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Multiple programmed cell
death patterns predict
the prognosis and drug
sensitivity in gastric cancer
Qiying Song †, Shihe Liu †, Di Wu † and Aizhen Cai*

Department of General Surgery, The First Medical Center of Chinese People's Liberation Army
General Hospital, Beijing, China
Background: Gastric cancer (GC) is a malignant tumor with poor prognosis. The

diverse patterns of programmed cell death (PCD) are significantly associated with

the pathogenesis and progression of GC, and it has the potential to serve as

prognostic and drug sensitivity indicators for GC.

Method: The sequencing data and clinical characteristics of GC patients were

downloaded from The Cancer Genome Atlas and GEO databases. LASSO cox

regression method was used to screen feature genes and develop the PCD score

(PCDS). Immune cell infiltration, immune checkpoint expression, Tumor Immune

Dysfunction and Exclusion (TIDE) algorithm and drug sensitivity analysis were

used to explore immunotherapy response. By integrating PCDS with clinical

characteristics, we constructed and validated a nomogram that demonstrated

robust predictive performance.

Results:We screened nine PCD-related genes (SERPINE1, PLPPR4, CDO1, MID2,

NOX4, DYNC1I1, PDK4, MYB, TUBB2A) to create the PCDS. We found that GC

patients with high PCDS experienced significantly poorer prognoses, and PCDS

was identified as an independent prognostic factor. Furthermore, there was a

significant difference in immune profile between high PCDS and low PCDS

groups. Additionally, drug sensitivity analysis indicated that patients with a high

PCDS may exhibit resistance to immunotherapy and standard adjuvant

chemotherapy regimens; however, they may benefit from the FDA-approved

drug Dasatinib.

Conclusion:Overall, we confirmed that the PCDS is a prognostic risk factor and a

valuable predictor of immunotherapy response in GC patients, which provides

new evidence for the potential application of GC.
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Introduction

Gastric cancer (GC) represents the fifth most prevalent

malignancy globally, with its mortality rate ranking fourth among

all malignant tumors worldwide (1). In recent years, the ongoing

advancements in tumor immunotherapy, epitomized by inhibitors

targeting programmed death receptor 1 (PD-1) and its ligand PD-L1,

have demonstrated remarkable efficacy across various solid tumors,

including gastric cancer (2, 3). However, the overall effective rate of

PD-1/PD-L1 inhibitors in the unselected population of solid tumors

is less than 20% (2, 3). Consequently, an imperative need arises to

devise precise and robust models to identify gastric cancer patients

who are susceptible to tumor immunotherapy, thereby enabling

individualized clinical interventions.

Programmed cell death (PCD), also known as regulated cell

death, refers to the self-regulating process in which cells die under

the control of specific genes and the precise coordination of various

mechanisms. The main goal of PCD is to maintain the stability of

the internal cellular environment. According to triggering stress,

morphological characteristics, regulatory signaling pathways and

effector molecules, PCD can be divided into apoptosis, necroptosis,

pyroptosis, ferroptosis, entotic cell death (entosis), netotic cell death

(NETosis), parthanatos, lysosome-dependent cell death (LDCD),

autophagy-dependent cell death (ADCD), alkaliptosis, oxeiptosis,

cuproptosis and paraptosis, immunogenic cell death (ICD) (4, 5).

The activation of apoptosis mainly includes the extrinsic and the

intrinsic pathway (5). Extrinsic apoptosis is mediated by the

activation of plasma membrane-localized death receptors (such as

TNFR1, Fas) by their cognate ligands (such as TNF, FasL) (6).

Intrinsic apoptosis can be activated by BCL-2 family proteins

induced mitochondrial outer membrane permeabilization by

releasing cytochrome c and mediated by caspase-3/7/9 (6).

Necroptosis is a form of death triggered by extracellular stimuli

activating death receptors, which causes phosphorylation of

receptor-interacting protein kinase (RIPK), leading to the

recruitment of mixed lineage kinase domain-like (MLKL),

necroptosis mainly depends on the activation of RIPK1 and

RIPK3 (7). Pyroptosis is triggered by caspase-1-driven cleavage of

the pore-forming protein gasdermin D (GSDMD), then the N-

terminal fragment of GSDME will lead to the formation of cell

membrane pores and thereby induce pyroptosis (8). Ferroptosis is

an iron-dependent form of cell death characterized by the

accumulation of lipid peroxides (9). The process includes iron

accumulation, reactive oxygen species (ROS) activation, reduced

cysteine uptake, depletion of glutathione (GSH), and activation of

the mitogen-activated protein kinase (MAPK) system (10).

Cuproptosis is a newly discovered type. It is related to the

imbalance of intracellular copper metabolism. Excessive copper

directly binds to lipoylated proteins in the tricarboxylic acid

(TCA) cycle of mitochondria, leading to the abnormal

aggregation of lipoylated proteins and the loss of iron-sulfur

cluster proteins in respiratory chain complexes, causing a protein

toxic stress response and ultimately leading to cell death (11).

Entosis is triggered by autophagosomes formed by the cell

membrane engulfing its cytoplasmic proteins or organelles. Its

regulation mainly depends on the mTOR pathway, including
Frontiers in Immunology 02
signal pathways such as PI3K-AKT-mTOR and AMPK-TSC1/2-

mTOR (12). LDCD is mainly achieved through changes in

lysosomal membrane permeability (LMP). When LMP increases,

the release of cathepsin B and cathepsin D in lysosomes will trigger

lysosome-dependent cell death (6). NETosis is a form of regulated

cell death (RCD) driven by neutrophil extracellular trap (NET),

which is regulated by NADPH oxidase-mediated ROS production

and histone citrullination (13). Parthanatos is mediated by poly

(ADP-ribose) polymerase 1 (PARP1), which is caused by DNA

damage. PARP1 hyper-activation stimulates apoptosis-inducing

factor (AIF) nucleus translocation, and accelerates nicotinamide

adenine dinucleotide (NAD+) and adenosine triphosphate (ATP)

depletion, leading to DNA fragmentation (14). Alkaliptosis is a pH-

dependent cell death process triggered by the small molecular

compound JTC801 (15). ADCD, a phagocytic biological process,

can disintegrate damaging proteins or organelles through lysosomal

fusion (16). Oxeiptosis is activated in response to oxidative stress

induced by ROS or ROS-generating agents and characterized by the

activation of the KEAP1/PGAM5/AIFM1 signaling pathway (4).

