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Chemotherapeutic resistance is a major obstacle to chemotherapeutic failure.

Cancer cell resistance involves several mechanisms, including epithelial-to-

mesenchymal transition (EMT), signaling pathway bypass, drug efflux activation,

and impairment of drug entry. P-glycoproteins (P-gp) are an efflux transporter

that pumps chemotherapeutic drugs out of cancer cells, resulting in

chemotherapeutic resistance. Several types of long noncoding RNA (lncRNAs)

have been identified in resistant cancer cells, including ODRUL, MALAT1, and

ANRIL. The high expression level of ODRUL is related to the induction of ATP-

binding cassette (ABC) gene expression, resulting in the emergence of

doxorubicin resistance in osteosarcoma. lncRNAs are observed to be

regulators of drug transporters in cancer cells such as MALAT1 and ANRIL.

Targeting P-gp expression using natural products is a new strategy to

overcome cancer cell resistance and improve the sensitivity of resistant cells

toward chemotherapies. This review validates the inhibitory effects of natural

products on P-gp expression and activity using in silico molecular docking. In

silico analysis showed that Delphinidin and Asparagoside-f are the most

significant natural product inhibitors of p-glycoprotein-1. These inhibitors can

reverse multi-drug resistance and induce the sensitivity of resistant cancer cells

toward chemotherapy based on in silico molecular docking. It is important to

validate that pre-elementary docking can be confirmed using in vitro and in vivo

experimental data.
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GRAPHICAL ABSTRACT
1 Introduction

Although there are many significant cancer treatments, many

issues reduce the sensitivity and responsiveness toward

chemotherapeutic drugs. There are many mechanisms for

controlling cancer cell resistance and emergence of multidrug

resistance, including overexpression of ABC transporters and p-

glycoproteins (1). High expression levels of ABC transporters

require ATP to efflux chemotherapeutic drugs from cells (2). P-

glycoprotein (P-gp) is an efflux protein that is the main cause of

Multidrug resistance (MDR) (3, 4). Juliano et coworkers observed

P-gp expression on the surface of ovarian cells (5). ABCB1 encodes

P‐gp, which consists of four domains: two nucleotide-binding

domains and two transmembrane domains (6). P-gp is expressed

at high levels on the surfaces of several cancers, including lung

cancer, breast cancer, colon cancer, osteosarcoma, and

hepatocellular carcinoma (7–9;MA et al., 2019;10, 11). P-gp

transporters efflux chemotherapeutic agents from the cell,

resulting in cancer cell resistance (12, 13). The chemotherapeutic

substrates for P-gp transporters include paclitaxel, 5−fluorouracil,

doxorubicin, and 5−fluorouracil (14, 15). Several studies have

shown that lncRNAs are strongly associated with the emergence

of multidrug resistance in several cancer cell types (16). Although

lncRNA transcripts are > 200 nucleotides long, no protein-coding

potential has been identified (17). Disturbances in lncRNA levels

lead to chemoresistance in cancer cells (18, 19). lncRNAs regulate
Frontiers in Immunology 02
drug transporters in cancer cells, such as MALAT1 and ANRIL

which control the expression of Multidrug resistance protein 1

(MRP1) and Multidrug resistance gene 1 (MDR1) (20). Both in vivo

and in vitro studies have shown thatMALAT1 is associated with the

development of cisplatin-resistant A549 lung cancer cells. High

expression levels of ANRIL induce cisplatin-resistant and 5-

fluorouracil-resistant gastric cancer cells. In this context,

inhibition of P-gp transporter expression decreases multidrug

resistance and increases the responsiveness of resistant cancer

cells toward chemotherapeutic drugs. Natural products can

modulate cancer cell resistance by inhibiting P-gp transporter

expression. P-glycoprotein is one of the chemoresistance

mechan i sms in cance r ce l l s tha t c ause s long- t e rm

chemotherapeutic failure. lncRNAs, such as MALAT1, ANRIL,

and ODRUL, are considered inducers of p-glycoprotein

expression. Targeting P-gp expression is a significant strategy to

overcome chemotherapeutic resistance and increase cancer cell

sensitivity towards drugs. Because natural products are extracted

from natural sources, they are considered favorable P-glycoprotein

inhibitors without side effects. In this review, we describe several

types of natural products that can increase the sensitivity of

resistant cancer cells, which was confirmed by in silico molecular

docking. In addition, this review describes the mechanisms of

cancer drug resistance, different types of lncRNAs, and their

relationship to chemotherapeutic resistance. This review presents

an important step in the strategy to increase the responsiveness of
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resistant cancer cells; however, future in vitro and in vivo

experiments are needed to confirm our preliminary docking results.
2 Mechanisms of cancer drug
resistance

Drug resistance can be classified into two classes: primary and

secondary. Primary resistance appears before the exposure of cancer

cells to chemotherapy. Secondary resistance arises from adaptation

of cancer cells to chemotherapy. Drug resistance commonly results

from genomic alteration. There are different resistance mechanisms,

including p-efflux transporters, inhibition of drug entry, and EMT,

as shown in Figure 1 (21–24).
2.1 Tumor heterogeneity

Tumor heterogeneity is a significant factor underlying

resistance to cancer drugs and is considered a fundamental

feature of tumor progression and adaptation to different

conditions. The evolutionary power of tumors is mainly linked to

heterogeneity; colonies with more robust heterogeneity are favored

during cancer progression and become dominant (25). Tumor

heterogeneity can be attributed to both intrinsic and extrinsic

factors. Generally, intrinsic factors are cellular in origin and can

accumulate due to alterations in the levels of DNA, RNA, protein,

epigenetics, and signal transduction. Genetic alterations include

mutations, gene amplification, chromosomal aberrations, and

miRNA gene changes. Alterations in transcriptomics, proteomics,
Frontiers in Immunology 03
and epigenetics could also originate from DNA alterations, which

could modulate the cell cycle and its overall regulation (26).

Additionally, modification of cancer stem cells (CSCs) supports

heterogenei ty , tumor plast ic i ty , and res is tance (27) .

Downregulation of pro-apoptotic molecules and upregulation of

anti-apoptotic players participate in heterogeneity-associated

resistance (28). Moreover, differences in signaling contribute to

heterogeneity in cancer drug resistance heterogeneity (29). Tumors

could possess a high level of stochasticity due to de novo differences

in enzymatic signal transduction cascades that promote biological

noise and subsequently develop feedback inhibition motifs to

decrease biological noise (30).

Conversely, extrinsic or microenvironmental factors can

promote heterogeneity and resistance through spatial differences

in cells, blood supply, pH, hypoxia, and paracrine signaling (31, 32).

