulating cell proliferation, differentiation, and

migration. S100P is overexpressed in multiple cancers and linked

to poor prognosis in LUAD, while S100A10 contributes to

membrane repair and drug resistance in tumor progression.

Contrasting with these findings, SLC34A2, a sodium-phosphate

cotransporter downregulated in LUAD, functions as a tumor

suppressor gene by maintaining calcium-phosphate balance.

Similarly, downregulated TNNC1, a novel finding in LUAD, is

associated with extended survival, suggesting potential tumor-

suppressive functions. On the other hand, overexpressed genes

like PKP2 and CDKN3 may promote tumor progression by

affecting calcium-dependent cell-cell adhesion and cell cycle

regulation, respectively. The inclusion of CAMK2N1 and

MAPK10, involved in calcium-driven stress response and

apoptosis, and CFTR, an immune microenvironment regulator,

highlights the multifaceted roles of calcium signaling in LUAD

progression. These insights provide a mechanistic basis for the

prognostic utility of the CRPG signature.

To assess the predictive value of the signature, a random effects

model was employed to conduct a prognostic meta-analysis across

the GEO cohorts (GSE72094 and GSE68465) and the TCGA-LUAD

cohort. This analysis indicated that the prognostic signature is a

significant risk factor across datasets (HR: 3.47, 95% CI: 2.34-5.15,

Weight = 100.0%). No significant heterogeneity was observed (I² =

64%, t = 0.0751, P = 0.06) (Figure 4D). Using the median risk score

from the TCGA-LUAD scores as the cut-off value, patients across

all three cohorts were classified into high- and low-score groups.

The low-score group consistently showed significantly better OS

compared to the high-score group in TCGA-LUAD (P < 0.001,

Figure 4E), GSE72094 (P < 0.001, Figure 4F), and GSE68465 (P =

0.001, Figure 4G). ROC analysis was performed to evaluate the
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FIGURE 2

Calcium-related prognosis genes (CRPGs) expression profiling identifies four LUAD subtypes with distinct prognoses. (A) Univariate Cox survival
analysis and Kaplan-Meier survival analysis for 33 calcium-related prognosis genes (CRPGs) in the TCGA-LUAD, GSE68465, and GSE72094 cohorts
are shown in the forest map. (B) Assessment of average consistency within clusters. (C) Consensus clustering matrix for k = 4. (D) The cumulative
distribution function (CDF) curve of the sample and delta area curve, reflecting the degree of variance of the area under the CDF curve for each
number of categories k relative to k - 1. The horizontal axis represents the number of categories k and the vertical axis represents the relative change
in area under the CDF curve. (E) Principal component analysis (PCA) revealed significant differences in transcriptome between the four clusters. (F) A
heatmap displaying the expression of 33 CRPGs in different clusters. (G) The Kaplan–Meier curves show the overall survival for four clusters of LUAD
patients (log-rank test). (H) Survival and mortality of each cluster (Chi-Squared test, P = 5.57E-11). ***P < 0.001, and ****P < 0.0001.
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sensitivity and specificity of the signature for prognosis, using the

AUC as the performance metric. The AUC values for the TCGA-

LUAD training set at 1, 2, and 3 years were 0.713, 0.684, and 0.696,

respectively (Figure 4H). For the GSE72094 test set, the AUC values
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were 0.699, 0.694, and 0.711, whereas the GSE68465 test set yielded

AUC values of 0.699, 0.709, and 0.691 (Figures 4I, J). Moreover, the

reliability of the ROC in predicting outcomes in LUAD patients was

confirmed (Figures 4K-M).
FIGURE 3

Distinct immunological features and pathways in four clusters. (A) Comparison of the expression levels of HLA genes among four clusters (ANOVA
test, P < 0.01). (B) Intratumor heterogeneity (ITH) scores among four clusters (one-tailed Mann–Whitney U test). (C) Abundance of immune cell
subpopulations (estimated by MCP-counter). (D) Contrast TME signature between the clusters C1, C2, C3 and C4 based on the GSVA algorithm.
(E–J) Differences in pathway activities scored by GSVA between different CRPG clusters. The blue represented activated pathways and green
represented inhibited pathways. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.
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FIGURE 4

