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Objective: Lung adenocarcinoma (LUAD) continues to be a primary cause of

cancer-related mortality globally, highlighting the urgent need for novel insights

finto its molecular mechanisms. This study aims to investigate the relationship

between gene expression and mitophagy in LUAD, with an emphasis on

identifying key biomarkers and elucidating their roles in tumorigenesis and

immune cell infiltration.

Methods: We utilized datasets GSE151101 and GSE203609 from the Gene

Expression Omnibus (GEO) database to identify differentially expressed genes

(DEGs) associated with lung cancer and mitophagy. DEGs were identified using

GEO2R, filtered based on criteria of P < 0.05 and log2 fold change ≥ 1.

Subsequently, Weighted Gene Co-expression Network Analysis (WGCNA) was

conducted to classify DEGs into modules. Functional annotation of these

modules was performed using Gene Ontology (GO) and Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathway analyses. Gene Set Enrichment Analysis

(GSEA) was applied to the most relevant module, designated as the greenyellow

module. To identify critical biomarkers, machine learning algorithms including

Random Forest, Least Absolute Shrinkage and Selection Operator (LASSO)

regression, and Support Vector Machine (SVM) were employed. Validation of

the findings was conducted using The Cancer Genome Atlas (TCGA) database,

Human Protein Atlas (HPA), quantitative PCR (qPCR), and immune cell infiltration

analysis via CIBERSORTx.

Results: Our analysis identified 11,012 overlapping DEGs between the two

datasets. WGCNA revealed 11 modules, with the green-yellow module

exhibiting the highest correlation. Functional enrichment analysis highlighted

significant associations with FOXM1 signaling pathways and retinoblastoma in

cancer. Machine learning algorithms identified COASY, FTSJ1, and MOGS as

pivotal genes. These findings were validated using TCGA data, qPCR

experiments, which demonstrated high expression levels in LUAD samples.

Immunohistochemistry from HPA confirmed consistency between protein

levels and RNA-seq data. Furthermore, pan-cancer analysis indicated that
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these genes are highly expressed across various cancer types. Immune infiltration

analysis suggested significant correlations between these genes and specific

immune cell populations.

Conclusion: COASY, FTSJ1 and MOGS have emerged as critical biomarkers in

LUAD, potentially influencing tumorigenesis through mitophagy-related

mechanisms and immune modulation. These findings provide promising

avenues for future research into targeted therapies and diagnostic tools,

thereby enhancing LUAD management.
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1 Introduction

Lung cancer is the leading cause of cancer-related mortality

worldwide, accounting for approximately 25% of all cancer deaths.

Among these, lung adenocarcinoma (LUAD) represents 40% of

lung cancer cases (1). Despite significant advances in medical

research, the prognosis for LUAD patients remains poor, with a

five-year survival rate of only 19% (2). The primary risk factors for

LUAD include smoking, exposure to air pollution, and genetic

predispositions (3). While current diagnostic methods such as low-

dose computed tomography (LDCT) have improved early detection

rates, they are also associated with high false-positive rates and

potential over-diagnosis (4). Consequently, there is an urgent need

for more accurate and reliable diagnostic and therapeutic strategies.

LUAD originates from precancerous lesions and gradually

progresses to invasive adenocarcinoma (5). However, we still have

limited knowledge regarding the cellular heterogeneity and

molecular events during the development process. Wang Z et al.

conducted single-cell RNA sequencing on 268,471 cells from 25

LUAD patients and discovered that as LUAD progresses, a group of

cells similar to alveolar type 2 cells gradually exhibit characteristics

of stem cell-like cells, strongly expressing ribosomal and

mitochondrial genes that promote tumor progression. Among

them, MDK and TIMP1 are upregulated in the early stages of

LUAD and may contribute to disease progression, which can serve

as potential biomarkers and therapeutic targets for understanding

the pathogenesis of LUAD (6). Additionally, multiple recent studies

have identified biomarkers of significant value in aspects such as

early diagnosis, immunotherapy, and prognosis assessment through

big data analysis and experimental exploration, such as PANX1,

B4GALT1 and circRNA-002178 (7–9). Therefore, it’s beneficial to

operate data analysis and verification of the genomic profile of

LUAD, as it can provide more possibilities to search for new

diagnostic biomarkers and therapeutic strategies for LUAD.

Mitochondrial autophagy, or mitophagy, is a selective form of

autophagy that specifically targets damaged or superfluous

mitochondria for degradation (10). This process is crucial for
02
maintaining cellular homeostasis and has been implicated in

various diseases, including cancer (11). In LUAD, dysregulated

mitophagy has been observed, indicating a potential link between

mitochondrial dysfunction and tumorigenesis (12). Research have

shown that key regulators of mitophagy, such as PINK1 and Parkin,

are frequently altered in cancer cells, resulting in abnormal

mitochondrial dynamics and metabolic reprogramming (13).

