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alicia.martinez34@um.es

Victoriano Mulero

vmulero@um.es

Diana Garcı́a-Moreno

dianagm@um.es

†These authors have contributed equally to
this work

RECEIVED 11 October 2024
ACCEPTED 28 March 2025

PUBLISHED 25 April 2025

CITATION
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SAMHD1 deficiency enhances
macrophage-mediated clearance
of Salmonella Typhimurium via
NF-kB activation in zebrafish
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Introduction: Mutations in the gene encoding the protein containing the sterile

alpha motif and the HD domain (SAMHD1) have been implicated in the

occurrence of type I interferonopathies. SAMHD1 is also involved in blocking

the replication of retroviruses and certain DNA viruses by reducing the

intracellular amount of deoxynucleotide triphosphates (dNTPs). It has also

been suggested that SAMHD1 negatively regulates interferon (IFN) and the

inflammatory responses to viral infections; however, the functions and

mechanisms of SAMHD1 in modulating innate immunity are still under study.

Methods: In our laboratory, we have generated Samhd1-deficient zebrafish

larvae using CRISPR-Cas9 and studied its role in the activation of nuclear

factor kappa B (NF-kB) and the induction of type I IFN (IFN-I).

Results: It was shown that Samhd1 deficiency results in the overactivation of the

IFN-I response, assayed as the increased transcript levels of the Interferon

Stimulated Genes (ISGs), but only if the larvae were stimulated with suboptimal

doses of IFN-I. However, Samhd1-deficient larvae showed robust spontaneous

activation of NF-kB, which led to increased larval resistance to Salmonella

enterica serovar Typhimurium (STM) infection. Genetic experiments further

showed that the activation of NF-kB in macrophages mediated the resistance

of Samhd1-deficient larvae against STM.

Discussion: These findings highlight the evolutionary conserved functions of

SAMHD1 in the negative regulation of the inflammatory response of vertebrates

and reveal, for the first time, a critical role for SAMHD1 in the regulation of NF-kB
in macrophages to clear intracellular bacterial infection.
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Introduction

Homozygous mutations in the sterile alpha motif and HD

domain-containing protein 1 (SAMHD1) gene are linked to

Aicardi–Goutières syndrome (AGS), a rare inflammatory

neurological disorder. This syndrome is characterized by the

spontaneous production of type I interferon (IFN-I) and the

upregulation of IFN-stimulated genes (ISGs), which resemble

those of congenital viral infections (1–3).

SAMHD1 is a protein that plays a critical role in the immune

response against viral infections (3–5), its deoxynucleoside

triphosphate (dNTP) triphosphohydrolase (dNTPase) activity

being one of its most studied antiviral characteristics. This

activity plays a crucial role in regulating the DNA precursor pools

in mammalian cells (6). In non-dividing cells of the myeloid lineage

and in resting CD4-positive T cells, SAMHD1 restricts the infection

of human immunodeficiency virus type 1 (HIV-1). However, in

proliferating cells, SAMHD1 is phosphorylated by cyclin-

dependent kinases (CDKs), which deactivates its restriction

function and makes these cells susceptible to HIV-1 infection.

Despite some controversy, SAMHD1 has also been proposed to

exhibit nuclease activity on single-stranded RNAs, adding another

layer to its antiviral features (7, 8). Beyond its direct antiviral

activities, SAMHD1 has been suggested to play a role in the

suppression of the innate immune responses to viral infections

and inflammatory stimuli (5, 9, 10). This suppression is achieved

through interactions with key proteins in the nuclear factor kappa B

(NF-kB) and IFN-I pathways. Specifically, the SAMHD1 protein

interacts with NF-kB1/2, reducing the phosphorylation of IkBa
(NF-kB inhibitor alpha) and inhibiting the activation of NF-kB.
SAMHD1 also reduces the induction of IFN-I by inhibiting the

IKKe (inhibitor-kB kinase e) phosphorylation of IRF7 (5, 11).