Additionally, the vascular network and contact with cancer cells are

arbitrary, resulting in fluctuations in the nutrient and metabolic

status of different cancer cells (33).
2.2 Tumor burden and physical barriers

There is a significant association between tumor size and

tumor resistance, and tumor size could be a determinant of

tumor capacity to develop drug resistance mutations. Tumor

growth and response to therapy have an inverse relationship

with the growth rate (34). However, cancers can reveal spatial

gradients that limit the blood supply and oxygen enrichment,

creating an isolated hypoxic pro-tumorigenic environment with

low contact with chemotherapy (34).
FIGURE 1

Mechanisms of cancer cell resistance.
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2.3 Tumor microenvironment

Tumor microenvironment (TME) interactions with tumor

cells can aid in resistance. Tumors are not fully homogeneous

but include different classes of cells and extracellular matrix

(ECM), such as immune and inflammatory cells, fibroblast

blood vessels, multiple nutrients, and signaling molecules (35).

TME could be attributed to the pharmacological outcomes that

force the cells to adapt to chemotherapy. One TME factor is pH;

tumor cells typically exhibit a reversed pH gradient, with

intracellular pH higher than extracellular pH, which promotes

resistance to chemotherapy (36). Furthermore, alkaline pH

modulates ion trapping, reduces drug efficacy, and helps cancer

cells avoid apoptosis, promoting cell proliferation, tumor

aggressiveness, invasion, and resistance to the immune response

(37). Cycles of hypoxia, reoxygenation, and lack of O2 produce

reactive oxygen species (ROS) that are associated with

heterogeneity and resistance (38). In addition, EMT and CSCs

have carcinogenic effects by helping cancer cells avoid apoptosis

(39). Additionally, resistance could be attributed to TME

attenuation of the immune clearance of cancer cells, and the

TME could enhance resistance by inducing paracrine growth

factors to mediate cancer cell growth (40). Chemotherapy

pressure forces cells to possess a robust phenotype against stress

(41). In addition, external pressure can modulate the expression of

anti-apoptotic markers and epithelial-to-mesenchymal

transition (EMT).
2.4 Cancer stem cells

The presence of stem cells in cancer tissues is linked to the

resistance of many cancers, such as a long lifetime, high expression

of drug exporters, elevated DNA repair mechanisms, and

attenuated apoptosis (42). Stem-cell-dependent resistance is

generally dependent on EMT machinery (43).
2.5 EMT

The EMT process is distinguished by the loss of both cell-cell

contacts and apico–basal polarity associated with epithelial cells,

ultimately acquiring mesenchymal features (44). The EMT program

is mainly initiated by TME paracrine signaling by fibroblasts,

macrophages, or immunocytes (44). EMT permits cancer cells to

possess the ability to resist anticancer drugs and avoid apoptosis.

EMT is characterized by elevation of transforming growth factor-

beta (TGF-b), which significantly aids in resistance (45). EMT-

linked transcription factors, including Twist1, Snail, Slug, ZEB, and

FOXC2, are associated with drug resistance in cancer (46). These

transcription factors support resistance by promoting drug efflux,

such as ABC transporters, in addition to avoiding apoptosis via an

immune response that shares similarities with the resistance profile
Frontiers in Immunology 04
of stem cancer cells (47–49). The EMT also has the capacity to self-

renew and escape apoptosis. EMT is the initial step in escape from

neighboring tissues and subsequent metastasis (50).
2.6 Drug manipulation

Drug efflux machinery, such as ABC transporter and efflux

pump P-glycoprotein (P-gp), are enhanced through EMT, stem

cells, miRNAs, and as a response to pharmaceutical pressure (51).

Generally, drug uptake into cells occurs through diffusion through

the plasma membrane (PM), transporter activity, and endocytosis.

During cancer development, alterations are accompanied by

changes in the lipid composition of the PM, such as

phosphatidylserine (PS). In cancer cells, PS is exposed to an

extracellular environment opposite to normal PM, which gives

the cell more negative charge-altering drug entry (52, 53).

Additionally, the attenuated pH of the extracellular media of

cancer cells affects the ionization status of drugs and their entry

(54). Drug entry is also dependent on several transporters called

carriers (SLC), such as OATP1B3 and OCT6, which were found to

be attenuated during treatment with doxorubicin and cisplatin (55).

Moreover, elevated rigidity of endosomes affects the endocytosis

process, thereby affecting drug entry (56, 57). In addition,

alterations in drug targets, such as protein mutations or

expression aberrations, suppress the robustness of targeted

therapy. For instance, a missense variant in the epidermal growth

factor receptor (EGFR) subsequently impairs the binding of

gefitinib/erlotinib to the kinase (58).
2.7 Epigenetic alterations

Epigenetic modifications include methylation, histone

modifications, and non-coding RNAs disturbances (59).

Oncogene promoters can be demethylated and subsequently gene

expression is elevated, as observed in several genes, including ID4,

ERp29/MGMT, ETS-1,

and miR-663, which are involved in breast cancer resistance

against several chemotherapeutics (60, 61). Similarly, the MDR1

and PD-L1/DNMT1 axes are hypomethylated in HCC cells treated

with Doxorubicin and sorafenib, respectively (62). However, some

gene promoters are hypermethylated, causing attenuation of gene

expression and subsequent resistance, such as TGBI and ER-a, in
breast cancer when Trastuzumab and Antiestrogen are

administered, respectively (63, 64). Moreover, target genes and

export pump funct ions can be enhanced by histone

demethylation and acetylation (65). Furthermore, miRNA

alterations that affect gene expression are involved in drug cancer

resistance. For instance, miR-15b promotes resistance to cisplatin

by targeting PEBP4- and RKIP-mediated EMT, similar to miR-27a

(66). In addition, lncRNAs are overexpressed and promote proteins

related to cancer drug resistance (67).
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2.8 DNA damage repair

The DNA damage repair (DDR) machinery is controlled by

several genes that are enhanced during cancer therapy, leading to

resistance. Thus, impairment of the DDR can increase

pharmaceutical sensitivity (68). O-6-Methylguanine-DNA

Methyltransferase (MGMT) is responsible for the clearance of

alkyl adducts from the O6 position of guanine; inactivation of

this machinery was found to be a therapeutic target for sensitizing

cells to O6-alkylating agents (69). DNA-dependent protein kinase

(DNA-PK) is part of the double-strand break repair machinery

(DSBs), and inhibition of this mechanism could promote radio/

chemosensitivity of cancer cells (70).
2.9 Cell cycle

Irreversible cell arrest “senescence” could be provoked by

several factors, including oncogenic genetic alterations, telomere

erosion, and DNA damage linked to pharmaceutical therapy.