Construction and External validation of calcium-related risk score prognostic signature. (A) LASSO co-efficient value of 33 calcium-related prognosis
genes (CRPGs). (B) 10-fold cross-validation for tuning parameter selection in the LASSO model. (C) The risk score for predicting the survival and
prognosis of patients with LUAD. (D) A meta-analysis of the prognostic value of the immune signature model when used to predict outcomes in the
TCGA-LUAD and GEO cohorts. (E-G). Kaplan–Meier analyses demonstrate the prognostic significance of prognostic signature in (E) the TCGA-LUAD
(P < 0.001), (F) the GSE72094 (P < 0.001), (G) the GSE68465 (P = 0.001). (H-J). Time-dependent receiver operating characteristics (ROC) of (H) the
TCGA-LUAD, (I) GSE72094 and (J) GSE68465. (K-M). Calibration curves for risk score model in (K) the TCGA-LUAD, (L) GSE72094 and
(M) GSE68465.
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These results highlight the robustness and reliability of the

constructed prognostic signature in accurately predicting the

prognosis of LUAD across multiple datasets.
3.4 Internal validation of CRPGscore
prognostic signature

Based on the aforementioned analysis of the expression pattern

and functional characterization of CRPGs in LUAD, we further

evaluated the value of the constructed prognostic features for

application in different clinical subgroups. Cox regression analysis

was performed to evaluate the signature as an independent predictor

in LUAD patients. The univariate Cox regression analysis showed

that OS in LUAD was strongly associated with stage, T stage, N stage,

and risk score (Figure 5A). Multivariate Cox regression analysis

further confirmed that the risk score was a significant independent

prognostic factor for LUAD patients (P < 0.001) (Figure 5B). An

examination of the relationship between the signature and

clinicopathological variables revealed that the CRPGscore was

significantly higher in patients with stage III-IV compared to stage

I-II (P = 0.0089, Figure 5C), higher in N1–2 compared to N0 (P =

0.0015, Figure 5D), and higher in males compared to females (P =

0.0099, Figure 5E). These findings suggest that a higher CRPGscore is

linked with increased malignancy in LUAD. Stratification of LUAD

patients based on clinicopathological variables was conducted to

investigate the prognostic value for OS. Stratification analyses were
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performed based on age (P < 0.001; P < 0.001; Figures 5F, G), sex (P <

0.001; P < 0.001; Figures 5H, I), N stage (P < 0.001; P = 0.005;

Figures 5J, K), stage (P < 0.001; P = 0.002; Figures 5L, M), and T stage

(P < 0.001; P = 0.026; Figures 5N, O). Consistently across all stratified

analyses, the high-score group exhibited significantly shorter OS than

the low-score group, indicating that the signature’s prognostic

value was not confounded by conventional clinical factors in

LUAD patients.
3.5 Integrated analysis of the immune
landscape, molecular pathways, and
therapeutic relevance in LUAD

We investigated the relationship between our gene signature and

the tumor immune microenvironment in LUAD using seven

algorithms (MCPcounter, CIBERSORT, xCell, TIMER, EPIC,

CIBERSORT-ABS, and QUANTISEQ). The signature exhibited

significant associations with various immune cell types, such as

Tregs, T cells, NK cells, neutrophils, myeloid dendritic cells,

monocytes, mast cells, and B cells, with notably higher infiltrating

levels in the low-risk group than in the high-risk group (Figures 6A, B).