These findings underscore the therapeutic potential of targeting

mitophagy in LUAD.

In addition to LUAD, dysregulated mitophagy has been

investigated in various other cancers, including breast and liver

cancer (14). In breast cancer, mitophagy-related genes have been

identified as differentially expressed, which correlates with disease

progression and patient outcomes (15). Likewise, in liver cancer, the

inhibition of mitophagy has been associated with enhanced tumor

growth and metastasis (16). These findings highlight the critical role

of mitophagy in cancer biology and its potential utility as a

biomarker for both diagnosis and prognosis.

Our research aims to investigate the gene expression profiles

associated with mitophagy in LUAD. We utilized datasets from the

Gene Expression Omnibus (GEO) database, including GSE151101

for lung cancer and GSE203609 for mitophagy-related data.

Differentially expressed genes (DEGs) were identified using

GEO2R and R software. Subsequently, Weighted Gene Co-

expression Network Analysis (WGCNA) was conducted to

determine key gene modules involved in mitophagy. To elucidate

the biological significance of these genes, we performed functional

enrichment analyses, including Gene Ontology (GO), Kyoto

Encyclopedia of Genes and Genomes (KEGG), and Gene Set

Enrichment Analysis (GSEA). Machine learning algorithms, such

as Random Forest, LASSO regression, and SVM, were employed to

identify potential biomarkers. The findings were validated using

data from The Cancer Genome Atlas (TCGA) and Human Protein

Atlas (HPA) databases, and further confirmed by quantitative real-

time PCR (qPCR) experiments.

In conclusion, this study endeavors to provide an in-depth

understanding of the role of mitophagy in LUAD and identify
frontiersin.org
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potential biomarkers for early diagnosis and targeted therapy.

Through the integration of bioinformatics analyses and

experimental validation, we aim to contribute to the development

of more effective diagnostic and therapeutic strategies for LUAD.
2 Method

2.1 Data source

Query the GEO database for data related to “lung cancer” and

identify dataset GSE151101 (17). Details of the dataset are

as follows:

GSE151101 data set:

Platform: GPL11532 [HuGene-1_1-st] Affymetrix Human gene

1.1ST chip [Transcript (gene) version].

Specimens: A total of 124 lung cancer specimens and 113 non-

lung cancer specimens were analyzed.

This dataset offers a comprehensive resource for gene

expression analysis of both lung and non-lung cancer specimens,

thereby facilitating further research in this field. We also retrieved

data pertaining to “mitochondrial autophagy” and identified the

GSE203609 dataset (18). The specifics of this dataset are as follows:

Platform: GPL16791 Illumina HiSeq 2500 (Sapiens).

Samples: 3 cases of TBHP + ML treatment group, 3 cases of

TBHP treatment group and 3 cases of control group.

This dataset offers crucial insights into the gene expression

analysis of mitochondrial autophagy and facilitates subsequent

research endeavors. As illustrated in Figure 1, the flow diagram

outlines the project’s methodology.
2.2 DEG data processing

We extracted GEO data using the GEO2R tool (19) and filtered

the data using R software (version 4.2.1) (20) with the screening

criteria of P < 0.05 and log2FC ≥ 1. Subsequently, we generated

heatmaps using the R package “ggplot2” (version 3.3.6) to visualize

the expression patterns of the identified DEGs. Additionally, Venn

diagrams were created using VENNY (version 2.1) to illustrate the

overlap of DEGs.
2.3 WGCNA enrichment analysis of DEGs

We performed WGCNA analysis of the expression levels of

these DEGs in the TCGA LUAD dataset using the WGCNA

(version 1.73) software package in R (version 4.2.1) (21). Data

visualization is generated by the R package ggplot2 (version 3.3.6).
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2.4 GO, KEGG and GSEA enrichment
analysis of Green-yellow module

To elucidate the functional significance of genes in the green-

yellow module, we conducted GO annotation (22) and KEGG

pathway analysis (23) on the top 50 genes. The GO annotation

was performed using the DAVID tool (version 6.7) (24) to classify

and identify the functions of these genes and their products. KEGG

pathway analysis was employed to explore signal transduction

pathways associated with these genes. Additionally, we performed

GSEA analysis on all genes within the green-yellow module using R

software (version 4.2.1). The standard of statistical significance was

adjusted for P < 0.05.
2.5 Machine learning algorithm

We use Random Forest (25), Least Absolute Shrinkage and

Selection Operator (LASSO) Regression (26), and Support Vector

Machine (SVM) (27) to identify key biomarkers. In random forest

analysis (R package: randomForest[4.7.1.1]), we use its high

accuracy to identify and select the most important feature

variables by constructing multiple decision trees; The ranking of

important genes is obtained through SVM analysis (R package:

e1071[1.7.13]) (28), which is good at handling nonlinear

classification problems and can reduce the impact caused by the

number of samples; Then, the regularization property of LASSO (R

package: glmnet[4.1.7]) regression was used to further screen key

features, providing higher interpretability for the analysis

results.These methods collectively helped us identify three key

target genes (COASY, FTSJ1, and MOGS) and ensure that the

model is more concise and effective in prediction. By integrating

multiple methods, we have improved the stability and

interpretability of the model.