ICD is triggered by the release of damage-associated molecular

patterns (DAMPs) from dying cells, which can trigger an adaptive

immune response, release antigens, reverse the tumor

immunosuppressive microenvironment, and improve the

sensitivity of immunotherapy (17). Paraptosis is characterized by

the swelling and vacuolization of the endoplasmic reticulum (ER)

and mitochondria, resulting in the formation of large cytoplasmic

vacuoles (4).

Increasing evidence shows that PCD plays a critical role in cancer

initiation and progression (18–23). Cancer cell death has been

confirmed as fundamental in the remodeling of the tumor immune

microenvironment (TIME) (24). For instance, tumor cell fragments

serve as antigens, which are captured, processed, and presented by

conventional dendritic cells (cDCs) (25). Certain types of cell death,

such as necroptosis and pyroptosis, release DAMPs and

inflammatory cytokines due to cell membrane rupture (26).

Conversely, some studies suggested that cell death can also directly

or indirectly cause immunosuppression by recruiting myeloid cells

(such as immunosuppressive macrophage subsets) (27). Considering

the inherent connection between the TIME and the efficacy of

immunotherapy, the recognition and induction of PCD forms to

potentiate the immune response against cancer, particularly in the

context of immune checkpoint inhibitors (ICIs), is of paramount

importance (26). Furthermore, mounting evidence indicates that

cancer patients with varying prognoses often exhibit distinct

differences in TIME and their response to ICIs (28, 29).

In the past few years, many scholars have developed prediction

models with characteristic genes of a single form of PCD, and have

achieved moderate prediction accuracy in predicting cancer

prognosis and drug resistance (30). However, interactions have

been identified within signaling pathways that regulate different

forms of cell death (31). While each form of cell death has its

mechanism, they are not independent individuals and still have

connections with each other (31). For instance, reactive oxygen

species (ROS) is an indispensable component in the process of

ferroptosis and can also participate in apoptosis, autophagy,

necroptosis, and pyroptosis (32, 33). Lysosomal membrane
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permeabilization (LMP) not only participates in lysosome-

dependent cell death but also amplifies cell death signals and

increases the complexity of cell death under the induction of

autophagy, necroptosis, and ferroptosis (16).

Therefore, a prediction model incorporating multiple forms of

PCD may provide a more comprehensive representation of tumor

characteristics compared to a model focusing on a single type. In this

study, we collected 14 PCD pattern-related genes to identify

biomarkers and establish a PCD score (PCDS) signature, aiming to

predict the TIME, prognosis, and responsiveness to immunotherapy

in GC. In the future, this may assist doctors in making individualized

clinical treatment.
Materials and methods

Data collection

The genes associated with PCD were sourced from Molecular

Signature Database (MSigDB), Human Gene Database

(GeneCards), Kyoto encyclopedia of genes and genomes (KEGG),

as well as review articles (4, 34, 35). Ultimately, 14 PCD patterns-

related genes were assembled, including apoptosis (n = 860),

necroptosis (203), pyroptosis (n = 71), ferroptosis (n = 591),

cuproptosis (n = 73), entotic cell death (n = 39), NETosis (n =

85), parthanatos (n = 23), lysosome-dependent Cell Death (n =

220), autophagy-dependent cell death (n = 735), alkaliptosis (n = 7),

oxeiptosis (n = 5), paraptosis (n = 7), immunogenic cell death (ICD)

(n = 34). The genes of different PCD patterns overlap to some

extent. Eventually, 2250 different genes were included in this study

(See Supplementary Table 1).

For the training dataset, transcriptomic profiles along with

corresponding clinical data were obtained for 412 GC patients

and 36 control subjects from The Cancer Genome Atlas (TCGA)

STAD database. For the validation cohorts, 433 GC patients in the

GSE8443 and 357 GC patients in the GSE84433 which were

generated on the GPL960 platform in the Gene Expression

Omnibus (GEO) were retrieved.
Identification and enrichment analysis of
differentially expressed genes

The original transcriptome count data of 412 GC patients from

TCGA-GC and 36 normal tissues in the TCGA cohort were compared.

Then, the “limma”, “DEseq2”, and “edgR” packages were used to

screen out differentially expressed genes (DEGs) related to PCD with

the screening criteria were FDR < 0.05 and |log2FC| ≥ 1 (36).

Considering the analysis error caused by using any of “Deseq2”,

“limma”, or “edgR” separately, the intersection of their outputs

utilized for subsequent analyses (37). And the “clusterProfiler”

package in R software was used to evaluate possible biological

pathways of PCD related DEGs (38). To investigate the somatic

mutation data within GC patients, the “maftools” package was

applied (39). Copy number variation (CNV) of PCD-related genes

was assessed using GISTICS 2.0, with values above 0.2 considered as
Frontiers in Immunology 03
“gain” and values below -0.2 considered as “losses”. The different

characteristics of PCD-related genes were shown in the circus diagram.
Construction and validation of the
multi-gene PCDS signature

385 GC patients in TCGA cohorts with survival data were used

for further analysis. A univariate Cox regression analysis was

performed to select genes with potentially significant prognostic

value (P<0.05). Subsequently, the least absolute shrinkage and

selection operator (LASSO) Cox regression method was applied

to determine the candidate genes for constructing the optimal

signature utilizing the “glmnet” package. Finally, the PCDS for

each patient was then calculated using the following formula:

PCDS=∑biGenei. bi represents the risk coefficients, and Genei

denotes the expression of each gene. Based on the median PCDS

as cutoff value, we divided patients into low and high PCDS groups.

Kaplan Meier analysis was used to investigate the relationship

between overall survival (OS) and PCDS using “survival” and

“survminer” packages. Finally, the GSE84437 cohort with 357 GC

patients and GSE84433 cohort with 433 GC patients were served as

external validation cohorts to substantiate the predictive capability

of the PCDS. The clinical information of three cohorts were

presented in Supplementary Table 2.
Pathways and function enrichment analysis

The “clusterProfiler” R package was used to perform gene set

enrichment analysis (GSEA) (c2.cp.kegg_legacy.v2023.2.