However, the surviving cell populations may be more vigorous

and highly proliferative (71). However, some cancer cells evade

irreversible cell arrest and “senescence” by modifying apoptotic

pathways to promote chemoresistance (72).
2.10 Energy alterations

Cancer cells develop characteristic metabolic phenotypes,

especially glycolysis, known as the Warburg effect, which allows

cancer cells to possess significantly higher intracellular ATP levels

than normal cells of the same origin (73). Interestingly, cancer cell

chemoresistance is correlated with ATP levels, and attenuation can

sensitize cells (74). Increased cytosolic ATP levels are accompanied

by elevated mitochondrial ATP levels in cancer- resistant cells. This

phenomenon promotes drug efflux through ABC transporters,

which in turn increases drug resistance (75). In contrast, the

presence of extracellular ATP (eATP) in tumor cells is

remarkably higher than that in normal cells, which is attributed

to the elevated ATP produced from apoptosis and autophagy

during therapy (76). Firstly, eATP can be transported to cells to

promote resistance, as discussed earlier. Additionally, eATP

signaling can promote EMT, cell growth, survival, and

proliferation (77).
3 Drug efflux variations

49 of ATP-binding cassette transporters efflux chemical drugs

from cancer cells, resulting in multidrug resistance (MDR). P-

glycoprotein (P-gp), multi-drug-resistant associate protein (MRP),

and adenosine triphosphate-binding cassette superfamily G

member 2 (ABCG2) are the most common efflux transporters in
Frontiers in Immunology 05
ovarian and breast cancers (78). It has been observed that high

expression levels of P-gp transporters in colorectal cancer and

neuroblastoma lead to poor prognosis (79). P-gp transporters are

encoded by the gene (MDR1) during the transformation of normal

tissues into neoplastic tissues (80). Downstream receptors and

proteins GTPase H-Ras, Mitogen-activated protein kinase 1/2

(MEK1/2), and Raf- 1 are involved in the mitogen-activated

protein kinase (MAPK) pathway associated with high P-gp

expression levels. On the other hand, Katayama, Imai, and their

co-workers observed that inhibition of the extracellular signal-

regulated kinase (ERK) pathway downregulates the expression

level of P-gp (81, 82).
4 Effect of P-glycoprotein in tumor
immunity

The high expression level of P-gp in immune cells induces their

activation, modulation of their activity, and the release of cytokines.

In the peripheral circulating system, the number of monocytes is

very low, on the other hand, it increases in tissue tumor-infiltrating

macrophages (83). The expression of P-gp in dendritic cells

depends on its activation with a professional antigen (84, 85).

Lloberas and his co-workers observed that using Valspodar to

block P-gp prevented the maturation of dendritic cells and their

activation markers CD80 and CD40 (85). Natural killer (NK (cells

have a high P-gp expression level. There is a strong relationship

between P-gp expression and the cytotoxic effects of NK. The high

expression level of P-gp downregulates the cytotoxicity of NK cells

by increasing the binding of Fas-mediated (Fas/FasL) P-gp+ NK

cells to target cells. This triggers apoptosis of target cells by inducing

the release of secretory granules with an inflammatory cytotoxic

effect (86). In adaptive immunity, individual cell types determine

the role of p-g expression. For example, in lymph nodes, the

migration and transitional phenotype of B cells depends on the

expression level of P-gp (87, 88). In CD4+T cells, Th1 and Th17 are

effectors of T cells, and their inflammatory effect is associated with

the expression level of P-gp. In contrast, the anti-inflammatory

effect of T regulatory cells (Treg) limits the expression level of P-gp

(89, 90). Kooij and his co-workers declared that memory

(IL18Ra+CD161+CD62Llo) phenotype in CD8+T cells determines

the expression level of P-gp (91). Bidirectional responses of P-gp

expression were observed in CD8+ memory T cells in mucosal cells.

In mucosal cells, P-gp normally effluxes xenobiotic toxins out of the

cell; however, if a normal microbiome is distributed, this leads to

enhanced effector responses and causes the emergence of

autoimmune diseases such as Crohn’s disease. In acute myeloid

leukemia, immune cells, including follicular lymphoma and B-cell

lymphoma, boost P-gp express ion levels , leading to

chemotherapeutic resistance (92, 93). High MAP kinase/ERK

signaling is associated with the induction of P-gp expression,

which has a significant role in resistant myeloid leukemia (94).

Ling et co-workers observed high P-gp expression levels in CD8+T
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cells derived from human colorectal cancer (95). In addition,

chemoresistance in AML patients results from long-term

chemotherapy and is correlated with the expression of CD4

+CD161+P-gp+ T cells (96). On the other hand, Th17 and Th1

CD4+T-helper cells have been observed to trigger cytokine

secretion, such as TNFa, and IL-17 which have anti-cancer

activity (97). In this context, breast cancer cells have CD4+T-cells

(CD4+CD73+T cells) that express P-gp and enhance the secretion

of inflammatory and anticancer cytokines (98, 99). There is a

conflicting role for P-gp in cancer cells, which is expressed in the

pro-tumor effect of MF2-macrophage and the anti-cancer effect of

NK-cell and Th17/CD4+T cells. Therefore, it is important to study

the role of P-gp in immune cells.
5 lncRNAs related to p-glycoprotein

Several studies have shown that lncRNAs play a significant role

in increasing the expression levels of P-gp transporters and

inducing multidrug, as shown in Figure 2. ODRUL was observed

to be highly expressed in osteosarcoma cell lines. The high

expression level of ODRUL is related to the induction of ABCB1

gene and results in the emergence of doxorubicin resistance in

osteosarcoma (100). Knockdown of the expression level of ODRUL

leads to a decrease in the expression level of ABCB1 gene and
Frontiers in Immunology 06
improves the responsiveness of osteosarcoma toward doxorubicin

(100). In addition, high expression levels of lncRNA HOTTIP have

been observed in resistant pancreatic ductal adenocarcinoma

(PDAC) (101). HOTTIP was associated with gemcitabine-resistant

PDAC cells. In vitro and in vivo studies showed that HOTTIP

induces proliferation, invasion, and gemcitabine resistance in

cancer cells by modulating HOXA13 gene (101). HOTTIP

knockdown improves the sensitivity of cancer cells toward

gemcitabine (101). It was also observed that H19 mRNA in

resistant HepG2 cells induces the expression of p-glycoprotein

transporters. High levels of H19 mRNA induce doxorubicin

resistance in HepG2 cells (102). Knockdown of H19 mRNA

induces the responsiveness and sensitivity of resistant cancer cells

toward doxorubicin by increasing its accumulation and toxicity in

both resistant and normal hepatoma cancer cells (102).