Most CRPGs (except PKP2) were significantly correlated with

immune-related scores, and S100P showed a strong positive

relationship with TumorPurity (Figure 6C). Single-cell analyses

further demonstrated enriched S100P expression in tumor-associated

cells (Figure 6D).
FIGURE 5

Internal validation of calcium-related risk score prognostic signature. (A, B). (A) Univariate Cox regression and (B) multivariable Cox regression
analysis of correlations between the risk score for over survival (OS) and clinical variables in TCGA-LUAD cohort. (C-E). The relationships between
the risk score and clinicopathological variables. (C) Stage (stage I-II vs. stage III-IV, P = 0.0089). (D) N stage (N0 vs. N1-2, P = 0.0015). (E) Gender
(Female vs. Male P = 0.0099). N, lymph node metastasis. (F, G). Subgroup analysis of Kaplan-Meier curves in different ages ≤66 (P < 0.001) and >66
(P = 0.005). (H, I). Subgroup analysis of Kaplan-Meier curves in female (P < 0.001) and male (P < 0.001). (J, K). Subgroup analysis of Kaplan–Meier
curves in N0 (P < 0.001) and N1-2 (P = 0.005). N, lymph node metastasis. (L, M). Subgroup analysis of Kaplan–Meier curves in different stage I-II (P <
0.001) and III-IV (P = 0.002). (N, O). Subgroup analysis of Kaplan–Meier curves in T1-2 (P < 0.001) and T3-4 (P = 0.026). T, tumor size.
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Hallmark gene set-based GSEA and KEGG analyses revealed

distinct pathway enrichments among high- and low-risk patients,

indicating differing biological features (Supplementary Figure S1).

To explore the clinical relevance of the signature in anti-cancer

therapy, we performed Connectivity Map (CMap) analysis using

the top 150 differentially expressed genes in the high-risk group.

Five candidate compounds (TTNPB, W.13, iloprost, NS.398, and

Gly.His.Lys) were identified for their possible inhibitory effects on

tumor-promoting mechanisms (Figure 7A). Notably, previous

research has documented the inhibitory effects of NS.398 (37),

TTNPB (38) and iloprost (39) on LUAD. Further integration of the

GDSC and CTRP databases revealed that TNNC1, S100A10, PKP2,

CAMK2N1, and S100P exhibited positive correlations with

chemotherapy resistance (Figures 7B, C). Notably, TNNC1,

S100A10, PKP2, CAMK2N1, S100P, and CDKN3 in the CTRP

dataset were linked to resistance across multiple drugs (Figure 7C).
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Collectively, these results underscore the potential clinical utility of

these genes for predicting treatment outcomes.
3.6 Identification of TNNC1 as a key
suppressor gene in LUAD

The TCGA-LUAD dataset was randomly divided into two

subsets using the createDataPartition function from the caret

package, designating one as the training set and the other as the

test set. Diagnostic models were developed using nine CRPGs.

Residual analysis demonstrated strong predictive capabilities for

these models (Figure 8A), with minimal prediction errors evident

in the inverse cumulative distribution of residuals across 11 methods

(Figure 8B). ROC curves based on these residuals indicated excellent

model performance (Figure 8C). Among the nine CRPGs, TNNC1
FIGURE 6

Immune cell landscape associated with signature in LUAD patients. (A) Seven algorithms (MCPcounter, CIBERSORT, xCell, TIMER, EPIC, Cibersort-
ABS, QUANTISEQ) were used to compare the differences in immune cells infiltration (B cells, Tregs cells, CD4T+ cells, NK cells, CAFs cells,
Endothelial cells, Progenitor cells, Macrophage cells, Myeloid-dendritic cells, Monocyte cells, Mast cells, Neutrophil cells, T cells, TMEscore) between
the high and low riskscore groups. (B) Correlation of riskscore with immune cell infiltration evaluated using seven algorithms. (C) The estimate
algorithm evaluated the correlation of 9 CRPGs with 4 scores (ESTIMATEScore, ImmunScore, StromalScore, and TumorPurity). (D) Single-cell
expression analysis of S100P in NSCLC tissues. *P < 0.05, **P < 0.01, and ***P < 0.001.
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consistently emerged as a critical tumor suppressor gene in LUAD

across all algorithmic models (Figure 8D).

Building on this discovery, MR analysis employing 33 CRPGs

further confirmed the tumor-suppressive role of TNNC1. The

analysis revealed that increased TNNC1 expression significantly

reduces the risk of LUAD (OR = 0.737; 95% CI, 0.550–0.988; P =

0.041) (Supplementary Figure S2A). Additionally, a PheWAS

analysis conducted via the Phenoscanner platform simulated

potential drug-related side effects associated with TNNC1, and no

significant adverse effects were observed (Supplementary Figure

S2B and Supplementary Table S4). These results not only reinforce

TNNC1’s protective role in LUAD but also highlight its potential as

a novel therapeutic target.

Subsequent validation with the TCGA-LUAD dataset confirmed

that TNNC1 expression was significantly lower in LUAD tissues

compared to adjacent normal lung tissues (Figures 8E, F, P < 0.001).