In addition, we describe statistical methods for evaluating

identified biomarkers, including specific test methods and

multiple hypothesis test corrections. For example, in the

significance analysis, we used the student t test and Wilcoxon

rank sum test to compare differences in gene expression and used

FDR correction to control for false positive rates.
2.6 LUAD data from TCGA database

We obtained and organized RNAseq data from the TCGA-

LUAD project (https://portal.gdc.cancer.gov) and used R language

software (version 4.2.1) (21) to analyze the expression level, survival

curve and ROC curve of target genes in LUAD. ROC analysis uses

the pROC package (version 1.18.0) and data visualization uses the

ggplot2 package (version 3.3.6).
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2.7 Expression of pivot gene protein in
human protein map and HPA database
validation

We assessed the expression levels and distribution of three gene

proteins in LUAD specimens and non-cancer samples from the

Human Protein Atlas (HPA) public database.

2.8 Quantitative polymerase chain reaction

QPCR was used to detect the expression levels of COASY,

FTSJ1 and MOGS in LUAD. We recruited 12 patients with LUAD

who were admitted between January 1, 2024 and January 31, 2024.

Additionally, 12 healthy individuals who underwent routine health

examinations during the same period were included as the control

group. The inclusion criteria for LUAD patients were as follows: (1)

Age ≤ 90 years; (2) No history of chemoradiotherapy; (3) No fever
Frontiers in Immunology 04
or infection within 3 months before blood collection; (4) No history

of blood transfusion.

QPCR tests were configured in accordance with the guidelines

outlined in the MIQE Guide. Three genes were selected to validate

the RNA-seq results. QPCR primers were designed using Primer3

software (http://bioinfo.ut.ee/primer3-0.4.0/) and synthesized by

Sangon Biotechnology Co., Ltd. (Shanghai, China). For cDNA

synthesis, 1Mg of total RNA was reverse-transcribed using the

PrimeScript RT reagent kit (TakaraBio™Inc., SAN Jose, CA)

according to the manufacturer’s protocol. Quantitative RT-PCR

was performed on the CFX96 Real-Time PCR system (Bio-RAD

Laboratories, Hercules, CA, USA) using TB Green Premixed Ex Taq

II (Takara Bio Inc.). The consumables used included eight PCR

tubes from Axygen® brand products (Corning Corporation,

Corning, New York, USA). Each quantification was conducted

using a 25ML reaction mixture containing 12.5ML TB Green

Premix Ex Taq II, 1ML (10MM) of each primer, 8.5ML RNase-
FIGURE 1

Project flow chart.
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free water, and 2Ml of 1:5 diluted cDNA. PCR amplification

conditions consisted of initial denaturation at 95°C for 30 s,

followed by 40 cycles of denaturation at 95°C for 5 s and

annealing at 60°C for 30 s. After cooling to 65°C for 5s, the

melting curve at the end of each PCR was obtained by gradually

increasing the temperature to 95°C (with an incremental rate of 0.5°

C/s). All samples underwent identical amplification analysis,

eliminating the need for successive calibration. The data obtained

were analyzed using Bio-Rad CFX Manager software (version 3.0),

which generates raw quantitative cycle (Cq) values for each reaction

using the 2-DDCT method. Further details of qPCR can be found in

the MIQE checklist. Primer pairs are used in the following order:

COASY: forward primer, 5’-CTTGAGAATGACCTGGAGGA

ACTTG-3’, and reverse primer, 5’-GCCAGTCAGCCCAATTACA

TAGAG-3’.

FTSJ1: forward primer, 5’-GCTCCTGATGGCTCTGAAC

ATTG-3’, and reverse primer, 5’-AGCACGCTGGAGAAGAA

GACC-3’.

MOGS: forward primer, 5’-GGCAGTTCTTGATACAGCA

GGTG-3’, and reverse primer, 5’-GTCTTGGCAGGGCTTGAT

TTCC-3’.
2.9 Analysis of infiltration of immune cells

The Sieber sorting algorithm was applied to the GSE151101

dataset to determine the significant association between the target

gene and various immune cells through correlation analysis. All

analysis and visualization were performed in R software (4.2.1) (21).