Furthermore, knockdown of H19 mRNA induces methylation of

MDR1 and then decreases P-glycoprotein expression (102). Linc-

ROR lncRNA is upregulated in sorafenib-resistant HCC cells

towards sorafenib. Knockdown of linc-ROR induces sorafenib

toxicity and cancer cell death (103). High expression levels of

CCAL lncRNAs induce multidrug resistance in colorectal cancer

cells (104). CCAL lncRNA triggers a decrease in the signaling AP-

2a protein-activated Wnt/b-catenin pathway, leading to

upregulation of p-glycoprotein expression (104). On the other

hand, low expression levels of snaR induce chemotherapeutic
FIGURE 2

Mechanisms of lncRNAs related to drug efflux proteins which lead to chemoresistance.
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resistance in colon cancer toward 5-fluorouracil (105). High snaR

expression induces apoptosis in colon cancer cells (105). High

expression levels of HOTAIR induce platinum resistance in

ovarian cancer cells. A high level of HOTAIR repairs the DNA

damaged by platinum therapy, which activates NF-kB signaling,

resulting in chemoresistance (106). Fang et co-workers observed

that a high expression level of MALAT1 is observed in cisplatin-

resistant lung cancer. MALAT1 induces cisplatin efflux from cells

through efflux transporters (MDR1 and MRP1) after STAT3

activation (20). Furthermore, ANRIL was observed to induce the

expression of efflux transporter proteins in resistant gastric cancer

cells. Efflux transporter proteins pump cisplatin and 5-fluorouracil

(5-FU) from cells, resulting in chemoresistance in gastric cancer

cells (107). ANRIL knockdown increased the responsiveness of

resistant cancer cells toward chemotherapeutic drugs by

decreasing the levels of transporter proteins (107). MRUL

increases the expression of ABCB1, which induces multidrug

resistance. ABCB1 gene is associated with efflux transporter

proteins that pump doxorubicin out of cancer cells (108). ABCB1

knockdown reduces drug efflux, leading to drug accumulation,

toxicity, and apoptosis (108). The high expression levels of linc-

VLDLR is implicated in the expression of the ABCG2.

Chemotherapeutic drugs, including doxorubicin, sorafenib, and

camptothecin, induce the expression of linc-VLDLR in both inside

cells and in extracellular vesicles (EVs). Knockdown of linc-VLDLR

reduces the level of ABCG2 drug efflux transporters and decreases

cancer cell proliferation (109). lncRNA XIST controls the

expression of Serum- and Glucocorticoid-Regulated Kinase 1

(SGK1), which sponges miR-124, resulting in doxorubicin

resistance in colorectal cancer cells (110). Knockdown of XIST

decreases the expression of p-glycoproteins and improved the

responsiveness of resistant cancer cells toward DOX (110). Hu et

co-workers observed that high expression levels of KCNQ1OT1 are

associated with oxaliplatin resistance in hepatoma cancer cells via

the upregulation of efflux transporter genes, including MRP5,

MDR1, and LRP1 (111). KCNQ1OT1 knockdown decreases gene-

related resistance and cancer cell growth, invasion, and migration. A

KCNQ1OT1 sponge with the 3′-UTR of miR-7-5p regulates the

expression level of ABCC1 mRNA in hepatoma cancer cells (111).

LINC00518 induces chemotherapeutic resistance in breast cancer

cells by sponging miR- 199a (112). High levels of miR- 199a induce

the expression of chemoresistant MRP1, resulting in paclitaxel,

vincristine, and doxorubicin resistance in breast cancer.

Knockdown of LINC00518 expression level induces breast cancer

cell sensitivity toward chemotherapy (112). Bladder cancer-

associated transcript-1 (BLACAT1) is observed in resistant gastric

cancer cells (113). A high expression level of BLACAT1 is associated

with oxaliplatin resistance in gastric cancer cells. In vitro and in vivo

studies observed that knockdown of BLACAT1 downregulates the

expression of ABCB1 protein and inhibits the proliferation of

gastric cancer cells. miR-361 interacts with the 3′-UTR of

BLACAT1 and ABCB1mRNA resulting in chemoresistance (113).

In conclusion, targeting p-glycoprotein and chemoresistance

associated with lncRNAs is a new strategy for improving the

responsiveness of resistant cancer cells toward chemotherapy.
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6 Phytochemicals target both lncRNAs
and p-glycoprotein to overcome
chemoresistance

Several studies have reported that different types of natural

products act as P-gp inhibitors (114). Natural products decrease

chemoresistance by targeting p-glycoprotein expression (Table 1)

(114). Natural products are characterized by having groups of

methoxy, allyloxy, or acetylamino substituents, chiral

configuration at C-3, and chromanol scaffolds, which can

modulate the activity of p-glycoproteins (159). Baicalin and

baicalein are natural products derived from the root of Scutellaria

baicalensis Georgi that can downregulate P-gp expression in Caco-2

cells. Baicalin and baicalein showed significant anti-cancer activity,

with IC50 = 479-332 mg/mL against Caco-2 cells. Miao et coworkers

reported that in vitro studies of baicalein showed that baicalein has a

greater inhibitory effect against P-gp than baicalin due to the

presence of a glucosyl group (116). Chalcone is a natural phenolic

compound that is extracted from apples, tomatoes, and licorice. In

vitro studies have shown that chalcone inhibits p-glycoprotein

activity, resulting in improved sensitivity of cancer cells toward

chemotherapy (160). Cyanidin is a flavonoid extracted from leaves,

vegetables, and fruits such as grapes, cherries, apples, beans, and

cabbage. Cyanidin is cytotoxic to cancer cells by inducing apoptosis

(161). Kitagawa observed that cyanidin decreased the expression

levels of P-gp proteins and decreased chemoresistance (162).

Quercetin is a flavonoid extracted from onion skin that has

antioxidant activity. Quercetin inhibits chemotherapy transport

by suppressing ATPase activity of ABCB1 (163). Rutin is a

flavonoid extracted from the papaya plant. In vitro studies have

shown that rutin inhibits P-gp activity and improves the

responsiveness of cancer cells toward paclitaxel (123). Curcumin

is a natural polyphenolic compound extracted from Curcuma longa.

Curcumin inhibits the activity of P-glycoprotein regardless of the

substrate formulation in LS180 Cells (164). Cinnamyl acetate is a

natural phenylpropanoid compound extracted from the cinnamon

bark. Cinnamyl acetate inhibits the expression of P-gp transporters

and decreases chemoresistance in cancer cells (165). Hesperidin is a

natural flavonoid extracted from citrus fruit. Kong et co-workers

observed that hesperidin suppressed P-gp expression and induced

the accumulation of chemotherapy in A549 cancer cells (166).