Hs.symbols.gmt) based on transcriptomic data. As indicated in

the official literature of GSEA, results with P<0.05 and FDR<0.25

are considered statistically significant (40). Based on somatic

mutation data, tumor mutation burden (TMB) between the high

and low PCDS groups were compared using the “maftools” package.
Tumor immune microenvironment analysis
and prediction of immunotherapy response

We analyzed the correlation between PCDS and immune

modulators. The CIBERSORT, MCPcounter, QUANTISEQ,

XCELL, CIBERSORT-ABS, TIMER, and EPIC algorithms were

used to analyze the immunological characteristics of the two

groups (TIMER, http://timer.cistrome.org/). Furthermore, stromal

score, immune score, tumor purity, and ESTIMATE score were

calculated using the ESTIMATE algorithm (41). As for the

prediction of drug sensitivity response, we estimated the half

maximal inhibitory concentration (IC50) values based on drug

sensitivity data of GC obtained from Genomics of Drug

Sensitivity in Cancer (GDSC). Drug sensitivity was predicted by

the “oncoPredict” package (42). Additionally, the prediction of

immune therapy response between PCDS groups was performed

using the tumor immune dysfunction and exclusion (TIDE)

algorithm (http://tide.dfci.harvard.edu/) (43). single-cell RNA
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sequencing (scRNA-seq) data was collected from GSE183904,

which included 25 GC samples and 10 normal gastric tissue

samples, and analyzed with “Seurat V4” R package. Risk score

was computed by the average risk score of all cells in the sample,

and then divided into risk groups by median.
Establishment and application of
prognostic characteristics for
PCDS signature

Incorporating clinical characteristics, such as age, gender, and

the T, N, and M stages, alongside PCDS, an innovative prognostic

nomogram was formulated using multivariate Cox and stepwise

regression analyses. Calibration plots were employed to assess the

model’s efficacy. Additionally, Receiver Operating Characteristic

(ROC) analysis was performed utilizing the “timeROC” package.
Immunohistochemical analysis

IHC analysis uses the principle of specific antigen-antibody

binding to detect and locate target antigens in cells and tissues,

mainly with light microscopy. Human Protein Atlas (HPA)

database (http://www.proteinatlas.org/) was utilized to implement

IHC analysis for key gene expression in GC and normal gastric

tissues (44).
Statistical analysis

Version 4.3.0 of the R software was used for conducting all

statistical analyses. Student t-test or Wilcoxon test was used to

analyze the differences between the two groups. Kaplan-Meier

curves with log-rank tests were used to evaluate the survival. A

two-side significance level of P<0.05 is considered significant.
Results

Firstly, characteristic gene sets of 14 forms of PCD including

apoptosis, necroptosis, pyroptosis, ferroptosis, cuproptosis, entosis,

NETosis, parthanatos, LDCD, ADCD, alkaliptosis, oxeiptosis,

paraptosis, and ICD were collected. The TCGA-STAD database

was selected as the training cohort, while the GSE84437 and

GSE84433 databases served as the validation cohorts for the

prognostic prediction model.

Integration of the results generated from these three methods

identified 239 DEGs (FDR q value < 0.05, |log2FC| > 1), comprising

97 upregulated and 142 downregulated genes between tumor and

normal samples (Figure 1A, Supplementary Table 3). The heatmap

of DEGs was shown in Figure 1B. Besides, Kyoto Encyclopedia of

Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment

analysis revealed that these PCD-related DEGs were involved in

multiple biological pathways such as regulation of IL-17, JAK-
Frontiers in Immunology 04
STAT and p53 signaling pathways, etc (Figures 1C, D).

Additionally, we assessed the mutations for PCD-related genes,

revealing that approximately 93.17% (409/439) of GC patients

exhibited mutations, predominantly missense mutations

(Figure 1E). Notably, among the top 20 mutated PCD-related

genes, TNN and TP53 exhibited mutation frequencies

exceeding 30%. Analysis of CNV status indicated that PCD-

related genes frequently underwent alterations. It was noted that

the CNV deletion of SLC25A4 was the most extensive, while

the copy number amplification of GSDMC was the most

significant (Figure 1F).
Prognostic gene signature construction
with PCD‐related genes

Survival information of GC patients was collected and subjected

to further analysis. Univariate Cox regression analysis was used to

screen prognostic-related genes. A total of 80 genes in the TCGA

cohort, 74 genes in the GSE84437 cohort, and 59 genes in the

GSE84433 reached the cutoff value of P < 0.05 (Supplementary

Tables 4–6). The intersection of the TCGA and GSE84437

contained 37 genes (See Supplementary Figure 1). Then LASSO-

Cox regression analysis was applied to further screen the above 37

prognosis-related genes, and the optimal penalty parameter (lambda

value l = 0.028) was selected. Nine genes were screened out, namely:

SERPINE1, PLPPR4, CDO1, MID2, NOX4, DYNC1I1, PDK4, MYB,

TUBB2A, as shown in Figures 2A, B. SERPINE was linked to both

apoptosis and cuproptosis. Meanwhile, 4 genes (CDO1, NOX4,

PDK4, MYB) were associated with ferroptosis, and 3 genes (MID2,

DYNC1I1, TUBB2A) were related to autophagy. Kaplan-Meier

analysis revealed that each model gene significantly impacts OS for

GC patients (P < 0.05, Supplementary Figure 2). PCDS were

calculated based on the expression level of each gene and the

corresponding correlation Coefficient. The PCDS = 0.1606

*SERPINE1 + 0.0708 *PLPPR4* + 0.0271 * CDO1 + 0.0165*

NOX4 + 0.0129 * MID2 + 0.0643 *DYNC1I1 + 0.0242 *PDK4

-0.0522 *MYB + 0.0513 *TUBB2A). The PCDS were significantly

associated with survival status (alive or dead) and clinical stage (I-IV)