Based on CIBERSORTx website (https://cibersortx.stanford.edu/)

access to 22 immune cells, using codon sequence. R (script) analysis

core algorithm (29) to detect the gene expression profile of signature

matrix. Presentation data acquisition: RNAseq data is downloaded

from the TCGA-LUAD project STAR process of the TCGA

database and extracted in TPM format and clinical data format.
2.10 Pan-cancer analysis and miRNA
analysis of COASY, FTSJ1, and MOGS

In this study, we used R software (version 4.2.1) (21) and R

packages ggplot2 [3.3.6], stats [4.2.1] and car [3.1-0], and TCGA

database to analyze mRNA expression of COASY, FTSJ1 and

MOGS (30). Data processing method: log2 (value +1). In

addition, we also analyzed the mirnas corresponding to these

three target genes. MiRNAs is retrieved from three databases:

TargetScan (31), ENCORI (32), and miRwalk (33). Venn diagram

and protein-protein interaction (PPI) network were constructed for

further analysis.
2.11 Ethics

The research protocol has been approved by the Medical Ethics

Committee of the Medical Research and Clinical Trial Ethics
Frontiers in Immunology 05
Committee of Huzhou First People’s Hospital (approval number:

2023KYLL014). All participants provided written informed consent

prior to their involvement in the study.
3 Result

3.1 Identification of differentially expressed
genes

The gene expression data were processed and normalized using

standard log FC > 1 and P < 0.05. DEGs were subsequently

identified in both datasets using the GEO2R online tool (Figure 2).
3.2 WGCNA enrichment analysis of DEGs

The gene co-expression network is a scale-free weighted gene

network. To better adhere to the power-law distribution

characteristic of scale-free networks, it is crucial to select an

appropriate power for the adjacency matrix weight parameter. In

this analysis, a power value of 30 was chosen (Figure 3A). Based on

this selected power values, a weighted co-representation network

model was constructed, and DEGs were clustered into 11 modules

(Figure 3B). The Grey module comprises genes that do not fit into

any specific module and thus lack significant biological relevance,

whereas the green-yellow module exhibits the highest correlation

among the biologically meaningful modules (Figures 3C, D).

Subsequently, we utilized the STRING database to construct a

PPI network for the top 50 genes within the green-yellow

module, thereby facilitating a deeper exploration of potential

relationships between DEGs and identifying key genes (Figure 3E).
3.3 GSEA analysis and GOKEGG analysis of
green-yellow module

To gain a deeper understanding of the genes in the green-yellow

module, we conducted functional analysis of all genes within this

module. Gene Set Enrichment Analysis (GSEA) revealed that these

genes were significantly associated with the FOXM1 pathway and

retinoblastoma in cancer (Figures 4A, B). Then we performed GO

and KEGG analyses on the top fifty genes in this module, yielding

the following results (Figures 4C–F):

Biological processes (BP): RNA splicing, RNA splicing via

transesterification, RNA splicing via transesterification with

expanded adenosine as a nucleophile;

Cellular component (CC): spliceosome complex, SWI/SNF

superfamily complex, catalytic step 2 spliceosome;

Molecular function (MF): catalytic activity of RNA, tRNA

(guanine) methyltransferase activity, protein phosphatase

regulatory activity;

KEGG pathway: spliceosome, ribonucleic acid polymerase,

nucleotide excision repair.
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These findings highlight multiple functional roles and pathways

associated with genes in the green-yellow module.
3.4 The machine learning algorithm selects
the target gene

We conducted Random Forest, SVM and LASSO regression

analyses on the top 50 genes in the green-yellow module. In the

Random Forest analysis, the four most important characteristic

variables of all genes were COASY, FTSJ1, MOGS and MED8, with

COASY being the most influential gene among all characteristic

variables (Figure 5C). For the SVM analysis, the top five genes of

importance were COASY, FTSJ1, MOGS, TTC9C and PRPF19

(Figure 5B). The LASSO regression analysis identified a broader

set of important genes, including PPP6R3, COASY, PRPF19,

CLNS1A, MOGS, DPF2, FTSJ1, WDR3, TTC9C, POLR1C,

MED8, SNRNP200, ACTR5, PPP1R8, YY1, KLHL12, DDB1,

ELAVL1, LRRC42 (Figure 5A). Subsequently, we constructed a

Venn diagram to identify overlapping genes across the three
Frontiers in Immunology 06
methods, revealing that COASY, FTSJ1, and MOGS were

consistently highlighted as key targets (Figure 5D).