Ursolic acid (UA) is a natural triterpene extracted from Annurca

apples. Ursolic acid inhibits cancer cell proliferation by inducing

apoptosis and upregulating caspase levels in resistant hepatoma

cancer cells (167). Kaempferol is a flavonoid extracted from tea,

curly kale, and blueberries. Kaempferol inhibits P-gp activity and

decreases multi-drug resistance in KB-V1 cells (130). Luteolin is a

natural product produced byHelicteres hirsute. Luteolin triggers cell

death in cancer cells expressing efflux transporter proteins (ABCG2

and P-gp) by inducing ROS generation and DNA damage via

inhibition of the NF-kB signaling pathway and downregulation of

anti-apoptotic markers (134a). Sarsasapogenin is a steroid

compound extracted from Anemarrhena asphodeloides Bunge.

Sarsasapogenin suppresses the inflammatory activity that results
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TABLE 1 Phytochemicals list that target P-glycoprotein and or LncRNAs to overcome chemoresistance in different cancer cells.

Phytochemicals Plant Source Bioavailability
Concentration

IC50

P-glycoprotein/
LncRNAs

In vitro/
in vivo

experiments
Reference

Baicalein
Root of Scutellaria

baicalensis
Georgi (Labiatae)

The absolute
bioavailability of

baicalein in
different doses

ranged from 13.1%
to 23.0%.

332 mg/mL

Baicalein inhibits the
expression and activity of P-
glycoprotein resulting in the
accumulation of intracellular
rhodamine 123.
Baicalein down-regulates
BDLNR in poor cervical cancer
in vivo which is bound to Y-
box binding protein 1 (YB-1),
recruited YBX1 to PIK3CA
promoter, activated PIK3CA
expression and PI3K/
Akt pathway.

Caco-2 cells,
cervical cancer,
and rat gut sacs

(115–117)

Baicalin
Root of Scutellaria

baicalensis
Georgi (Labiatae)

low bioavailability
of about 2.2 ± 0.2%

479 mg/mL

Baicalin doesn’t affect P-
glycoprotein activity. This is
because of the structure-activity
relationship of the inhibitors of
P-gp. Baicalin has glucosyl that
influences the activity of P-gp
and downregulates its
inhibitory effect.

Caco-2 cells and
rat gut sacs

(116, 118)

Quercetin

Amaryllidaceae,
Brassicaceae,
Capparaceae,

Ericaceae, Liliaceae,
and Rosaceae.

The bioavailability
of quercetin is

relatively
low (<10%)

0.044 mM

Quercetin targets MALAT1
and decreases invasion in
prostate cancer by upregulating
N-cadherin and
phosphorylated Akt;
downregulating E-cadherin.

Prostate cancer (119–122)

Rutin

Buckwheat, apricots,
cherries, grapes,
grapefruit, plums,

and oranges

Poor bioavailability 8 mM

Rutin is observed to inhibit P-
gp transport function and
significantly reduce resistance
in cytotoxicity assay to
paclitaxel in P-gp
overexpressing MDR cell lines.

KB 3-1 and KB
CHR 8-5 cell lines

(123b)

Curcumin Curcuma longa
Very

poor bioavailability
0,5,15, and 20 M

Curcumin downregulates both
H19 and HOTAIR in renal
carcinoma and breast cancer
cells. Curcumin affects EMT
biomarkers including N-
cadherin and E-cadherin levels.
It reduces levels of N-cadherin
and increases levels of E-
cadherin. In vitro studies
observed that curcumin
decreases renal cancer cell
migration and invasion by
downregulating the expression
level of HOTAIR (124)

MCF-7/TAMR *
cell line.

769-P-HOTAIR
and 786-0
cell lines

(125)

Diindolylmethane
cruciferous
vegetables

DIM is poorly
absorbed from the
gastrointestinal

tract

56.23 µM

Diindolylmethane induces
intracellular accumulation of
Hoechst and Calcein, the
substrates of P-gp and MRP1,
respectively, in breast cancer
cells. In addition,
Diindolylmethane induces P-gp
ATPase activity and inhibits its
efflux activity.

MDA-MB-231
cells Breast
cancer cells

(126)

Fisetin

Strawberries, apples,
grapes, onions,

tomatoes,
and cucumbers.

Low
bioavailability

(44.1%)
50 µM

Fisetin inhibits prostate cancer
cell proliferation, migration,
and invasion by modulating a
P-glycoprotein overexpressing

NCI/ADR-RES
prostate

cancer cell
(127–129)

(Continued)
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TABLE 1 Continued

Phytochemicals Plant Source Bioavailability
Concentration

IC50

P-glycoprotein/
LncRNAs

In vitro/
in vivo

experiments
Reference

multidrug-resistant cancer cell
line NCI/ADR-RES.

Kaempferol
Leaves of

Ginkgo biloba
Low poor at ~ 2% 43 mmol/L

Kaempferol increases the
intracellular accumulation and
reduces the efflux of Rh123 and
3[H]vinblastine in KB-V1 cells

Multidrug-
resistant human

cervical
carcinoma KB-

V1 cells

(130b;131,
132)

Luteolin Vitex negundo leaves
The low

bioavailability
4.10%

3–50 µM

Luteolin induces apoptosis in
P-glycoprotein- and ABCG2-
expressing MDR cancer cells
without affecting the transport
functions of these
drug transporters.

BCRP-expressing
MCF-7/

MitoR cells

(133,
134b;135)

Glycyrrhizin licorice root Approximately 1% 267.3 µM

Glycyrrhizin has anti-cancer
and antioxidant activity. It
reduces multidrug resistance
(MDR) in cancer cells.
Glycyrrhizin is a nitric oxide
regulator in cancer cells and its
subsequent anti-MDR effect.

Breast cancer
cells

HCT116
(136–138)

Gingerol
Rhizome of the
ginger plant

Poor bioavailability 96.32 mM

It is observed that the exposure
at 8 µM doxo concentrations in
the presence of ginger
improves drug accumulation
and cytotoxicity on resistant
MES-SA/Dx5 cells. Ginger
induces the production of GSH
content in resistant cells and
decreases the multidrug
resistance in resistant cells.

Human uterine
sarcoma cell line
MES-SA MES-
SA/Dx5 cells

(139–141)

Noscapine
Papaveraceae,
Berberidaceae,

and Ranunculaceae

Bioavailability
was 30%

34.7 mM

Noscapine minimizes
endothelial cell migration in
the brain by targeting
endothelial cell activator
interleukin 8 (IL-8). It
modulates P-gp activity efflux
on resistant cancer cells.

breast
adenocarcinoma
cell line MCF7

(142–144)

Anethole

Anise (Pimpinella
anisum), fennel
(Foeniculum

vulgare), star anise
(Illicium verum),

basil
(Ocimumbasilicum),

tarragon
(Artemisia
dracunculus)

Limited
bioavailability

50 µM

Anethole has multiple anti-
cancer mechanisms, such as
inducing apoptosis, causing cell
cycle arrest, exhibiting anti-
proliferative and anti-
angiogenic effects, and
modulating critical signaling
pathways including NF-kB,
PI3K/Akt/mTOR, and caspases.