(Figures 2C, D). According to the median PCDS value of 2.174, we

divided the GC patients in the TCGA cohort into high and low PCDS

groups. Prognostic comparison between the groups revealed that

individuals with high PCDS exhibited poorer outcomes than those

with low PCDS, and the PCA heatmap demonstrated satisfactory

classification based on PCDS Figure 2E). There was a significant

difference in OS between the two groups, the high PCDS group

exhibited a higher mortality rate (P < 0.05, Figure 2G). The area

under the ROC (AUC) values of the PCDS predicting the OS of GC

patients at 1 year, 3 years and 5 years were 0.652, 0.688, and 0.663,

respectively (Figure 2F). Similarly, for the validation cohorts, patients

were stratified into high and low PCDS groups based on the median

PCDS values of 2.153 for GSE84437 and 2.167 for GSE84433,

respectively. Furthermore, comparable robust prognostic

performance was observed in the independent cohorts GSE84437

and GSE84433. (Supplementary Figure 3).
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Landscape of the tumor
immune microenvironment

Increasing evidence indicates that PCDS has a significant impact

on the activation of certain anti-tumor immune responses. In this

study, we analyzed the composition of the TIME between the

PCDS groups. The correlation between PCDS values and

immunomodulators in GC patients was analyzed, revealing that

higher PCDS values was associated with a higher expression of

immune checkpoint-related molecules, indicating an immune

regulatory imbalance with high PCDS values (Figure 3A). In the

ESTIMATE algorithm, we observed a positive correlation between
Frontiers in Immunology 05
PCDS and the stromal score, immune score, and ESTIMATE score,

and a statistically significant negative correlation between PCDS and

tumor purity, indicating that PCDS can effectively predict the

infiltration levels of stromal cells and immune cells in GC tissues

(Figure 3B). To confirm this hypothesis, we obtained the abundance

of stromal and immune infiltration estimated by algorithms such

as CIBERSORT, CIBERSORT-ABS, EPIC, ESTIMATE,

MCPCOUNTER, QUANTISEQ, TIMER, and XCELL from the

TIMER (http://timer.cistrome.org/) for verification. The results

showed that PCDS was positively proportional to the infiltration

abundance of stromal cells and immune cells, especially

macrophages, Tregs, cancer-associated fibroblasts (CAFs),
FIGURE 1

Variant landscape of PCD-related DEGs in GC patients. (A) Venn diagram representing PCD-related DEGs between GC and normal tissues.
(B) Heatmap of the PCD-related DEGs between GC and normal tissues. (C) GO enrichment analyses based on the PCD-related DEGs. (D) KEGG
enrichment analyses based on the PCD-related DEGs. (E) An oncoplot of PCD-related DEGs in the TCGA cohort. (F) CNV values of PCD-related
DEGs in the TCGA cohort.
frontiersin.org

http://timer.cistrome.org/
https://doi.org/10.3389/fimmu.2025.1511453
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Song et al. 10.3389/fimmu.2025.1511453
endothelial cells, etc. (Figure 3C). Similar results were also observed

in validation cohorts (GSE84437 and GSE84433) (Supplementary

Figure 4). For further evaluating the effect of the signature on TME,

we collected scRNA-seq data from GSE183904 datasets, and

clustered subpopulations, and identified marker genes in each cell

subtype (Supplementary Figures 5A, D). We calculated the PCDS

for each sample based on scRNA-seq data (Supplementary

Figures 5B, C). Samples were divided into two groups (high and
Frontiers in Immunology 06
low) according to median PCDS. And the proportion of each cell

subtype in high and low PCDS groups revealed an increase in

mononuclear phagocytes and plasma cells infiltration in the high

PCDS group (Supplementary Figure 5E). We further sub-grouped

the mononuclear phagocytes subtypes and found high proportion

of M2 macrophages cells in the high PCDS group, which may

suggest that the high PCDS group is correlated with a higher degree

of malignancy (Supplementary Figures 5F–H).
FIGURE 2

Construction and validation of PCDS signature for GC patients. (A) Selection of the model genes by LASSO. (B) Cross-validation of the constructed
signature. (C) Violin plots of the relationship between PCDS and survival status. (D)Violin plots of the relationship between PCDS and clinical stage.
(E) Distribution of PCDS, survival status and time, heatmap of PCDS including 9 genes in TCGA cohorts. (F) Kaplan–Meier curves of PCDS predicting
the OS of patients in TCGA cohorts. (G) Time dependent ROC analysis of the PCDS predicting the OS of patients in TCGA cohorts. **** means P <
0.0001; ** means P < 0.01; * means P < 0.05; ns means not significant
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Genetic characteristics of different
PCDS groups

Utilizing single nucleotide variant (SNV) data sourced from

TCGA-STAD, we compared the variations in TMB between PCDS

cohorts. According to the results, we can conclude that the

mutation frequency of various genes was higher in the low PCDS
Frontiers in Immunology 07
group compared to the high PCDS group, such as TTN, LRP1B,

CSMD3 and SYNE1 (Figure 4A, Supplementary Table 7). The

results indicated that the TMB in the low PCDS group was

substantially higher than in the high PCDS group (Figure 4B).

TMB exhibited a negative correlation with PCDS, with a correlation

coefficient of -0.34 (Figure 4D). Additionally, survival analysis

revealed that the prognosis for the high TMB group was
FIGURE 3

Dissection of TIME based on PCDS signature. (A) Bar plot of the correlation between immunomodulators and the PCDS in GC patients. (B) Association
between PCDS and tumor microenvironment by Estimate algorithms. (C) Association between PCDS and stromal and immune infiltration estimations by
TIMER, CIBERSORT, quanTIseq, xCell, MCP-counter and EPIC algorithms. **** means P < 0.0001; *** means P < 0.001; ** means P < 0.01; * means P < 0.05.
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significantly superior to that of the low TMB group (Figure 4C). In

the high PCDS group, pathways associated with cancer invasion

and metastasis, such as wnt/beta-catenin and cell adhesion

molecules, were markedly activated, while pathways involved in

DNA damage repair were significantly down-regulated (Figure 4E).
Drug sensitivity analysis between
PCDS groups

We further investigated the relationship between PCDS and drug

sensitivity by comparing the IC50 values of various drugs across PCDS

groups. As illustrated in Figures 5A, B, IC50 values of most drugs,
Frontiers in Immunology 08
including traditional chemotherapy regiments such as Cisplatin,