As a coenzyme A synthetase, COASY plays a crucial role in

cellular energy metabolism and fatty acid synthesis. Aberrant

expression of COASY may result in metabolic disturbances,

thereby promoting the onset and progression of tumors (34). The

protein encoded by FTSJ1 plays a crucial role in rRNAmodification,

and its overexpression has been associated with increased

aggressiveness and poor prognosis in various cancers (35).

MOGS, an important endoplasmic reticulum glycosidase, is often

overexpressed in tumor cells, contributing to aberrant glycoprotein

modification and tumor malignancy (36). These genes are key

candidates with significant roles in the biological systems studied,

particularly in LUAD (Figure 5).

3.5 The three target genes were verified by
TCGA and qPCR

In this study, IHC staining in the HPA database showed reduced

levels of COASY, FTSJ1, and MOGS proteins in LUAD tissue,

consistent with previous findings (Figures 6A–F). In addition, we
FIGURE 2

Identification of DEGs in two GEO datasets. (A) In the GSE151101 dataset, DEGs volcano maps describing the differences in expression between
LUAD specimens and normal lung specimens; (B) In dataset GSE203609, DEGs volcano maps with differences in expression between TBHP+ML
treatment group and TBHP treatment are described; (C) Venn diagram highlights 11012 overlapping DEGs in the GSEGSE151101 and
GSE203609 datasets.
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retrieved and organized RNA-seq data from the TCGA-LUAD

project (https://portal.gdc.cancer.gov), using concatenated

transcripts for comparison to reference (STAR) pipelines available

in the TCGA database. The data were normalized to transcripts per

million (TPM). Subsequently, we used R language software (version

4.2.1) (21) to analyze survival curves, ROC curves and the

expression levels of three target genes—COASY, FTSJ1 and
Frontiers in Immunology 07
MOGS—in LUAD patients. Our results indicate that LUAD

patients with high expression levels of COASY and FTSJ1 had

significantly lower survival rates after 50 months compared to those

with low expression levels (Figures 6G–I). Furthermore, the

expression levels of COASY, FTSJ1 and MOGS in LUAD patients

were significantly higher than those in normal controls, and the

differences were statistically significant (P < 0.001, Figure 6K). The
FIGURE 3

WGCNA analysis. (A) The scale independence of DEGs; (B) The correlation of each gene module; (C) Gene tree and gene module; (D) Cluster heat
map of DEGs; (E) PPI map of the top 50 genes in the green-yellow module.
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ROC curve analysis also demonstrated the diagnostic value of these

three target genes for LUAD, with AUC values of 0.888 for COASY,

0.883 for FTSJ1, and 0.859 for MOGS (Figure 6J). Furthermore, we

collected whole blood samples from eight LUAD patients and eight

healthy individuals who underwent physical examination in our

hospital for qPCR test verification. The results showed that the
Frontiers in Immunology 08
expression levels of the three target genes were significantly higher

in LUAD patients compared to the healthy controls (P < 0.05,

Figure 6L). This comprehensive analysis provides insights into the

expression patterns and potential diagnostic and prognostic value of

these genes in LUAD (Figure 6).

*P < 0.05, ***P < 0.001.
FIGURE 4

GSEA and GOKEGG analysis of genes in the green-yellow module. (A) Mountain maps analyzed by GSEA; (B) The classic graph analyzed by GSEA;
(C) BP, biological process; CC, cell component; MF, molecular function; (D) KEGG pathway; (E) GOKEGG chord diagram analysis of genes in the
green-yellow module; (F) GOKEGG circular graph analysis of genes in green-yellow module; All enrichment paths were generated using the ggplot2
package in R.
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3.6 Pan-cancer analysis of COASY, FTSJ1,
and MOGS

In this study, we conducted a pan-cancer analysis of COASY,

FTSJ1, and MOGS across various cancer types using the TCGA

database (https://portal.gdc.cancer.gov). The analysis was

performed using R software (version 4.2.1) (21) and ggplot2

software package. Our results demonstrated that COASY, FTSJ1

and MOGS were significantly overexpressed in 15 types of cancer:

BLCA, BRCA, CESC, CHOL, COAD, ESCA, HNSC, KIRP, LIHC,

LUAD, LUSC, PRAD, READ, STAD, and UCEC. These

observations suggest that COASY, FTSJ1, and MOGS may

function as potential tumor promoting genes in cancers with

elevated expression levels (Figure 7).
3.7 Analysis of infiltration of immune cells

The Cy-Sort algorithm was applied to the GSE151101 dataset,

and correlation analysis showed that COASY, FTSJ1 and MOGS

exhibited significant correlations with multiple immune cell types.