ROC curves supported TNNC1’s robust differentiation between

LUAD and normal lung tissues (AUC: 0.997, 95% CI: 0.994-0.999)

(Figure 8G), and the Hosmer-Lemeshow test confirmed the model’s

goodness of fit (P = 0.998, Figure 8H). Further validation using

external datasets GSE31547 and GSE40791 affirmed that TNNC1

expression is significantly lower in LUAD tissues compared to

adjacent normal tissues (Figures 8I, J, P < 0.001). Kaplan-Meier

survival analysis showed that patients with higher TNNC1 expression

had significantly better overall survival (P = 0.006, Figure 8K),

progression-free interval (P = 0.015, Figure 8L), and disease-free

interval (P = 0.021, Figure 8M) than those with lower expression.
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These findings highlight TNNC1’s downregulation in LUAD tissues

and its close association with patient prognosis, suggesting its

potential role as a prognostic biomarker.
3.7 TNNC1 enhances the erlotinib
resistances of LUAD cells and induces M2
polarization of macrophages

Resistance to EGFR-TKIs is a common challenge in treating

late-stage LUAD, often leading to relapse (40). Understanding the

mechanisms behind this resistance is crucial for improving

chemotherapy outcomes. TCGA-LUAD patient data revealed that

TNNC1 expression was significantly higher in patients classified in

the progressive disease (PD) category compared to those with a

complete response (CR) to EGFR-TKI treatment (Figure 9A).

Further, an examination of erlotinib resistance (ER) datasets from

LUAD cell lines (GSE75308-PC9, GSE67051-PC9, GSE67051-

HCC827, GSE123031-PC9) consistently showed an increase in

TNNC1 expression in erlotinib-resistant LUAD cells compared to

sensitive ones (Figure 9B). Elevated TNNC1 expression in the ER

group, as opposed to patients untreated with erlotinib, underscores

its potential role as a key gene related to erlotinib resistance

(Figures 9C, D). To explore TNNC1’s impact on erlotinib

resistance, a PC9-ER cell model was developed using a dose-

escalation approach with the PC9 cell line. The half-maximal

inhibitory concentration (IC50) of erlotinib required for a 50%
FIGURE 7

Prediction of potential drug targeting signature. (A) Candidate compounds may target signature based on the connectivity map (Cmap) analysis in
LUAD. (B) Correlation between GDSC drug sensitivity and 9 CRPGs mRNA expression. (C) Correlation between CTRP drug sensitivity and 9 CRPGs
mRNA expression. A negative correlation indicated that high gene expression made patients more sensitive to the drug, while a positive correlation
indicated the opposite.
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FIGURE 8

Machine learning methods for filtering feature model construction and validation. (A) Based on caret package, eleven algorithms (Logit, Gradient
Boosting Machine (GBM), Support Vector Machine (SVM) learning, Linear Discriminant Analysis with Stepwise Feature Selection (stepLDA), Random
Forest (RF) tree, K-Nearest Neighbor (KNM), Extreme Gradient Boosting (XGBoost), Multi-Step Adaptive MCP-Net (msaenet), Partial Least Squares
(PLS), eXtreme Gradient Boosting (XGB), Generalized Linear model (GLM), and Naive Bayes classifier (NaiveBayes)) were used to construct boxplots
of sample residuals. The X-axis value represents the quantile of outliers, and the red dot represents the mean. (B) Reverse cumulative distribution of
residuals. The Y-axis value represents the percentile of the outlier. (C) ROC analysis of the eleven model (GBM, GLM, KNN, Logit, msaenet,
NaiveBayes, PLS, RF, stepLDA, SVM, XGB model). (D) Feature Importance created for the GBM, GLM, KNN, Logit, msaenet, NaiveBayes, PLS, RF,
stepLDA, SVM, XGB model. The X-axis value represents the root mean square error (RMSE) loss after permutations. (E) The mRNA expression of
TNNC1 in normal tissues and LUAD tissues. (F) The mRNA expression of TNNC1 in paired normal tissues and LUAD tissues. (G) A ROC curve to test
the value of TNNC1 to identify LUAD tissues. (H) Hosmer-Lemeshow good of fit test. (I) In the GSE31547 dataset, TNNC1 expression was higher in
LUAD tumors (P < 0.001). (J) In the GSE40791 dataset, TNNC1 expression was higher in LUAD tumors (P < 0.001). The (K) Overall Survival,
(L) Progression Free Interval, (M) Disease Free Interval, KM survival curves of TNNC1 in LUAD.
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FIGURE 9