Oxaliplatin, and Docetaxel, showed a positive correlation with

PCDS, indicating that patients with high PCDS were generally

insensitive to them. Conversely, six drugs—NU7441, AZD8055,

Dasatinib, JAK_8517, BMS-754807, and JQ1—exhibited a

significantly negative correlation with PCDS, suggesting potential

efficacy in patients with high PCDS. Furthermore, an evaluation of

the TIDE scores for each GC patient revealed a marked increase in

scores within the high PCDS group, implying poor efficacy of ICIs

therapy (Figure 5C). Additionally, regarding immunotherapy

response, PCDS values were lower in the response group, indicating

that patients with low PCDS might derive greater benefit from

immunotherapy, whereas those with high PCDS may not (Figure 5C).
FIGURE 4

Characteristics of different PCDS groups. (A) Genetic mutation landscape in the high- and low PCDS groups. (B) Association between TMB and
PCDS. (C) Kaplan–Meier survival analysis between TMB groups. (D) The correlation between the TMB and PCDS in GC patients. (E) Representative
KEGG pathways upregulated in the high and low PCDS groups. **** means P <0.0001.
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Establishment and assessment of the
nomogram survival model

Univariate and multivariate Cox regression analyses were

conducted to assess whether PCDS serves as an independent

prognostic indicator. The univariate Cox regression analysis revealed

that, compared with other characteristics, PCDS was a significant risk

factor (HR=3.31, 95% CI 2.00-5.48, P < 0.001, Figure 6A). After
Frontiers in Immunology 09
adjusting for confounding factors, the multivariate analysis confirmed

that PCDS remained an independent prognostic factor for GC patients

(HR =3.57, 95% CI 2.10-6.08, P < 0.001, Figure 6B). Then, a nomogram

model was established in the TCGA cohort using multivariate Cox and

stepwise regression analyses to estimate 1-year, 3-year, and 5-year OS.

Age, TNM stage, and PCDS were incorporated into the nomogram

model (Figure 6C). Delong’s test demonstrated that the C-index value of

the nomogram (0.653, 95% CI: 0.608-0.698) was significantly higher
FIGURE 5

Efficacy of PCDS signature in predicting drug sensitivity. (A) Bubble plot of the relationship between drugs, PCDS, and model genes. (B) The
comparison of IC50 of drugs between high and low PCDS groups, and correlation between the IC50 and PCDS in GC patients. (C) The comparison
of TIDE score between high and low PCDS groups, and correlation between the TIDE score and PCDS values in GC patients. *** means P < 0.0001;
**** means P < 0.0001.
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than that of the TNM stage (0.574, 95% CI:0.525–0.623)

(Supplementary Table 8, P < 0.05). The calibration curve showed the

nomogram’s satisfactory accuracy in predicting 1-year, 3-year, and 5-

year OS (Figure 6D). According to the nomogram score, there was a

significant difference in OS between the high and low nomogram score

groups (Figure 6E). Furthermore, ROC curve analysis revealed that the

AUC values of the nomogram for prognostic performance of GC

patients at 1 year, 3 years, and 5 years were 0.676, 0.749, and 0.812,

respectively (Figure 6F). And the findings also demonstrated that the

nomogram exhibited higher prognostic accuracy than traditional TNM

stage, PCDS, and age alone (Supplementary Figure 7). Additionally,

external validation in the GSE844437 and GSE84433 cohorts further

confirmed its satisfactory performance (Supplementary Figures 6, 7).
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Immunohistochemical analysis

We further validated the expression of PCDS-related genes in

gastric cancer and normal tissues using IHC. SERPINE1 and MYB

expressions were lower in normal gastric tissues than in gastric

cancers, while PDK4 and TUBB2A were higher in normal tissues

compared to GC patients (Supplementary Figure 8). CDO1 protein

expression was not detected in gastric cancers. Information on

PLPPR4, NOX4, MID2, and DYNC1I1 expression in GC was

unavailable in the HPA database. However, studies indicate that

NOX4, MID2, and DYNC1I1 are significantly elevated in GC

tissues or other cancers compared to normal tissues, as

determined by immunohistochemistry (45–47).
FIGURE 6

Construction and assessment of the nomogram survival model. (A, B) Univariate and multivariate analysis of PCDS and the clinicopathologic
characteristics. (C) A nomogram was established to predict the prognostic of GBM patients. (D) The calibration curve of the nomogram in TCGA
cohort. (E) Kaplan-Meier analyses for the two groups based on the nomogram score in in TCGA cohort. (F) Receiver operator characteristic (ROC)
analysis of nomogram in TCGA cohorts.
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Discussion

This investigation presents an extensive preliminary analysis of

14 different PCD patterns in GC. The study involved the construction

of a PCDS signature within the TCGA-STAD cohort, subsequently

validated by the GSE84437 and GSE84433 cohorts, affirming its

robust efficacy. A nomogram model incorporating clinical

characteristics and PCDS was developed, yielding promising

outcomes for predicting OS for GC patients. Furthermore, the

study examined potential associations between PCDS and TIME

via various methodologies, suggesting implications for

immunotherapy strategies in GC. Additionally, the correlation

between PCDS and drug responsiveness was assessed, revealing

that patients with a high PCDS may exhibit resistance to

immunotherapy and standard adjuvant chemotherapy regimens;

however, they may benefit from drugs such as NU7441, AZD8055,

Dasatinib, JAK-, BMS-754807, and JQ1, with “Dasatinib” being an

FDA-approved medication. The development of this comprehensive

PCDS signature enhances the understanding of the intricate

biological processes underlying GC. It provides a valuable tool for

evaluating the prognosis of GC patients and guiding treatment

decisions. Integrating PCDS into prognostic models offers

promising prospects for personalized medicine, enabling the

development of tailored treatment strategies for individual patients.

According to reports, SERPINE promotes malignant

progression and correlates with poor prognosis in GC (48). Teng

et al. found that the NKX2-1-AS1/miR-145-5p axis induces

SERPINE1 translation, thus activating the VEGFR-2 signaling

pathway to promote tumor progression and angiogenesis in GC

(49). PLPPR4, also named LPPR4, Zhang et al. found that LPPR4

could promote the migration, invasion and adhesion of GC cells to

facilitate peritoneal metastasis through the Sp1/integrin a/FAK
pathway (50). CDO1 possesses functionally oncogenic aspects

through modification of mitochondrial membrane potential (51).