These findings suggest a potential association between these target
Frontiers in Immunology 09
genes and the immune cell composition within the LUAD

microenvironment. The correlation analyses provide valuable

insights into the interactions between these genes and the

immune system in the LUAD environment (Figure 8).
3.8 MiRNA analysis of COASY, FTSJ1 and
MOGS

In this study, we comprehensively investigated the microRNA

(miRNA) regulatory networks associated with COASY, FTSJ1, and

MOGS. By integrating data from three well-established miRNA

databases— TargetScan (31), ENCORI (32) and miRwalk (33)—we

identified potential miRNAs that regulate COASY, FTSJ1, and

MOGS. The intersection of these databases, visualized in a Venn

diagram, revealed common miRNAs targeting COASY, FTSJ1, and

MOGS. To further elucidate the intricate relationships between

these genes, their regulatory miRNAs, and associated protein

interactions, we constructed a PPI network using cytoscape. This

network visualization provides insights into the complex regulatory

mechanisms affecting the expression of COASY, FTSJ1, and MOGS

and their potential impact on cellular processes. The analysis not
FIGURE 5

Machine learning algorithms select target genes. (A) LASSO analysis coefficient varies with l parameter; (B) SVM analysis results visualization; (C)
Ranking of important features in the random forest model; (D) The three analyses intersect Wayne diagrams.
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only highlights the complex interactions between miRNAs and

these genes but also establishes a foundation for investigating the

role of these miRNAs in regulating gene expression in different

physiological and pathological contexts (Figure 9).
4 Discussion

Lung adenocarcinoma (LUAD) continues to pose a significant

global health challenge, as it is the leading cause of cancer-related

deaths worldwide (37). This malignancy is predominantly

influenced by risk factors including smoking, air pollution, and

genetic predispositions. The high mortality rate associated with

LUAD can largely be attributed to late-stage diagnosis, which

significantly diminishes the efficacy of therapeutic interventions

(3). Therefore, early detection and a deeper understanding of the

molecular mechanisms underlying LUAD are crucial for enhancing

patient outcomes and developing targeted therapies.

Our research used comprehensive data analysis from the GEO

and TCGA databases, integrated with advanced bioinformatics

tools including Weighted Gene Co expression Network Analysis

(WGCNA) and Machine Learning, etc. Through this integrative

approach, we identified key differentially expressed biomarkers

(COASY, FTSJ1, and MOGS) to elucidate the molecular

mechanisms of mitochondrial autophagy in LUAD and to

identify potential therapeutic targets. This integrative approach

promises to enhance early diagnosis and facilitate personalized

treatment strategies, ultimately improving the prognosis for

LUAD patients (38).

To enhance the efficiency and biological significance of the

analysis, we conducted preliminary screening of differentially

expressed genes (DEGs) prior to WGCNA analysis. This pre-

screening step aims to reduce data dimensionality and

computational complexity, thereby improving the biological

effectiveness of subsequent network analysis. Although this

method may introduce some bias, it allows us to concentrate on

key genes associated with LUAD and mitochondrial autophagy,

thus enhancing the biological interpretability of the results and the

effectiveness of module detection.

Existing clinical biomarkers, such as adenosine deaminase

(CEA) and cytokeratin (CYFRA21-1), have played a certain role

in the early diagnosis of lung cancer. However, the specificity and

sensitivity of these biomarkers are influenced by many factors,

which may lead to false positive or false negative results. The new

biomarkers in this study (COASY, FTSJ1, and MOGS) have certain

advantages compared to them.
4.1 High specificity and sensitivity

COASY, as a coenzyme A synthase, plays a pivotal role in

cellular metabolism, potentially serving as an important biomarker

for early detection in LUAD patients (34). Our ROC curve analysis

reveals an AUC value of 0.888 for COASY, suggesting its diagnostic

potential in LUAD exceeds that of traditional biomarkers. FTSJ1, an
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enzyme involved in tRNA modification, has been shown to be

overexpressed in various cancers, correlating with tumor

malignancy (39). In our study, the AUC value for FTSJ1 was

0.883, indicating its significant diagnostic value in LUAD and

potential association with tumor prognosis. MOGS, an

endoplasmic reticulum glycosidase, exhibits overexpression in

tumor cells, which is linked to abnormal glycoprotein

modifications and may influence tumor invasiveness (40). The

AUC value of MOGS is 0.859, highlighting its substantial

diagnostic potential.
4.2 Multi cancer applicability

Through whole cancer analysis, we found that these three

biomarkers also exhibit high expression levels in various cancers,

indicating their potential importance not only for lung

adenocarcinoma, but may also be valuable biomarkers in other

types of cancer.