Through these diverse mechanisms, SAMHD1 emerges as a

crucial regulator of both antiviral defenses and inflammatory

responses, underscoring its importance in maintaining

immune homeostasis.

While SAMHD1 is associated with the immune response to viral

infections, little is known about its possible role in immunity against

bacterial pathogens. Similarly to viruses, bacteria have evolved to

adapt to and counteract host inflammatory responses. Salmonella

enterica serovar Typhimurium (STM) is a widely studied bacterial

infection system due to the range of diseases caused. During infection,

STM invades multiple cell types, including dendritic cells, epithelial

cells, and macrophages. While macrophages typically serve as the

frontline defense against invading bacterial pathogens, like the start of

the restriction of STM infection (12, 13), they are essential for the

establishment of systemic disease in a susceptible host (14–16). In

macrophages, STM activates the canonical and non-canonical

signaling pathways of NF-kB, which is the most important

transcriptional regulator activating the inflammatory responses in

the host against STM (17). In addition, one of the strategies that STM

uses to evade the immune response and to favor its infection is the

inhibition of the transduction pathways of NF-kB by the effector
Frontiers in Immunology 02
molecule SpvB from the pathogenicity island 2 type III secretion

system (T3SS-2) (18).

To investigate the role of SAMHD1 during STM infection, we

developed a Samhd1-deficient zebrafish model and examined the

involvement of the NF-kB signaling pathway. The findings

demonstrated that Samhd1 deficiency induced an increased IFN-I

response only when larvae were exposed to a suboptimal dose of

zebrafish IFN-I. Furthermore, a marked activation of NF-kB was

observed, which was characterized by an increased NF-kB
transcriptional activity. Notably, the enhanced NF-kB activation

in Samhd1-deficient larvae correlated with increased resistance to

STM infection, a response mediated by macrophages.
Materials and methods

Animals

Zebrafish (Danio rerio H.) were obtained from the Zebrafish

International Resource Center and were mated, staged, raised, and

processed as described (Westerfield, 2000 #23). The Tg(NFkB-RE:

eGFP)sh235 line, referred to as nfkb:eGFP (19) and Tg(UAS:dn-

nfkbiaa)sd35 (20), has been previously described. The experiments

performed complied with the Guidelines of the European Union

Council (Directive 2010/63/EU) and the Spanish RD 53/2013. The

experiments and procedures were performed as approved by the

Bioethical Committee of the University of Murcia (approval no.

669/2020).
Salmonella Typhimurium infection assays

STM 12023 (wild type, WT) was used. Overnight cultures in

Luria–Bertani (LB) broth were diluted 1:5 in LB with 0.3 M NaCl,

incubated at 37°C until 1.5 optical density at 600 nm was reached,

and finally diluted in sterile phosphate-buffered saline (PBS). Larvae

at 2 days post-fertilization (dpf) were anesthetized in embryo

medium with 0.16 mg/ml tricaine, and 10 bacteria per larvae were

microinjected in the yolk sac. The larvae were allowed to recover in

egg water at 28–29°C and were monitored for clinical signs of

disease or mortality over 5 days.
Analysis of gene expression

Total RNA was extracted from a pool of 25 zebrafish larvae (3

dpf) with the TRIzol reagent (Invitrogen, Carlsbad, CA, USA)

following the manufacturer’s instructions and treated with DNase

I, amplification grade (1 U/mg RNA; Invitrogen). The SuperScript

VILO cDNA Synthesis Kit (Invitrogen) was used to synthesize first-

strand cDNA with a random primer from 1 mg of the total RNA at

50°C for 50 min. Real-time PCR was performed with an ABI PRISM

7500 instrument (Applied Biosystems, Foster City, CA, USA) using

SYBR Green PCR Core Reagents (Applied Biosystems). The
frontiersin.org
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reaction mixtures were incubated for 10 min at 95°C, followed by 40