Mouse experiments have revealed that inhibiting CDO1 production

facilitates ferroptosis by increasing oxidative stress and inhibiting

GPX4 production (52). Harada et al.’s study suggested that

abnormal CDO1 expression in GC may indicate distant

metastatic ability (53). Current investigations into the mechanistic

role of MID2 in GC remain limited. Nonetheless, MID2 inhibition

could largely abrogate MORC4-induced drug resistance to

adriamycin, 5-fluorouracil, and cisplatin in breast cancer (54).

Abnormal NOX4 expression results in the production of ROS,

contributing to various oncogenic processes (55). Tang et al. found

that NOX4 promotes GC cell growth and apoptosis through the

generation of ROS and subsequent activation of GLI1 signaling

(56). DYNC1I1, as an important binding subunit of cytoplasmic

dynein, primarily participates in cell cycle regulation (57). Gong

et al. revealed that DYNC1I1 could upregulate IL-6 expression by

increasing NF-kB nuclear translocation, and then trigger the

DYNC1I1-driven IL-6/STAT pathway to promote GC

proliferation and migration (47). High PDK4 expression is closely

related to poor prognosis, and might participate in the proliferation,

migration and invasion of GC cells by modulating the glycolysis

level in GC cells (58). Miao et al. discovered that miR-5683

represses GC glycolysis and progression through targeting PDK4
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(59). Furthermore, high MYB expression is positively associated

with activated CD4+ T cell infiltration and poor prognosis in GC

(60). Yan et al. demonstrated that SNHG3 binds and sequesters

miR-139-5p, which can indirectly promote the upregulation of the

miR-139-5p target gene MYB and drive the proliferation,

migration, and invasion in GC (61). Additionally, high TUBB2A

expression is linked to reduced immune cell infiltration and poor

prognosis in triple-negative breast cancer (62).

According to prior research, the tumor microenvironment plays

crucial roles in tumor initiation, progression, metastasis, and

response to therapies. Moreover, tumor cells can survive because

the tumor microenvironment allows them to evade immune

surveillance and drug interference (63, 64). In this study, PCDS

was correlated with the infiltration abundance of stromal and

immune cells, notably M2 macrophages, Tregs, CAFs, and

endothelial cells. Among these, M2 macrophages, also referred to

as tumor-associated macrophages, facilitate tumor progression by

fostering cancer invasion and metastasis , promoting

neovascularization, and contributing to the development of an

immunosuppressive TME (65). Endothelial cells mainly provide

nutrition for tumor development. By responding to angiogenic

factors such as VEGF, they promote new blood vessel formation

and provide oxygen and nutrition for tumors, and playing a key role

in the angiogenesis of gastric cancer (66). CAFs induce hypoxia in the

tumor microenvironment, leading to ECM hardening and

degradation, which in turn affects tumor cell proliferation,

migration and invasion as well as angiogenesis (67). Tregs can be

divided into two types: natural regulatory T cells (nTregs) and

induced regulatory T cells (iTregs) (68). nTregs originate from the

thymus and play a role in mediating immune tolerance through

transcription factors such as nuclear factor kB (NF-kB), while iTregs
develop in the peripheral environment and are stimulated by

inhib i tory cytokines IL-2 and TGF-b in the tumor

microenvironment, which in turn helps GC cells evade immune

surveillance (69). Tregs regulate immune cell activity in the tumor

microenvironment, suppressing cytotoxic T and natural killer cells,

reducing immune responses, enabling tumor cells to evade immune

surveillance, and fostering a tumor growth-permissive environment

(70). Increasing evidence indicates that high TMB can send signals to

activate immune responses, thereby making tumors more sensitive to

immunotherapy (71). GC patients with high TMB exhibit superior

OS compared to those with low TMB (72). These findings align with

our results. Our results showed that TMB was significantly negatively

correlated with PCDS. In terms of molecular pathways, compared

with the low PCDS group, cancer-related pathways such as Wnt/

beta-catenin and cell adhesion molecules were overactivated in the

high PCDS group. Therefore, immunotherapy may be an effective

treatment approach for patients with low PCDS, while those with

high PCDS may not benefit as much.

Drug sensitivity analysis indicates that GC patients with high

PCDS may exhibit resistance to immunotherapy and standard

adjuvant chemotherapy regimen. Notably, PCDS showed a

significant negative correlation with the IC50 values of NU7441,

AZD8055, dasatinib, JAK-8517, BMS-754807, and JQ1, implying

these drugs may have potential benefits for GC patients with high

PCDS. BMS-754807, a selective IGF-1R inhibitor, exhibits potent
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inhibitory effects on GC cells (73). Another study also demonstrated

the activation of the IGF1/IGF1R pathway in mesenchymal gastric

tumors, which showed sensitivity to another selective IGF-1R

inhibitor, Linsitinib (OSI-906) (74). Likewise, mTOR inhibitors

such as 2,6-DMBQ (AZD8055) have also been previously

reported for their inhibitory efficacy in GC (75). AZD8055

inhibits the phosphorylation of mTORC1 substrates p70S6K and

4E-BP1 as well as phosphorylation of the mTORC2 substrate AKT

and downstream proteins, thereby leading to tumor growth

inhibition (76). Dasatinib plays a synergistic role with oxaliplatin

in inhibiting gastric cancer cell growth both in vitro and in vivo, via

inhibiting Src activity stimulated by oxaliplatin (77). Wang Shi et al.

found dasatinib also showed potential in sensitizing cancer cells to

cisplatin, and the PI3K/AKT pathway was involved in the anti-

cancer effect of dasatinib or combined with cisplatin (78). In

addition, dasatinib is FDA-approved drug. BET protein inhibitor

JQ1 downregulates chromatin accessibility and suppresses

metastasis of gastric cancer via inactivating RUNX2/NID1

signaling (79). Furthermore, JQ1 augments the antitumor efficacy

of abemaciclib (ABE) in preclinical models of gastric carcinoma.