TNNC1 enhances the erlotinib resistances of LUAD cells and induces M2 polarization of macrophages. (A) The mRNA expression of TNNC1 in
erlotinib-treated LUAD patients with complete relief (CR) or clinical progressive disease (PD). (B) LUAD erlotinib-resistant cell dataset analyses
expression of nine signature genes. (C) Heat map showed the mRNA expression of TNNC1 in untreated with erlotinib group and erlotinib resistance
group, ranging from green (low expression) to red (high expression). The column clustering generated by the IHC scores of the TNNC1 staining.
(D) Representative IHC images showing TNNC1 expression (-, +, ++, +++) in LUAD tissues. Scale bar, 200 m. (E) IC50 values of gefitinib in PC9-ER
and parental PC9 cells was examined by CCK8 assay. (F) The mRNA expression of TNNC1 expression in PC9-ER and parental PC9 cells. (G)
Validation of siRNAs-TNNC1 knockdown efficiency in PC9-ER cells. (H) IC50 value of gemcitabine in PC9-ER cells transfected with siRNA targeting
TNNC1 (si1/2-TNNC1) by the cell counting kit-8 assay. (I) CCK8 assays were performed to determine the proliferation of siRNA-TNNC1 PC9-ER cells
treated with erlotinib. (J, K) Colony formation assays were used to evaluate the colony formation capacity of siRNA-TNNC1 PC9-ER cells treated
with erlotinib. (L) The expression of immunostimulatory gene, immunosuppressive gene, chemokine and human leukocyte antigen was different in
high/low expression group of TNNC1. The left and right sides of the heat map showed low and high gene expression groups, respectively. The
higher the average gene expression, the redder the color, and the lower the average gene expression, the bluer. (M) The infiltration of immune cells
in TCGA-LUAD groups with high and low expression of TNNC1 was analyzed by xCell. (N) The correlation between TNNC1 expression and the
proportion of total macrophages, M0, M1, M2 macrophages. (O) In the zcore scatter diagram of the sample, each scatter represents a sample,
different colors represent different subgroups, and the horizontal/vertical coordinates correspond to the zcore of the two genes respectively. The
definition of zcore ≤ 0 means low expression, zcore > 0 means high expression. (P) Kaplan-Meier survival analysis. (Q) After transfection with si-NC
or si1/2-TNNC1, the expression levels of CD206, Ym1 and Arg1 in IL-3-treated THP1 cells were detected by RT-qPCR. THP1 cells not treated with IL3
were used as control. ER, erlotinib resistance. *P < 0.05, **P < 0.01, and ***P < 0.001.
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reduction in cell viability was assessed using the CCK-8 assay and a

dose-response curve (Figure 9E). TNNC1 mRNA levels were found

to be higher in PC9-ER cells compared to PC9 cells (Figure 9F). To

investigate further, PC9-ER cells were transfected with TNNC1-

specific siRNA (si1/2-TNNC1) to knock down TNNC1 expression,

and transfection efficiency was confirmed 48 hours post-

transfection via RT-qPCR (Figure 9G). Following TNNC1

knockdown, the IC50 value of erlotinib in PC9-ER cells decreased

compared with the control (Figure 9H). The CCK-8 assay results

showed that downregulation of TNNC1 significantly reduced the

IC50 value of erlotinib in these cells (Figure 9I). In addition, TNNC1

downregulation markedly inhibited PC9-ER cell proliferation as

indicated by CCK-8 proliferation and colony formation assays

(Figures 9J, K). To establish a direct causal relationship between

TNNC1 overexpression and erlotinib resistance, we overexpressed

TNNC1 in the erlotinib-sensitive PC9 cell line. Western blot

confirmed successful expression of HA-tagged TNNC1 in PC9 cells

(Supplementary Figure S3A). Cell viability assays demonstrated that

TNNC1-overexpressing PC9 cells treated with 5mM erlotinib

exhibited significantly higher viability at day 3 compared to vector

control cells under the same treatment (P < 0.05) (Supplementary

Figure S3B). These findings collectively suggest that TNNC1

enhances LUAD cell resistance to erlotinib.