cycles of 15 s at 95°C, 1 min at 60°C, and finally 15 s at 95°C, 1 min

at 60°C, and 15 s at 95°C. For each mRNA, the gene expression was

normalized to the ribosomal protein S11 gene (rps11) content in

each sample using the Pfafflmethod (27). The sequences of the used

primers are listed in Supplementary Table S1. In all cases, each PCR

was performed with triplicate samples and repeated at least twice

with independent samples.
In vivo imaging

To study the reporter activity of NF-kB, 2-dpf nfkb:egfp larvae

were anesthetized in embryo medium with 0.16 mg/ml buffered

tricaine. Images of complete larvae were taken using a Leica

MZ16FA fluorescence stereomicroscope. The fluorescence

intensity from three biological replicates, each containing several

larvae, was obtained and analyzed with ImageJ (FIJI) software.
CRISPR/Cas9, plasmid injections, and
chemical treatments in zebrafish

The CRISPR RNA (crRNA) for zebrafish samhd1 (Supplementary

Table S2) and the negative control crRNA (catalog no. 1072544,

crSTD), as well as the tracrRNA (trans-activating tracrRNA; catalog

no. 1072533), purchased from Integrated DNA Technologies (IDT,

Coralville, IA, USA), were resuspended in nuclease-free duplex buffer

to 100 µM. Of each, 1 ml was mixed and incubated for 5 min at 95°C

for duplexing. After removing from the heat and cooling to room

temperature, 1.43 µl of the nuclease-free duplex buffer was added to

the duplex [guide RNA (gRNA) and crRNA + tracrRNA], giving a

final concentration of 1,000 ng/µl. The injection mix was then

prepared by mixing 1 µl of the duplex, 2.55 µl of the nuclease-free

duplex buffer, 0.25 µl of Cas9 nuclease V3 (IDT, catalog no. 1081058),

and 0.25 µl of phenol red, giving final concentrations of the gRNA

duplex (250 ng/µl) and of Cas9 (500 ng/µl). The prepared mix was

microinjected into the yolk of one-cell-stage embryos (0.5–1 nl per

embryo) using a microinjector (Narishige, Amityville, NY, USA). The

same amounts of gRNA were used in all the experimental groups. The

efficiency of the gRNA was checked by amplifying the target sequence

with a specific pair of primers (Supplementary Table S1) and the

TIDE webtool (https://tide.nki.nl/) (Supplementary Figure S1).

pcDNA-IFNphi3 (GenBank accession no. NM_001111083)

(21) was microinjected into the yolk of one-cell-stage embryos (1

pg/embryo). The 1-dpf embryos were manually dechorionated and

24 h post-fertilization treated by chemical bath immersion at 28°C.

Baricitinib (Bar; MedChemExpress, Monmouth Junction, NJ, USA)

was added to the water at 10 µM and BAY11-7082

(MedChemExpress) at 10 nM and renewed every day for the

duration of the experiment (6 days). Incubation was carried out

in 10-ml plates containing ≈100 larvae/well in egg water (including

60 mg/ml sea salts in distilled water) supplemented with 0.1%

dimethyl sulfoxide (DMSO).
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Statistical analyses

All statistical analyses were performed in GraphPad Prism 8.

Data are shown as the mean ± SEM and were analyzed using one-

way analysis of variance (ANOVA) and Tukey’s multiple range test

to determine differences between groups. The differences between

two samples were analyzed using Student’s t-test. A log-rank test

was used to calculate the statistical differences in the survival of the

different experimental groups.
Results

IFN stimulation is required to trigger an
IFN-I response in Samhd1-deficient
zebrafish larvae

An annotated samhd1 ortholog gene (Gene ID: 553453) to the

human gene SAMHD1 was found in chromosome 23 of the

zebrafish genome (ENSDARG00000071288.4) (Figure 1A). In

addition, two zebrafish samhd1 paralogs were also annotated as

LOC793232 (Gene ID: 793232) and si:ch211-233g6.2 (Gene ID:

100333959), both located in chromosome 1 (ENSDARG

00000099421.2 and ENSDARG00000104626.2), which shared

between them 94% of identity, while 58% and 57%, respectively,

with the original samhd1 gene. Importantly, the two samhd1-like

sequences lacked the SAM domain (Figure 1A), which is critical for

the regulation and activation of mammalian SAMHD1 (22),

suggesting their specialization in other functions. Consequently,

in this work, we only focused on the samhd1 gene.