Mechanistically, the combination of ABE and JQ1 enhances the cell

cycle arrest of GC cells and induces unique characteristics of cellular

senescence through the induction of DNA damage (80). NU7441, a

DNA−PKcs inhibitor, increases the sensitivity of GC cells to

radiotherapy (81). This inhibitor increases the sensitivity of

radioresistant BGC823 and MGC803 cells to radiotherapy

through the cleaved−caspase3/gH2AX signaling pathway, thus

presenting a potential treatment method for GC (81). JAK_8517

is a small molecule inhibitor that targets Janus kinase (JAK), which

is involved in cell signaling. Thus, GC patients with high PCDS

patients may benefit from the above six candidate drugs, especially

the FDA-approved drug dasatinib.

Although our model has demonstrated excellent performance in

both the training and validation cohorts, it is important to

acknowledge certain limitations. First, retrospective recruitment of

patients may introduce some inherent biases to a certain extent.

Second, more experiments are needed. Therefore, additional

validation through high-quality, multicenter randomized controlled

trials with sufficient sample sizes and adequate follow-up is necessary.
Conclusion

In conclusion, through a comprehensive analysis of 14 PCD

pattern-related genes, a new PCDS signature has been established.

This innovative signature accurately predicts the prognosis and

drug sensitivity of GC. The findings indicated that PCDS can serve

as a valuable tool for evaluating the prognosis and guiding

immunotherapy treatment decisions for GC patients.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding author.
Frontiers in Immunology 12
Author contributions

QS: Investigation, Methodology, Software, Writing – original draft,

Writing – review & editing. SL: Data curation, Formal Analysis,

Resources, Validation, Visualization, Writing – original draft. DW:

Writing – review & editing, Visualization. AC: Funding acquisition,

Project administration, Supervision, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This

research was funded by Natural Science Foundation of China

(Number: 82474306).
Acknowledgments

We express our gratitude to all authors who contributed

invaluable methods and data, making them publicly available.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

constructed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fimmu.2025.

1511453/full#supplementary-material
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1511453/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1511453/full#supplementary-material
https://doi.org/10.3389/fimmu.2025.1511453
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Song et al. 10.3389/fimmu.2025.1511453
References
1. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer
statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. (2024) 74:229–63. doi: 10.3322/caac.21834

2. Brahmer JR, Tykodi SS, Chow LQM, Hwu W-J, Topalian SL, Hwu P, et al. Safety
and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med.
(2012) 366:2455–65. doi: 10.1056/NEJMoa1200694

3. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al.
Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med.
(2012) 366:2443–54. doi: 10.1056/NEJMoa1200690

4. Park W, Wei S, Kim B-S, Kim B, Bae S-J, Chae YC, et al. Diversity and complexity
of cell death: a historical review. ExpMol Med. (2023) 55:1573–94. doi: 10.1038/s12276-
023-01078-x

5. Tang D, Kang R, Berghe TV, Vandenabeele P, Kroemer G. The molecular
machinery of regulated cell death. Cell Res. (2019) 29:347–64. doi: 10.1038/s41422-
019-0164-5

6. Yuan J, Ofengeim D. A guide to cell death pathways. Nat Rev Mol Cell Biol. (2024)
25:379–95. doi: 10.1038/s41580-023-00689-6

7. Wang Y, Ma H, Huang J, Yao Z, Yu J, Zhang W, et al. Discovery of bardoxolone
derivatives as novel orally active necroptosis inhibitors. Eur J Med Chem. (2021)
212:113030. doi: 10.1016/j.ejmech.2020.113030

8. Yang F, Bettadapura SN, Smeltzer MS, Zhu H, Wang S. Pyroptosis and
pyroptosis-inducing cancer drugs. Acta Pharmacol Sin. (2022) 43:2462–73.
doi: 10.1038/s41401-022-00887-6

9. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al.
Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. (2012) 149:1060–
72. doi: 10.1016/j.cell.2012.03.042

10. Zhang X, Huang Z, Xie Z, Chen Y, Zheng Z, Wei X, et al. Homocysteine induces
oxidative stress and ferroptosis of nucleus pulposus via enhancing methylation of
GPX4. Free Radic Biol Med. (2020) 160:552–65. doi: 10.1016/j.freeradbiomed.
2020.08.029

11. Chen L, Min J, Wang F. Copper homeostasis and cuproptosis in health and
disease. Signal Transduct Target Ther. (2022) 7:378. doi: 10.1038/s41392-022-01229-y

12. Rong L, Li Z, Leng X, Li H, Ma Y, Chen Y, et al. Salidroside induces apoptosis
and protective autophagy in human gastric cancer AGS cells through the PI3K/Akt/
mTOR pathway. BioMed Pharmacother Biomedecine Pharmacother. (2020)
122:109726. doi: 10.1016/j.biopha.2019.109726

13. Vorobjeva NV, Chernyak BV. NETosis: molecular mechanisms, role in
physiology and pathology. Biochem Biokhimiia. (2020) 85:1178–90. doi: 10.1134/
S0006297920100065

14. Huang P, Chen G, Jin W, Mao K, Wan H, He Y. Molecular mechanisms of
parthanatos and its role in diverse diseases. Int J Mol Sci. (2022) 23:7292. doi: 10.3390/
ijms23137292

15. Chen F, Kang R, Liu J, Tang D. Mechanisms of alkaliptosis. Front Cell Dev Biol.
(2023) 11:1213995. doi: 10.3389/fcell.2023.1213995

16. Peng F, Liao M, Qin R, Zhu S, Peng C, Fu L, et al. Regulated cell death (RCD) in
cancer: key pathways and targeted therapies. Signal Transduct Target Ther. (2022)
7:286. doi: 10.1038/s41392-022-01110-y

17. Li Z, Lai X, Fu S, Ren L, Cai H, Zhang H, et al. Immunogenic cell death activates
the tumor immune microenvironment to boost the immunotherapy efficiency. Adv Sci
Weinh Baden-Wurtt Ger. (2022) 9:e2201734. doi: 10.1002/advs.202201734

18. Abulaiti A, Maimaiti A, Yiming N, Fu Q, Li S, Li Y, et al. Retraction Note:
Molecular subtypes based on PANoptosis-related genes and tumor microenvironment
infiltration characteristics in lower-grade glioma. Funct Integr Genomics. (2024) 24:88.
doi: 10.1007/s10142-024-01374-3