Breast, prostate,
lung, and

colorectal cancers
(145, 146)

Procyanidin

Apples, maritime
pine bark,

cinnamon, cocoa
beans, grape seed,
grape skin, and red

wines of
Vitis vinifera

The bioavailability
depends on their

degree of
polymerization.

The absorption rate
of

proanthocyanidin
dimers is 5–10%.

6.88 M

Procyanidin reverses MDR in
A2780/T cells by inhibiting the
function and expression of P-
gp in A2780/T cells.
Procyanidin reversed MDR by
inhibiting the function and
expression of p-gp via
inhibition of NF-kB mediated
by dephosphorylation of AKT
and ERK1/2, respectively.

Ovarian cancer
cell line
A2780/T

OAW42 and
OVCAR3 cells

(147–149)

Allicin Garlic cloves
The bioavailability
of allicin is poor

10–25 mM
Allicin activates osteosarcoma
immunoreactivity and induces

osteosarcoma (150, 151)

(Continued)
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from lipopolysaccharide (168). Fisetin is a flavone that is extracted

from strawberries and apples. Kaempferol significantly inhibits P-

gp expression more than fisetin, resulting in the efficient

accumulation of daunorubicin (169). Glycyrrhizin is a natural

product that is extracted from liquid plants. Glycyrrhizin inhibits

P-gp activity and interacts with its substrate to inhibit P-gp

transport (170). Noscapine is an alkaloid extracted from Papaver

somniferum. Noscapine has been observed to have an inhibitory

effect on P-gp, resulting in the suppression of multi-drug resistance

in cancer cells (143). Allicin is a natural product that is extracted
Frontiers in Immunology 10
from garlic. Allicin can overcome p-glycoprotein and BCRP activity

and induce the accumulation of sulfadiazine and florfenicol (171).

Gingerol has also been extracted from Zingiber officinale. Gingerol

inhibits P-gp activity and induces the accumulation of 3-H digoxin

in Caco-2 cells (172). Gallocatechin gallate was extracted from

green tea leaves. Gallocatechin gallate interacts with P-gp and

decreases multidrug resistance in cancer cells (173). In

conclusion, natural products can act as significant inhibitors to

overcome multi-drug resistance and improve the sensitivity of

cancer cells toward chemotherapy. Mondal et et al. observed that
TABLE 1 Continued

Phytochemicals Plant Source Bioavailability
Concentration

IC50

P-glycoprotein/
LncRNAs

In vitro/
in vivo

experiments
Reference

apoptosis through the CBR3-
AS1/miR-145-5p/GRP78
molecular axis. Allicin triggers
silencing CBR3-AS1 led to
reduced Saos-2 activity,
enhanced apoptosis, and
activated mitophagy and
endoplasmic reticulum stress.

Astaxanthin
Algae, yeast, salmon,
trout, krill, shrimp

and crayfish

Less than 10% for
raw

uncooked
vegetables

<200 mM

RUSC1-AS1 is a novel
oncogenic lncRNA in
osteosarcoma through the miR-
101-3p-Notch1-Ras-ERK
pathway, which might be a
potential therapeutic target for
osteosarcoma. Astaxanthin
down-regulates RUSC1-AS1
significantly attenuated the
proliferative, epithelial-
mesenchymal transition
(EMT), growth, lung
metastasis, migrative and
invasive abilities of MG-63 and
Saos-2 cells

Osteosarcoma
MG-63 and Saos-

2 cells
(152–154)

Dihydromyricetin
Leaves

of grossedentata
Poor bioavailability 20.69 µg/mL

Dihydromyricetin effectively
reversed multi-drug resistance
occurring in SGC7901/5-FU
cells cultured in vitro by
downregulating MDR genes.
It also decreased lncRNA
MALAT1 expression which
induces CSCC cell death via
inducing excessive autophagy,
which is mediated through the
MALAT1-TFEB pathway.

SGC7901/5-FU
cells

Cutaneous
squamous cell
carcinoma
(CSCC)

(155, 156)

Cinnamaldehyde

Bark, leaves, and
twigs of various
Cinnamomum

species

The oral
bioavailability of
cinnamaldehyde is

around 20%

9.48 and 9.12 mg/m

cinnamaldehyde increased the
curative effect of oxaliplatin by
promoting apoptosis both in
vitro and in vivo.
Cinnamaldehyde and
oxaliplatin synergistically
reversed hypoxia-induced EMT
and stemness of CRC cells and
suppressed hypoxia-activated
Wnt/b-catenin pathway
synergistically. It inhibits P-
glycoprotein expression
through inhibition of STAT3
and AKT signaling to
overcome drug resistance

Lovo and HT-29
cells

colorectal
cancer (CRC)

(157, 158)
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mahanimbine induced P-gp ATPase activity and decreased cancer

cell resistance (174). Diindolylmethane is a dietary bioactive

compound that modulates the efflux of ABC transporters and

improves the efficacy of Centchroman in breast cancer cells (126).

In addition, in vitro and in vivo studies have shown that betulinic

acid downregulates the expression level of MALAT1 which is

associated with hepatoma-resistant cells. In addition, bharangin is

a natural product with a quinone- methide structure derived from

Pygmacopremna herbacea (175). Studies have shown that bharangin

downregulates the expression of H19 lncRNA in resistant breast

cancer cells. Curcumin also reduces H19 lncRNA expression, which

is associated with resistance in MCF-7 breast cancer cells (175).

Curcumin affects EMT biomarkers, including N-cadherin and E-

cadherin levels. It reduced the levels of N-cadherin and increased

the levels of E-cadherin. In vitro studies have shown that curcumin

decreases renal cancer cell migration and invasion by

downregulating the expression of HOTAIR (124). Resveratrol is

extracted from pistachios, plums, grapes, and berries (176). The

expression level of MALAT1 is increased in resistant colon cancer

cells. Resveratrol decreases colon cancer resistance by

downregulating MALAT1 and mediating the Wnt/b-catenin
signaling pathway. Silibinin decreases the expression of HOTAIR

by modulating the PI3K pathway (177). Therefore, the inhibitory

effect of the natural products was validated by in silico molecular

docking analysis; however, future in vitro and in vivo experiments

are needed to confirm our preliminary docking results.
7 How specific lncRNAs regulate drug
transporters like P-gp

The regulation of P-gp by lncRNAs typically occurs through

various signaling pathways and mechanisms. Here’s a more specific

look at how lncRNAs may regulate P-gp expression and function:
7.1 Transcriptional regulation

Some lncRNAs can regulate the transcription of the ABCB1

gene, which encodes P-gp, through various transcription factors.