Similarly to Whiters et al. (23), we decided to measure the ISG

expression in larval heads, given that the expression of samhd1 was

higher in heads than in tails (Figure 1B). We next inactivated

samhd1 using the CRISPR/Cas9 technology in one-cell-stage

embryos (with a knockdown efficiency of 83.1%) (Supplementary

Figure S1). We were not able to detect any significant difference in

the expression levels of isg15 between the Samhd1-deficient and the

control zebrafish larvae (Figure 1C). However, the addition of a

suboptimal dose of the zebrafish IFN-I ifnphi3 was able to robustly

increase the isg15 transcript levels in Samhd1-deficient larvae, but

not in their sibling controls (Figure 1C). Of note is that a suboptimal

dose of 1 pg/egg of IFN-I ifnphi3 was used in the experiment

(Supplementary Figure S2).
Samhd1-deficient zebrafish larvae show
spontaneous activation of NF-kB and high
resistance to Salmonella Typhimurium
infection

To study the inflammatory process in Samhd1-deficient

zebrafish larvae, the transcriptional activity of NF-kB was

analyzed using the reporter line nfkb:eGFP. As seen in

Figures 2A, B, Samhd1-deficient larvae showed stronger NF-kB
frontiersin.org
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reporter activity than control larvae. As NFKB protects murine

models from STM infection and this pathogen is able to hijack NF-

kB with its effector protein SpvB (18), we next studied whether

Samhd1-deficient zebrafish larvae were more resistant to STM

infection than their WT counterparts. The results confirmed this

hypothesis, showing that Samhd1-deficient zebrafish larvae were

more resistant to STM infection, with almost a 30% higher survival

thanWT larvae (Figure 2C). Moreover, the gene expression analysis

after 24 h of infection showed that the transcript levels of nfkb1

significantly increased in Samhd1-deficient infected larvae

(Figure 3A) compared with control larvae. In addition, the

expression of the il1b and isg15 transcripts also increased in

Samhd1-deficient larvae following infection (Figures 3B, C).

Interestingly, the mRNA levels of tnfa and ifng1r from the

Samhd1-deficient infected larvae did not overcome those of the

control post-infection (Figures 3D, E). Finally, the transcript levels

of cxcl8a were unaffected by Samhd1 deficiency independently of

infection (Figure 3F). Collectively, these findings indicate that

Samhd1-deficient larvae display a heightened inflammatory state,
Frontiers in Immunology 04
facilitating a more robust and accelerated response to pathogen

infection compared with control larvae.
Pharmacological inhibition of NF-kB
abolishes the protective effect of Samhd1
deficiency in zebrafish larvae against
Salmonella Typhimurium infection

To further validate the role of NF-kB in the resistance of Samhd1-

deficient larvae to infection, we treated the larvae with BAY11-7082, an

NF-kB inhibitor, and conducted a challenge with STM. As shown in

Figure 4A, although the Samhd1-deficient larvae treated with the NF-

kB inhibitor exhibited mortality rates comparable to those of WT

larvae, the treatment fully abolished the increased bacterial resistance of

Samdh1-deficient larvae (Figure 4A). Moreover, we used baricitinib, a

JAK1/JAK2 inhibitor, which is able to suppress the IFN-I response in

zebrafish larvae (24). Consistent with our expectations, treatment with

baricitinib did not alter the susceptibility of Samhd1-deficient larvae to
FIGURE 1