19. Zhou Y, Zhang W, Wang B, Wang P, Li D, Cao T, et al. Mitochondria-targeted
photodynamic therapy triggers GSDME-mediated pyroptosis and sensitizes anti-PD-1
therapy in colorectal cancer. J Immunother Cancer. (2024) 12:e008054. doi: 10.1136/
jitc-2023-008054

20. Zhu H, Guan Y, Wang W, Liu X, Wang S, Zheng R, et al. Reniformin A
suppresses non-small cell lung cancer progression by inducing TLR4/NLRP3/caspase-
1/GSDMD-dependent pyroptosis. Int Immunopharmacol. (2024) 133:112068.
doi: 10.1016/j.intimp.2024.112068

21. Zhao T, Yu Z. Modified Gexia-Zhuyu Tang inhibits gastric cancer progression
by restoring gut microbiota and regulating pyroptosis. Cancer Cell Int. (2024) 24:21.
doi: 10.1186/s12935-024-03215-6

22. Xia X, Wang X, Cheng Z, Qin W, Lei L, Jiang J, et al. The role of pyroptosis in
cancer: pro-cancer or pro-”host”? Cell Death Dis. (2019) 10:650. doi: 10.1038/s41419-
019-1883-8

23. Zhou C-B, Fang J-Y. The role of pyroptosis in gastrointestinal cancer and
immune responses to intestinal microbial infection. Biochim Biophys Acta Rev Cancer.
(2019) 1872:1–10. doi: 10.1016/j.bbcan.2019.05.001

24. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle.
Immunity. (2013) 39:1–10. doi: 10.1016/j.immuni.2013.07.012
Frontiers in Immunology 13
25. Cao K, Zhu J, Lu M, Zhang J, Yang Y, Ling X, et al. Analysis of multiple
programmed cell death-related prognostic genes and functional validations of
necroptosis-associated genes in oesophageal squamous cell carcinoma. EBioMedicine.
(2024) 99:104920. doi: 10.1016/j.ebiom.2023.104920

26. Hänggi K, Ruffell B. Cell death, therapeutics, and the immune response in
cancer. Trends Cancer. (2023) 9:381–96. doi: 10.1016/j.trecan.2023.02.001

27. Zhang Y, Chen H, Mo H, Hu X, Gao R, Zhao Y, et al. Single-cell analyses reveal
key immune cell subsets associated with response to PD-L1 blockade in triple-
negative breast cancer. Cancer Cell. (2021) 39:1578–1593.e8. doi: 10.1016/
j.ccell.2021.09.010

28. Thomas AM, Fidelle M, Routy B, Kroemer G, Wargo JA, Segata N, et al. Gut
OncoMicrobiome Signatures (GOMS) as next-generation biomarkers for cancer
immunotherapy. Nat Rev Clin Oncol. (2023) 20:583–603. doi: 10.1038/s41571-023-
00785-8

29. Wang Y, Zhang D, Li Y, Wu Y, Ma H, Jiang X, et al. Constructing a novel
signature and predicting the immune landscape of colon cancer using N6-
methylandenosine-related lncRNAs. Front Genet. (2023) 14:906346. doi: 10.3389/
fgene.2023.906346

30. Liu J, Lu Y, Dai Y, Shen Y, Zeng C, Liu X, et al. A comprehensive analysis and
validation of cuproptosis-associated genes across cancers: Overall survival, the tumor
microenvironment, stemness scores, and drug sensitivity. Front Genet. (2022)
13:939956. doi: 10.3389/fgene.2022.939956

31. Gao J, Xiong A, Liu J, Li X, Wang J, Zhang L, et al. PANoptosis: bridging
apoptosis, pyroptosis, and necroptosis in cancer progression and treatment. Cancer
Gene Ther. (2024) 31:970-83. doi: 10.1038/s41417-024-00765-9

32. Su L-J, Zhang J-H, Gomez H, Murugan R, Hong X, Xu D, et al. Reactive oxygen
species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med
Cell Longev. (2019) 2019:5080843. doi: 10.1155/2019/5080843

33. Zhou B, Zhang J-Y, Liu X-S, Chen H-Z, Ai Y-L, Cheng K, et al. Tom20 senses
iron-activated ROS signaling to promote melanoma cell pyroptosis. Cell Res. (2018)
28:1171–85. doi: 10.1038/s41422-018-0090-y

34. Zou Y, Xie J, Zheng S, Liu W, Tang Y, Tian W, et al. Leveraging diverse cell-
death patterns to predict the prognosis and drug sensitivity of triple-negative breast
cancer patients after surgery. Int J Surg Lond Engl. (2022) 107:106936. doi: 10.1016/
j.ijsu.2022.106936

35. Wang X, Wu S, Liu F, Ke D, Wang X, Pan D, et al. An immunogenic cell death-
related classification predicts prognosis and response to immunotherapy in head and
neck squamous cell carcinoma. Front Immunol. (2021) 12:781466. doi: 10.3389/
fimmu.2021.781466

36. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers
differential expression analyses for RNA-sequencing and microarray studies. Nucleic
Acids Res. (2015) 43:e47. doi: 10.1093/nar/gkv007

37. Stupnikov A, McInerney CE, Savage KI, McIntosh SA, Emmert-Streib F,
Kennedy R, et al. Robustness of differential gene expression analysis of RNA-seq.
Comput Struct Biotechnol J. (2021) 19:3470–81. doi: 10.1016/j.csbj.2021.05.040

38. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: A universal
enrichment tool for interpreting omics data. Innov Camb Mass. (2021) 2:100141.
doi: 10.1016/j.xinn.2021.100141

39. Mayakonda A, Lin D-C, Assenov Y, Plass C, Koeffler HP. Maftools: efficient and
comprehensive analysis of somatic variants in cancer. Genome Res. (2018) 28:1747–56.
doi: 10.1101/gr.239244.118

40. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA,
et al. Gene set enrichment analysis: a knowledge-based approach for interpreting
genome-wide expression profiles. Proc Natl Acad Sci U.S.A. (2005) 102:15545–50.
doi: 10.1073/pnas.0506580102

41. Yoshihara K, Shahmoradgoli M, Martıńez E, Vegesna R, Kim H, Torres-Garcia
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