LncRNAs may act as scaffolds or guides for transcription factors or

chromatin remodeling complexes to either promote or repress the

expression of ABCB1 [1]. The lncRNA MALAT1 has been reported

to influence the transcriptional regulation of drug resistance genes,

including P-gp, in cancer cells. MALAT1 can interact with specific

transcription factors and chromatin modifiers to enhance the

expression of ABCB1, increasing the efflux of chemotherapeutic

agents and promoting drug resistance [2].
7.2 Epigenetic regulation

lncRNAs can interact with chromatin-modifying complexes

and enzymes to modify the chromatin structure and regulate the

expression of P-gp through epigenetic mechanisms [3, 4]. This
Frontiers in Immunology 11
regulation often involves histone modifications or DNA

methylation patterns at the ABCB1 gene locus. The lncRNA

HOTAIR is known to regulate the expression of P-gp through

epigenetic modifications. HOTAIR interacts with polycomb

repressive complexes to silence genes that may inhibit the

expression of P-gp, potentially increasing its activity in the

context of drug resistance [4].
7.3 miRNA sponging

Many lncRNAs can act as miRNA sponges, sequestering specific

microRNAs (miRNAs) that normally target the ABCB1 gene or its

associated regulatory pathways. By binding to thesemiRNAs, lncRNAs

prevent them from inhibiting the expression of P-gp [1]. The lncRNA

H19 has been shown to sponge miR-675, which could normally

suppress ABCB1 expression. By binding to miR-675, H19 indirectly

promotes P-gp expression and drug resistance in certain cancers [5].
7.4 Interaction with signaling pathways

LncRNAs can modulate multiple signaling pathways, such as

the PI3K/Akt, NF-kB, and MAPK pathways, which are known to

regulate the expression of drug transporters like P-gp [6].
• PI3K/Akt Pathway: LncRNAs such as LncRNA-ATB have

been shown to regulate the PI3K/Akt signaling pathway,

which can enhance the expression of P-gp. This pathway is

involved in cellular responses to stress and can influence

drug transporter activity in cancer cells [7].

• NF-kB Pathway: Some lncRNAs, including LncRNA-

MALAT1, may regulate the NF-kB signaling pathway,

which is involved in inflammation and immune

responses. NF-kB activation can also upregulate P-gp

expression, particularly in the context of inflammation or

drug resistance [8].
7.5 Post-transcriptional regulation

In addition to transcriptional regulation, lncRNAs can also affect

P-gp at the post-transcriptional level. For instance, lncRNAs may

modulate the stability of ABCB1 mRNA or influence its translation

[1]. LncRNAs like TUG1 can regulate the stability of specific mRNAs

through interactions with RNA-binding proteins, influencing the

translation of P-gp and its levels in cells [1, 9].
7.6 Involvement in drug resistance
mechanisms

lncRNAs are implicated in the development of drug resistance

through their ability to modulate drug transporters like P-gp. For
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example, overexpression of certain lncRNAs can lead to increased

P-gp activity, reducing the intracellular concentration of

chemotherapeutic agents and thus contributing to resistance[10].

LncRNA-CCAT2 has been reported to be involved in

chemoresistance by regulating the expression of P-gp. This

lncRNA modulates the cellular response to chemotherapy drugs

and enhances P-gp-mediated drug efflux [11].
8 Computational and preclinical
studies of p-glycoprotein -1 in
chemoresistance cancer cells

In this review, we validate the potential effects of natural

products against p-glycoprotein-1 to understand their association

with cancer cell resistance. To perform molecular docking and

illustrate inhibitor reactions, we used both the Molecular Operating

Environment software (MOE, 2015.10) and BIOVIA Discovery

Studio Visualizer (178). We followed the steps of a previously

reported procedure to illustrate the reactions of inhibitors with

significant amino acids or protein hotspots (178–180). The 3D

structures of the targeted proteins were obtained from the Protein

Data Bank (PDB). As shown in Figure 3, docking of the human P-

glycoprotein in the ATP-bound, outward-facing conformation was

performed using PDB 6C0V for p-glycoprotein -1 inhibitors. The

exact binding site of bioactive compounds is the active site at which
Frontiers in Immunology 12
the co-crystallized ligand binds. All structure minimizations were

conducted until an RMSD gradient of 0.05 kcal··mol−1Å−1 with

MMFF94x force field, and partial charges were automatically

calculated. Furthermore, all water molecules were removed from

the compounds and p-glycoprotein-1 was prepared for docking

using the Protonate 3D protocol in MOE with default parameters.

To calculate both docking and scoring, we employed the triangle

Matcher placement method and London dG scoring function. First,

self-docking of the cocrystallized ligand near the protein- binding

site was performed to ensure the docking protocol steps.

Subsequently, ligand-receptor interactions at the target protein-

binding site for the reported natural products in the active site were

studied using a validated docking protocol (RMSD < 2) to predict

their binding approach and binding affinity. The inhibitory activity

of the tested substances was compared with that of the most potent

p-glycoprotein inhibitor (mifepristone) through computational

analysis. The plausible modes of binding between these

substances and their target binding sites were determined.

Delphinidin 3,5-di(6-acetylglucoside) (docking score: S = -10.0549

kcal/mol) was found to have the most significant inhibitory activity

in the p-glycoprotein-1 inhibitor group (Table 2), with a higher

potency than that of the control (mifepristone) (S = -5.1600 kcal/

mol). Delphinidin 3,5-di (6-acetyl glucoside) interacts with the p-

glycoprotein-1 active site via hydrogen bonds with the LEU 531 H-

donor, GLN535 H-donor, ASP 805 H-donor, ASP 805 H-donor, SER
1077 H-acceptor, and TYR 1044 pi-pi. In addition, asparagoside-f