Interferon (IFN) stimulation is required to trigger interferon-stimulated gene (ISG) upregulation in Samhd1-deficient zebrafish larvae. (A) Diagram
indicating the protein domains. (B) Transcript levels of samhd1 by reverse transcription PCR (RT-PCR) in the head and tail of zebrafish larvae. The
average from three independent experiments, each with 25 pooled heads or tails, is shown. (C) Transcript levels of isg15 by reverse transcription
quantitative PCR (RT-qPCR) in the head of zebrafish larvae injected with gRNA (samhd1 or STD)/Cas9 complexes with or without 1 pg/egg of
pcDNA-IFNphi3. Bars show the mean ± SEM of three independent experiments, each with 25 pooled heads. Data are represented as fold change
from control (STD). P-values were calculated using Student’s t-test in (B) and using one-way ANOVA and Tukey’s multiple range test in (C). ns, not
significant. *p ≤ 0.05.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1509725
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
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STM infection, which showed a survival rate approximately 30% higher

than that of WT larvae and similar to that of untreated Samhd1-

deficient larvae (Figure 4B). These findings support the hypothesis that

the activation of NF-kB is crucial for the enhanced survival observed in

Samhd1-deficient larvae.
NF-kB activation in macrophages is
responsible for the resistance of Samhd1-
deficient zebrafish larvae to Salmonella
Typhimurium infection

The above results, together with the critical dual role of

macrophages in STM dissemination and clearance (12–16),
Frontiers in Immunology 05
prompted us to examine whether the activation of NF-kB in the

macrophages of Samhd1-deficient larvae mediated their

hyperresistance to STM infection. To achieve this, we used the

transgenic line Tg(UAS:dn-nfkbiaa), which expresses a dominant

negative (DN) form of the nuclear factor of kappa light polypeptide

gene enhancer in B-cell inhibitor, alpha a (nfkbiaa) and functions as

an inhibitor of NF-kB (20). This line was outcrossed with the Tg

(mpeg1:gal4) line, which allows exclusively expressing the DN-

Nfkbiaa in macrophages. One-cell-stage embryos were injected

with samhd1 crRNA/tracrRNA/Cas9 complexes and subsequently

infected with STM, as previously described. Larvae with

macrophages expressing DN-Nfkbiaa lost their hyperresistance to

infection (Figure 5A), behaving similarly to control larvae,

indicating that the activation of NF-kB in Samhd1-deficient
FIGURE 2

Samhd1 deficiency results in the spontaneous activation of nuclear factor kappa B (NF-kB) and hyperresistance to infection with Salmonella enterica
serovar Typhimurium (STM). (A) Real-time visualization of NF-kB activation in Samhd1-deficient zebrafish larvae. The nfkb:eGFP reporter zebrafish line
injected with gRNA (samhd1 or STD)/Cas9 complexes were analyzed using fluorescence microscopy and quantified. Each dot represents a larva, and the
mean ± SEM for each experimental group is also shown. (B) Representative images of whole larvae are shown, and the region of interest (ROI) used to
quantify the fluorescence in the nfkb:eGFP reporter line is indicated as a dot line in the images. (C) Zebrafish one-cell embryos were injected with gRNA
(samhd1 or STD)/Cas9 complexes, dechorionated, and infected at 2 days post-fertilization via the yolk sac with STM at a multiplicity of infection (MOI) of
10 or phosphate-buffered saline (PBS), with the number of surviving larvae counted daily during the next 5 days. A total number of >100 specimens/
treatment. P-values were calculated using Student’s t test in (A) and long-range test in (C). **p ≤ 0.01, ****p ≤ 0.0001.
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macrophages is essential for their enhanced resistance to STM

infection. Figure 5B shows a schematic model of the restriction of

NF-kB activation by Samhd1 in WT macrophages and the

hyperresistance of Samhd-1-deficient macrophages to STM

infection through the induction of NF-kB activation.
Frontiers in Immunology 06
Discussion