Tumor-associated macrophage M2 polarization is implicated in

tumor progression and chemotherapy resistance (41). This study

assessed whether TNNC1 affects LUAD biological functions

through M2 tumor-associated macrophage (TAM) polarization.

xCell analysis showed that patients with high TNNC1 expression

experienced more pronounced immune cell infiltration than those

with low expression (Figure 9L), including significant enrichment of

total macrophages and M2 polarization (Figure 9M). Immune-

related genes, such as immune stimulatory and inhibitory genes,

chemokines, and human leukocyte antigens were generally

upregulated in the high TNNC1 expression group (Figure 9N).

These data suggest a strong association between TNNC1 and M2

TAM polarization. The relationship between TNNC1 expression in

M2 cells and LUAD patient survival was explored. Using the

TIMER2.0 database to integrate M2 cell infiltration levels and

TNNC1 transcriptional expression, LUAD patients were

categorized into four groups. Results indicated that patients with

a TNNC1+ &M2+ status had significantly poorer survival outcomes

(Figures 9O, P). It was hypothesized that TNNC1 could influence

macrophage M2 polarization. To evaluate this, THP-1 monocytes

were treated with IL-3 to induce M2 polarization, then transfected

with TNNC1-specific siRNA. IL-3 treatment raised levels of M2

markers, including CD206, Ym1, and Arg1, while TNNC1

knockdown reversed these increases (Figure 9Q). To directly

confirm the role of TNNC1 in promoting macrophage M2

polarization, we overexpressed TNNC1 in THP1 cells and

assessed its effects on M2 phenotype markers. Western blot

confirmed successful expression of HA-tagged TNNC1 in THP1

cells (Supplementary Figure S1C). Flow cytometry analysis

demonstrated that TNNC1 overexpression significantly increased

the percentage of CD163+/CD206+ THP1 cells under IL-4/IL-13
Frontiers in Immunology 16
stimulation compared to control cells (P < 0.01) (Supplementary

Figure S1C). qPCR analysis further revealed that TNNC1

overexpression significantly upregulated mRNA expression of

M2-related markers including Arg1 (P < 0.001), IL-10, TGF-b,
CCL17, and CCL22 (all P < 0.05) (Supplementary Figure S1D).

Taken together, these findings provide direct evidence that TNNC1

positively regulates macrophage M2 polarization.

In conclusion, TNNC1 may contribute to erlotinib resistance in

LUAD cells by promoting macrophage M2 polarization.
4 Discussion

LUAD is the predominant subtype of NSCLC, its marked

heterogeneity, high recurrence rate, and poor prognosis present

significant clinical challenges (1, 2). Accurately predicting the

prognosis of patients with LUAD is essential for developing

personalized treatment strategies. With advances in gene

expression profiling and bioinformatics, large-scale data analyses

focused on specific genetic features have provided a robust

molecular foundation for prognosis prediction, guiding treatment

decisions, and improving patient survival (3).

Our study focuses on TNNC1 as a key tumor suppressor gene in

LUAD. We confirmed through machine learning residual analysis

that TNNC1 is significantly downregulated in LUAD tissues,

consistent with its function as a tumor suppressor gene. Notably,

our findings are not the first to identify TNNC1’s prognostic value,

as previous studies have already explored its prognostic significance

in the same dataset. Lu et al. (2020) initially demonstrated

significant expression differences of TNNC1 between paired

normal lung tissues and LUAD tissues, and that downregulation

of TNNC1 was closely correlated with increased mortality in LUAD

patients (42). They demonstrated that there is a mutual inhibitory

relationship between TNNC1 expression and the KRAS signaling

pathway, where KRAS suppression leads to enhanced TNNC1

expression, while TNNC1 overexpression in turn inhibits KRAS

G12D-mediated anchorage-independent growth of NIH3T3

cells (42).