Mitochondrial autophagy is an important form of cellular

autophagy that maintains cellular homeostasis by selectively

degrading damaged or dysfunctional mitochondria (10). In this

study, we identified COASY, FTSJ1, and MOGS as genes associated

with mitochondrial autophagy, whichmay play important roles in

the occurrence of LUAD. Especially through WGCNA analysis, we

found that gene enrichment in the green-yellow module is

associated with the FOXM1 pathway and retinoblastoma (RB)

pathway, which play a central role in cancer cell cycle regulation,

proliferation, and DNA repair. The FOXM1 pathway regulates the

G1/S and G2/M transitions of the cell cycle, while the RB pathway

controls the progression of the cell cycle and maintains normal cell

proliferation and division by inhibiting the activity of E2F

transcription factors (41). Dysregulation of these pathways has

been shown to be a critical driver of cancer development,

suggesting that targeting these pathways may represent a

promising therapeutic strategy (41).

The immune microenvironment of LUAD plays a pivotal role in

tumor progression and patient prognosis. This study also revealed the

association between COASY, FTSJ1, and MOGS and immune cell

infiltration, suggesting that these genes may affect the immune escape

mechanism and therapeutic response of LUAD by regulating the

immune microenvironment. Multiple studies have confirmed the

critical role of immune cells in LUAD (42), with specific types of

immune cells, such as CD8+ T cells and B cells, being strongly

correlated with patient survival (43–47). Our research findings align

with these observations, further indicating that COASY, FTSJ1, and

MOGS may regulate the tumor microenvironment through

interactions with immune cells, thereby impacting the prognosis of

patients.In summary, the integration of immune cell infiltration

analysis with gene expression profiling provides profound insights

into the tumor microenvironment of LUAD. Our study contributes

to the expanding body of evidence demonstrating that immune cell

dynamics are integral to LUAD progression and treatment response.

Although this study reveals the potential of COASY, FTSJ1, and

MOGS in LUAD, several limitations must be acknowledged. Firstly,
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the research data primarily originate from public databases such as

GEO and TCGA. The heterogeneity of sample sources may

introduce batch effects and selection bias, thereby compromising

the accuracy and generalizability of the results. Additionally, the
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absence of detailed clinical information (e.g., treatment history and

recurrence status) in these databases restricts a comprehensive

evaluation of these genes’ clinical utility. Secondly, while pre-

screening differentially expressed genes (DEGs) before WGCNA
FIGURE 6

Expression of three target genes COASY, FTSJ1 and MOGS in LUAD. (A) Tissue expression of COASY - LUAD tissue staining - human protein profile;
(B) Tissue expression of FTSJ1 - LUAD tissue staining - human protein profile; (C) Tissue expression of MOGS - LUAD tissue staining - human
protein profile; (D) Tissue expression of COASY - staining of normal parts of the lung - human protein profile; (E) Tissue expression of FTSJ1 -
Staining of normal parts of the lung - human protein profile; (F) Tissue expression of MOGS - staining of normal parts of the lung - human protein
profile; (G–I) survival curves of these three genes in LUAD; (J) ROC curves of these three genes in LUAD; (K) The three target genes were verified
using the TCGA database; (L) These three target genes were verified by qPCR assay (n=8, P < 0.05) * P<0.05, *** P <0.001..
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analysis effectively reduces data dimensionality, it may overlook

genes with low expression or minimal changes, potentially

affecting our understanding of the complex biological processes

underlying LUAD. Thirdly, this study relies on bioinformatics

analysis tools, and the interpretability and biological significance of

its results are still limited. In particular, the mechanisms of action of

COASY, FTSJ1, and MOGS at the molecular level are not yet clear

and require further in vitro and in vivo experimental verification.

Fourthly, this study lacks large-scale clinical validation, especially for

different LUAD subtypes and patient populations, which limits the

clinical applicability of the results. Although my research used ROC-

AUC as the model performance evaluation criterion and achieved

high prediction accuracy in the validation set, we have not yet

conducted further generalization ability testing using methods such

as k-fold cross validation. In addition, we have not yet reported key

indicators such as accuracy, recall, F1 score, and MCC, which may

limit the comprehensive evaluation of model performance to some
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extent. Fifthly, although our study cross validated the reliability of

the selected biomarkers through multiple machine learning

algorithms and demonstrated good robustness in the fusion and

bioinformatics analysis of different datasets, we are aware that

differences between datasets may affect the stability and predictive

ability of the model. Therefore, further external dataset validation is

crucial for improving the universality and clinical applicability of the

model. Currently, due to time and resource constraints, we have not

yet introduced new GEO or clinical datasets for additional

validation. Sixth, although this study used Random Forest, LASSO,

and SVM, which have good feature selection ability and

interpretability in bioinformatics and biomarker screening tasks,

we also recognize the potential value of other methods. For example,

deep learning methods (such as MLP, CNNs) or enhanced decision

tree methods (such as XGBoost), which can help to further verify the

effectiveness of the selected methods.