The role of SAMHD1 in modulating the immune response has

been extensively studied in human and mouse models, where it has

been shown to negatively regulate both the innate and adaptive
FIGURE 3

Samhd1 deficiency leads to an activated inflammatory state. (A–F) Transcript levels of nfkb1 (A), il1b (B), isg15 (C), tnfa (D), ifng1r (E), and cxcl8a (F) in
larvae injected with gRNA (samhd1 or STD)/Cas9 complexes infected or not with Salmonella enterica serovar Typhimurium (STM) for 24 h assayed
using reverse transcription quantitative PCR (RT-qPCR). Bars show the mean ± SEM of three independent experiments, each with 25 pooled larvae.
Data are represented as fold change from control. P-values were calculated using one-way ANOVA. ns, not significant. *p ≤ 0.05, **p ≤ 0.01,
***p ≤ 0.001, ****p ≤ 0.0001.
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immunity following viral infections or inflammatory stimuli,

primarily through its interactions with proteins in the NF-kB and

IFN-I pathways (4, 5, 11). As in other studies in zebrafish, in our

model of Samhd1-deficient larvae, the upregulation of ISGs was

moderated compared with that in human or mouse models and was

only observed when a suboptimal stimulus was added (23).

However, our zebrafish model, similar to the mouse model, did

not develop any observable neurological phenotype (25, 26),

contrary to what occurred in other zebrafish models (23, 27). The

variability of the phenotypes found between studies could be due to

the different techniques used to achieve the model, as transient gene

knockdown by morpholinos (27) versus a stable mutant zebrafish

line (23) or knockdown using CRISPR/Cas9 in this study. It is also

important to consider that zebrafish live in a highly pathogen-

enriched environment and that they possess compensatory

mechanisms to avoid a permanent inflammatory state (28–31),

and this could also be a reason for the type I interferonopathy

models in zebrafish being very difficult to study and to determine a

robust phenotype. Moreover, it is also logical to think that the

knockdown samhd1model in this study does not show neurological

phenotypes as it does not have a constitutive activation of IFN-I,

which might be directly related to the overproduction of IFN-I

(23, 27), as also mentioned in other AGS mouse studies (32, 33).

These results also suggest that the characteristics of the animal
Frontiers in Immunology 07
facilities could also play a role in the study of the activation of the

innate immune system in zebrafish, as the presence of microbial

infections, particular microbiota, or other pro-inflammatory

circumstances may contribute to AGS development.

One of the most interesting results in this study is the increased

activation of NF-kB in Samhd1-deficient larvae. Similarly, this

phenotype was also found after the depletion of SAMHD1 in

human and mouse models (4, 5, 25, 34, 35). This feature has been

widely studied in viral infection systems to elucidate the restriction

mechanism of SAMHD1, with different, even contradictory, results

being obtained depending on the pathogen used. On the one hand,

Kim et al. (4) observed that SAMHD1 deficiency activated the NF-

kB innate immune pathway, resulting in increased viral replication

through transcriptional activation of the human cytomegalovirus

(HCMV) MIE gene promoter. On the other hand, Chen et al. (5)

demonstrated that Sendai virus (SeV)-infected SAMHD1-silenced

human monocytic cells or primary macrophages led to the

increased nuclear accumulation of NF-kB, induction of IFN-I,

and reduction of SeV nucleoprotein mRNA, which was attributed

to the IFN-I-mediated inhibition of SeV replication.

All of these studies with SAMHD1 focused on the immune

response to viral infections; however, little is known about its

possible role in immunity against bacterial pathogens. In this

context, we performed a challenge against STM in which the
FIGURE 4

Pharmacological inhibition of nuclear factor kappa B (NF-kB) abolishes the protection of Samhd1-deficient zebrafish larvae to infection with
Salmonella enterica serovar Typhimurium (STM). Zebrafish one-cell embryos were injected with gRNA (samhd1 or crSTD)/Cas9 complexes,
dechorionated at 24 h, and treated by bath immersion with 10 nM BAY11-7082 (BAY) (A) or with 10 mM baricitinib (B). Drugs were renewed every day
for the next 6 days. Controls were incubated with 0.1% dimethyl sulfoxide (DMSO). Larvae were infected at 2 days post-fertilization via the yolk sac
with STM at a multiplicity of infection (MOI) of 10, with the number of surviving larvae counted daily during the next 5 days. A total number of >100
specimens/treatment. P-values were calculated using a long-range test. **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001.
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Samhd1-deficient larvae were more resistant to the infection. To