Our research significantly expands the understanding of

TNNC1’s role in LUAD, particularly by revealing the association

between TNNC1 and EGFR-TKI resistance and tumor-associated

macrophage polarization, areas not explored in previous studies.

We observed that TNNC1 is highly expressed in erlotinib resistance

datasets, a finding consistent with the pattern proposed in previous

studies where genes associated with drug resistance often exhibit

low expression in cancer tissues but high expression in resistant

cells (15, 40). Regarding the molecular mechanism of TNNC1 in

EGFR-TKI resistance, our data support the following explanation:

TNNC1 may participate in the development of resistance by

regulating autophagy processes. Studies have shown that TNNC1

protects non-small cell lung cancer cells from apoptosis by

promoting gemcitabine-induced autophagy (43). A similar

mechanism may exist in EGFR-TKI resistance, where upregulated

TNNC1 may promote cancer cell survival by enhancing autophagic
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flux, thereby conferring resistance to EGFR-TKIs such as erlotinib.

The mechanisms of acquired resistance to EGFR-TKIs are complex

and diverse, including T790M secondary mutations, MET

amplification, and bypass signaling activation (15). TNNC1 may

participate in regulating these bypass signaling pathways, such as

PI3K/AKT or MAPK pathways, thereby affecting the efficacy of

EGFR-TKIs (44).

More importantly, our study is the first to reveal the close

connection between TNNC1 and M2 polarization of TAMs. TAMs

predominate in the tumor microenvironment, with M2-type TAMs

typically exhibiting pro-tumor characteristics, participating in

promoting angiogenesis, immune suppression, and tumor metastasis

(28, 41). Our data show that in the LUAD microenvironment,

TNNC1 may participate in regulating the process of macrophage

polarization toward the M2 phenotype. The combined presence of

TNNC1+ and M2+ exacerbates the adverse impact on LUAD patient

survival, suggesting that TNNC1 not only affects disease progression

through direct action on tumor cells but also exerts indirect influence

by regulating the tumor immunemicroenvironment. At the molecular

level, TNNC1 may participate in macrophage polarization through

the following mechanisms: First, as a calcium metabolism-related

protein, TNNC1 may regulate calcium signaling in the tumor

microenvironment, thereby affecting macrophage differentiation

and polarization (4, 45). Calcium ions are important second

messengers involved in regulating various cellular processes,

including macrophage function and phenotypic transformation

(45, 46). Second, TNNC1 may regulate macrophage polarization by

influencing cytokine networks. Studies have shown that in the tumor

microenvironment, M2 macrophage polarization is regulated by

various cytokines such as IL-4, IL-13, and the STAT6/C/EBPb
signaling pathways (29). TNNC1 may participate in the regulation

of these signaling pathways, thereby promoting M2 polarization.

Additionally, TNNC1 may indirectly regulate macrophage

polarization by influencing interactions between tumor cells and

macrophages, for example, by regulating the cytokine spectrum

secreted by tumor cells or by affecting the expression of cell surface

molecules (41). Based on our findings, targetingTNNC1may provide

a novel strategy to overcome erlotinib resistance and inhibit

macrophage polarization in LUAD patients, thereby improving

patient survival rates. Potential intervention approaches include:

developing specific inhibitors targeting TNNC1; combined use of

EGFR-TKIs and autophagy inhibitors, such as chloroquine or

hydroxychloroquine, to overcome TNNC1-mediated autophagy-

related resistance (43).

Other genes identified in our nine-gene calcium-related

prognostic signature also have important biological functions.

S100 family members (S100P and S100A10) regulate key cellular

processes such as cell cycle progression and differentiation (47).

S100P, significantly upregulated in early-stage LUAD, promotes

cancer progression by activating the PI3K/AKT pathway (44, 48)

and interacts with interferon b (IFN-beta), indicating its potential

role in lung cancer progression (49). S100A10 (p11) plays a pivotal

role in tumor invasion and metastasis by binding to annexin A2

(50), promoting extracellular matrix degradation and metastasis

(51). SLC34A2, a pH-sensitive sodium-dependent phosphate
Frontiers in Immunology 17
transporter (52), is associated with lung cancer (53), and the

SLC34A2-ROS1 fusion gene can induce crizotinib resistance and

enhance carcinogenicity (54, 55). CAMK2N1 influences cell cycle

progression and epithelial-mesenchymal transition (56) through

the MEK/ERK and Notch-1 pathways (57). PKP2 accelerates tumor

progression by promoting EGFR phosphorylation and activation

(58, 59). CFTR gene methylation occurs in various tumors,

including lung cancer, serving as a mechanism by which tumor

cells suppress tumor suppressor genes (60–63). MAPK10 plays an

important role in biochemical signal integration (64, 65), while

CDKN3 is overexpressed in multiple cancers and correlates with

poor prognosis (66–68).