Future research directions will focus on the following areas:
FIGURE 7

Pan-cancer analysis of COASY, FTSJ1, and MOGS. (A) Pan-cancer analysis of COASY; (B) Pan-cancer analysis of FTSJ1; (C) Pan-cancer analysis of
MOGS. * P<0.05, ** P<0.01, *** P<0.001.
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4.3 Clinical data validation

Conduct large-scale multicenter studies covering multiple

samples of clinical data as well as external publicly available data,

aiming to validate the practical application potential of COASY,

FTSJ1, and MOGS in different LUAD subtypes and patient

populations, thereby ensuring that the research results have broad

clinical applicability and universality.
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4.4 Mechanism research

Conduct in-depth molecular mechanism research to elucidate

the mechanisms of COASY, FTSJ1, and MOGS in LUAD, with a

focus on elucidating their roles in signaling pathways associated

with cell proliferation, migration, and metastasis. Validate the

functions of these genes using both in vitro and in vivo

experimental approaches.
FIGURE 8

Immune-related infiltration analysis of three target genes. (A) COASY-CIBERSORT algorithm-superimposed histogram of LUAD; (B) COASY-ssGSEA
algorithm-lollipop chart of immunoinfiltration correlation in LUAD; (C) FTSJ1-CIBERSORT algorithm-LUAD superimposed histogram; (D) FTSJ1-
ssGSEA algorithm-lollipop chart of immunoinfiltration correlation in LUAD; (E) MOGS-CIBERSORT algorithm-LUAD superimposed histogram; (F)
MOGS-ssGSEA algorithm-lollipop chart of immunoinfiltration correlation in LUAD.
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4.5 Comprehensive multi omics analysis

Integrating genomic, transcriptomic, proteomic, and

metabolomic data, we perform a comprehensive multi-omics

analysis to elucidate the intricate biological processes of LUAD

and the roles of these biomarkers within these processes.
4.6 Machine learning model optimization

In machine learning analysis, we should further refine feature

selection algorithms to improve the predictive performance of the

model. In addition, the k-fold cross validation method is adopted

and a more detailed hyperparameter adjustment strategy is

provided to further enhance the robustness and generalizability of

the model.
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4.7 Personalized treatment strategy

Based on research into COASY, FTSJ1, and MOGS, this study

investigates their associations with immune cell infiltration and the

tumor microenvironment, aiming to identify novel targets and

strategies for personalized LUAD treatment.
4.8 Discovery and application of new
biomarkers

Expand the search for additional potential biomarkers, integrate

machine learning and bioinformatics approaches to identify novel

genes or pathways associated with LUAD, and assess their utility in

early diagnosis and prognostic evaluation.
FIGURE 9

miRNA analysis of COASY, FTSJ1 and MOGS. (A–C) These three miRNA databases correspond to the miRNA Venn maps of COASY, FTSJ1, and
MOGS, respectively; (D) PPI network diagram.
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4.9 Further explore more advanced
machine learning and deep learning
methods to enhance the performance of
models and the broad applicability of
research

We will consider introducing XGBoost to further improve

classification performance, while exploring the potential

applications of deep learning methods such as MLP and CNNs

on larger datasets. In addition, we also plan to optimize the

hyperparameter tuning strategy of existing models and combine it

with new datasets or hybrid model methods to improve the model’s

generalization ability and stability. These improvement measures

will help further enhance the effectiveness of the selected methods

in biomarker recognition tasks, and improve the reliability and

generalizability of research results.
5 Conclusion

This study investigates the significance and potential

mechanisms of novel mitochondrial autophagy-related

biomarkers COASY, FTSJ1, and MOGS in lung adenocarcinoma

(LUAD). Through large-scale data analysis of GEO and TCGA

public databases, combined with weighted gene co expression

network analysis (WGCNA) and machine learning tools,

differential expression of these genes in LUAD was identified, we

identified differential expression patterns of these genes in LUAD.

Our findings suggest that their specificity and sensitivity for early

diagnosis and prognostic evaluation surpass those of existing

clinical biomarkers. Furthermore, the critical roles of these genes

in cell cycle regulation, mitochondrial autophagy, and immune

microenvironment modulation indicate their potential as new

therapeutic targets. Despite limitations such as data heterogeneity

and lack of clinical validation, future research should focus on

clinical data validation, in-depth mechanism studies, and multi

omics collaborative analysis to promote personalized treatment of

lung adenocarcinoma and the discovery of new biomarkers. Overall,

this study provides a new perspective and strategic basis for the

early diagnosis, mitochondrial autophagy research, and treatment

of LUAD.
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