further study the mechanism, we wanted to determine which cells

were implicated in the activation of NF-kB and, hence, in the

increased survival rate of Samhd1-deficient larvae. It is well known

that SAMHD1 is highly expressed in macrophages, dendritic cells,

and CD4+ T cells, where it restricts retroviral infections (36–39). It

has been recently reported that SAMHD1 disrupts the interaction

between the upstream kinase TAK1 and IKKa or IKKb, inhibiting
the phosphorylation of IkBa and the activation of NF-kB (11).

Furthermore, it is also well known that STM uses macrophages to
Frontiers in Immunology 08
replicate and establish systemic diseases (14–16, 40–43) and that its

SpvB of the T3SS-2 has a potent and specific ability to prevent the

activation of NF-kB by targeting IKKb (18). Taking all these

together, we decided to specifically block the activation of NF-kB
in the macrophages of Samhd1-deficient larvae by expressing a DN-

Nfkbiaa. The results demonstrated that the activation of NF-kB in

macrophages was responsible for the high resistance of Samhd1-

deficient larvae to STM infection.

In summary, this study is the first to reveal that Samhd1 plays a

crucial role in restricting the macrophage-mediated clearance of
FIGURE 5

Genetic inhibition of nuclear factor kappa B (NF-kB) in macrophages abolishes the hyperresistance of Samhd1-deficient zebrafish larvae to infection
with Salmonella enterica serovar Typhimurium. (A) The zebrafish line expressing a dominant negative (DN) form of Nfkbiaa, Tg(UAS:dn-nfkbiaa), was
outcrossed with the transgenic line Tg(mpeg1:gal4), and one-cell-stage embryos were injected with gRNA (samhd1 or STD)/Casp9 complexes and
infected with STM as previously described. The average from two independent experiments with >80 larvae per group is shown. P-values were
calculated using a long-range test. ns, not significant. ***p ≤ 0.001. (B) Model showing the restriction of NF-kB activation by Samhd1 in wild-type
macrophages and the hyperresistance of Samhd-1deficient macrophages to STM infection through the induction of NF-kB activation.
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STM infection. While previous studies have focused on the role of

SAMHD1 in modulating the immune responses to viral infections,

the findings of this study highlight its importance in bacterial

immunity. It was demonstrated that Samhd1-deficient zebrafish

larvae exhibit enhanced resistance to STM, which is driven by the

increased activation of NF-kB in macrophages. This suggests that

the loss of Samhd1 function allows for a more robust inflammatory

response, facilitating a more effective pathogen clearance. These

results open new avenues for exploring the role of SAMHD1 in

bacterial infections and its potential as a therapeutic target in host–

pathogen interactions.
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SUPPLEMENTARY FIGURE 1

Analysis of the efficiency of CRISPR/Cas9 edition. The edition efficiency of
gsamhd1/Cas9 complexes was checked by amplifying the target sequence

with a specific pair of primers (see Supplementary Table S1) and quantifying

the rate of nonhomologous end joining mediated repair using the TIDE
webtool (https://tide.nki.nl/). All insertions and deletions (INDELS) at the

target site are shown.

SUPPLEMENTARY FIGURE 2

IFN stimulation. Transcript levels of isg15 RT-qPCR in head of zebrafish larvae

injected with gRNAs (samhd1 or STD)/Cas9 complexes with or without 10 pg

of pcDNA-IFNphi3 or 75 pg in wild type eggs (A). Transcript levels of isg15 RT-
qPCR in head of zebrafish larvae injected with gRNAs (samhd1 or STD)/Cas9

complexes with or without 1 pg of pcDNA-IFNphi3 (B). Data is represented as
fold change from control. p-values were calculated using Student’s t-test;

***p≤ 0.001.
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