Despite our significant progress, there are several limitations to

our study. (1) potential selection biases despite our rigorous

screening criteria and batch effect correction; (2) limitations of

the CRPGscore predictive model, which shows good but not perfect

performance that could benefit from validation in larger cohorts; (3)

the need for further TNNC1 functional characterization,

particularly through in vivo models to better understand its

impact on the tumor microenvironment; and (4) the requirement

for additional preclinical and clinical validation of the five potential

therapeutic compounds identified through CMap analysis.

In conclusion, our study indicated the complex function of

TNNC1 as a key tumor suppressor gene in LUAD, not only

participating in the regulation of tumor cell proliferation and

apoptosis but also in tumor microenvironment shaping and drug

resistance development. Targeting TNNC1 and its related pathways

may provide new therapeutic strategies for LUAD patients, especially

those who have developed resistance to existing treatments.
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SUPPLEMENTARY FIGURE 1

Gene set enrichment analysis of high and low risk groups. (A) GSVA analysis.
(B) KEGG analysis, Red indicates that the pathway is activated in the high-risk

group (as a result of up-regulated gene enrichment), blue indicates that it is
inhibited in the high-risk group (as a result of up-regulated gene enrichment),

and green indicates that the pathway has both up-regulated and down-

regulated genes.

SUPPLEMENTARY FIGURE 2

Analysis of druggable genes in LUAD by MR and PheWAS. (A) Forest plot for
MR results between cis-eQTL brain and LUAD. (B) Binary traits and
continuous traits PheWAS association with TNNC1.

SUPPLEMENTARY FIGURE 3

TNNC1 overexpression promotes M2 Macrophage polarization and enhances

drug sensitivity in PC9 cells. (A) Western blot analysis of TNNC1-HA protein
expression in PC9 and THP1 cell lines. The overexpression (OE) groups show

clear TNNC1-HA protein expression detected by anti-HA antibody at
approximately 25kDa in lanes 2 and 3 with increasing loading amounts,

while the control (CT) groups show no detectable TNNC1-HA expression.

Anti-GAPDH (35kDa) was used as a loading control for both cell lines,
confirming the presence of protein in all samples. Three different loading

amounts (1, 2*, 3*) were used for both the overexpression and control
conditions. (B) Cell viability assay (CCK-8) showing the effect of TNNC1

overexpression on PC9 cell growth with and without treatment. The graph
displays cell viability (OD 450nm) over 3 days for four conditions: PC9-Vector

with 0mM treatment (black circles), PC9-Vector with 5mM treatment (green

squares), PC9-TNNC1-OE with 0mM treatment (red triangles), and PC9-
TNNC1-OE with 5mM treatment (blue inverted triangles). (C) Flow

cytometry analysis showing the differentiation of THP1 cells under various
conditions. Left panels display representative flow cytometry dot plots of

CD206 and CD163 expression in THP1 cells treated with: IL-4/IL-13 alone
(top row), IL-4/IL-13 with TNNC1-CT (control, middle row), and IL-4/IL-13

with TNNC1-OE (overexpression, bottom row). Each condition shows three

technical replicates with the percentage of CD206+/CD163+ cells indicated
in the upper right quadrant. Right panel shows the quantification of CD206

+/CD163+ THP1 cells across the three treatment groups. (D) qPCR analysis of
M2 macrophage marker expression in differentiated THP1 cells. The graph

shows relative mRNA expression levels of Arg1, IL-10, TGF-b, CCL17, and
CCL22 in Control (black), Vector (pink), and TNNC1-OE (blue) groups.

Statistical analyses were performed using Student’s t-test to compare

differences between groups. *P < 0.05, **P < 0.01, and ***P < 0.001.
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