(docking score: S = -9.0916 kcal/mol) was found to have the 2nd
FIGURE 3

Co-crystallized ligand interacted inside active site.
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TABLE 2 Docking energy scores and amino acids involved in binding for Mifepristone, and the reported natural product inhibitors docked with the Molecular structure of human P-glycoprotein in the ATP-
bound, outward-facing conformation (PDB: 6C0V).
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Name
Amino acids involved

in binding
CDocker energy

(kcal/mol)
2D

Co-crystallized ligand

GLN 1180 (A) H-donor
ASP 164 (A) H-donor
LYS 433 (A) H-acceptor
SER 429 (A) H-acceptor
SER 1177 (A) H-acceptor
GLY 1179 (A) H-acceptor
GLN 475 (A) H-acceptor
GLY 430 (A) H-acceptor
LYS 433 (A) H-acceptor
SER 434 (A) H-acceptor
GLY 432 (A) H-acceptor
SER 434 (A) H-acceptor
THR 435 (A) H-acceptor
THR 435 (A) H-acceptor
GLN 1180 (A) H-acceptor
ARG 404 (A) H-acceptor
ARG 404 (A) H-acceptor
SER 434 (A) H-acceptor
GLN 475 (A) H-acceptor
GLN 475 (A) H-acceptor
SER 434 (A) H-acceptor

LYS 433 (A) ionic
TYR 401 (A) pi-pi

-6.7843

(Standard)
Mifepristone

The most significant p-glycoprotein-
1 inhibitor

TYR 401 pi-pi -5.1600
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Name
in binding (kcal/mol)

2D structure

Baicalin

ALA 529 H-donor
GLN 1081 H-acceptor
ARG 262 H-acceptor

ARG 262 ionic
ARG 262 ionic

-4.5814

Baicalein

ASP 164 H-donor
ASP 164 H-donor

ARG 905 H-acceptor
ARG 905 ionic
ARG 905 ionic
TYR 401 pi-pi

-6.2383

Caflanone
SER 532 pi-H
TYR 1044 pi-pi

-7.0596
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Name
in binding (kcal/mol)

2D s

Cyanidin

ASP 164 H-donor
ARG 404 H-acceptor
ARG 404 H-acceptor

ARG 404 ionic
ARG 404 ionic
TYR 401 pi-pi

-6.4466

Quercetin
GLY 533 H-acceptor

TYR 1044 pi-pi
-7.4963

Rutin

ASP 805 H-donor
LEU 531 H-donor
SER 532 H-acceptor
ARG 262 H-acceptor

GLN 530 pi-H
TYR 1044 pi-pi

-8.2013
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Name
in binding

Digitoxigenin TYR 1044 (A) pi-pi

Curcumin
GLY 430 H-donor
GLN 438 H-acceptor

TYR 401 pi-pi
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highest inhibitory activity within the group, as shown in Table 2.

Furthermore, Quercetin, caflanone, rutin, curcumin, kaempferol,

and kazinol-f had more potent inhibitory effects than the control

(mifepristone) (S = -5.1600 kcal/mol). Based on docking

simulations, it can be concluded that these inhibitors can

effectively inhibit p-glycoprotein-1 and are therefore considered

potent drugs to treat chemoresistance or increase the

responsiveness of cancer toward chemotherapy. Our molecular

docking results represent the first step toward overcoming

chemoresistance. In this context, future in vitro and in vivo,

future experiments are required to confirm our results.
9 Conclusion

Improving cancer cell responsiveness is a significant step

toward enhancing the efficiency of chemotherapeutic drugs.

Resistance to chemotherapy is one of the main causes of

chemotherapeutic failure. P-gp is a membrane transporter that

causes efflux of drugs from cancer cells and results in drug

resistance. Several types of lncRNAs have been identified in

resistant cancer cells, including ODRUL, MALAT1, and ANRIL.

This review discusses the use of natural products as natural

inhibitors of P-gp expression. In silico analysis showed that

Delphinidin and Asparagoside-f are the most significant natural

product inhibitors of p-glycoprotein-1 to overcome resistance. Our

findings could open new hope in minimizing the immorality of

chemoresistance and improving the outcome of several types

of cancers.
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Mendoza-Dıáz SO, Álvarez-Parrilla E, et al. Cyanidin-3-O-glucoside: Physical-chemistry,
foodomics and health effects. Molecules. (2016) 21:1–30. doi: 10.3390/molecules21091264

162. Kitagawa S. Inhibitory effects of polyphenols on p-glycoprotein-mediated
transport. Biol Pharm Bull. (2006) 29:1–6. doi: 10.1248/bpb.29.1

163. Singh K, Patil RB, Patel V, Remenyik J, Hegedűs T, Goda K. Synergistic
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Glossary

EMT Epithelial-to-mesenchymal transition
Frontiers in Immunol
lncRNA Long non-coding RNA
P-gp P-glycoproteins
ABC ATP-binding cassette
MRP1 Multidrug resistance protein 1
MDR1 Multidrug resistance gene 1
CSCs Cancer stem cells
ECM Extracellular matrix
ROS Reactive Oxygen Species
TGF-b Transforming growth factor-beta
PM Plasma membrane
PS Phosphatidylserine
SLC Several transporters named carriers
EGFR Epidermal growth factor receptor
OATP1B3 Solute carrier organic anion transporter family member 1B3
OCT6 Organic cation transporter-6
ERP29 Endoplasmic reticulum protein 29
ID4 Inhibitor Of DNA Binding 4
MGMT Methylated-DNA-protein-cysteine methyltransferase
ETS ETS proto-oncogene 1
PD-L1 Programmed Cell Death Ligand 1
DNMT1 DNA methyltransferase 1
HCC Hepatocellular carcinoma
TGBI Transforming Growth Factor Beta Induced
ER-a Estrogen Receptors Alpha
PEBP4 Phosphatidylethanolamine binding protein 4
RKIP RAF-kinase inhibitor protein
DDR DNA damage repair
ogy 22
MGMT O-6-Methylguanine-DNA Methyltransferase
DNA-PK DNA-dependent protein kinase
DSBs Double-strand break repair machinery
eATP Extracellular ATP
ABCG2 Adenosine triphosphate-binding cassette superfamily G

member 2
MEK1/2 Mitogen-activated protein kinase 1/2
Raf- 1 RAF proto-oncogene
ERK Extracellular signal-regulated kinase '
PDAC ancreatic ductal adenocarcinoma
ODRUL OS doxorubicin resistance-related upregulated lncRNA
HOTTIP HOXA transcript at the distal tip
HOT AIR HOX antisense intergenic RNA
LINC-ROR Long Intergenic Non-Protein Coding RNA, Regulator

of Reprogramming
CCAL Colorectal cancer-associated lncRNA
MALAT1 metastasis-associated lung adenocarcinoma transcript 1
ANRIL Antisense Noncoding RNA in the INK4 Locus
MRUL MDR-related and upregulated lncRNA
EVs Extracellular vesicles
Linc-VLDLR Long intergenic non-coding RNA VLDLR
SGK1 Serum- and Glucocorticoid-Regulated Kinase 1
miRNA microRNAs
XIST X-inactive specific transcript
LINC00518 Long intergenic nonprotein coding RNA 518
BLACAT1 Bladder cancer-associated transcript-1
STAT1 Signal transducers and activators of transcription
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