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divergent prognoses
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and SiJun Li1,2*
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College, Nanchong, China, 2Department of Clinical Medicine, North Sichuan Medical College,
Nanchong, China
Background: Laryngeal cancer (LCA) is the second most common type of head

and neck malignancy, characterized by high recurrence rates and poor overall

survival (OS). However, progress in curing LCA through molecular-targeted

diagnostics and therapies is slow and limited. The occurrence and progression

of cancer are closely associated with metabolic reprogramming. Therefore, this

study aimed to identify metabolism-related LCA subtypes through a

comprehensive analysis of transcriptomic, mutational, methylation, and single-

cell RNA sequencing, in hopes of finding factors which influences the prognosis

of LCA.

Methods: First, to identify metabolism-related LCA subtypes, data from 114

patients with LCA from The Cancer Genome Atlas (TCGA) dataset were

collected for an unsupervised clustering analysis, which focused on the

expression characteristics of survival-related metabolic genes. Subsequently,

prognostic and diagnostic models have been developed using machine

learning techniques. Specifically, the prognostic model utilized the least

absolute shrinkage and selection operator (LASSO) Cox regression, whereas

the diagnostic model was built using the Random Forest (RF) algorithm.

Furthermore, to ensure the reproducibility, the results of the subtypes and

models were validated using three independent bulk RNA datasets and a

scRNA-seq dataset.

Results: Two robust subtypes were identified and independently validated. Each

subtype has a distinct prognostic outcomes and molecular features. Specifically,

the LCA1 subtype exhibited better prognosis, enriched metabolic pathways, and

higher mutation frequencies. Notably, significant damaging mutations in the

methyltransferases NSD1 were observed in this subtype. In contrast, the LCA2

subtype was associated with poorer prognosis, higher immune infiltration, and

elevated methylation levels. Moreover, in LCA2 tumors, higher levels of T cell/

APC co-inhibition and inhibitory checkpoints were observed. In addition, the

diagnostic model demonstrated strong performance, achieving an area under

the curve (AUC) values of 1.000 in the training group and 0.947 in the validation

group. The prognostic model effectively predicted patient outcomes, with the

RiskScore emerging as an independent prognostic factor.
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Conclusion: This study offers new perspectives for patient stratification and

presents opportunities for therapeutic development in LCA. Furthermore, we

explored the potentials of several key tumor markers for both diagnosis and

prognosis prediction.
KEYWORDS
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1 Introduction

As the second most common head and neck malignancy,

Laryngeal cancer (LCA) accounted for over 184,615 new cases

and approximately 99,840 deaths globally in 2020 (1). Although

medical diagnostic and treatment methods are continuously

evolving, the diagnosis of LCA still relies primarily on endoscopic

and pathological examinations (2). LCA treatment typically

involves surgery combined with radiotherapy and chemotherapy

(3). Cetuximab, Pembrolizumab, and Nivolumab have been used in

patients with LCA, particularly in cases of recurrence and

metastasis (4–6). Endoscopic techniques such as transoral laser

microsurgery (TLM) and transoral robotic surgery (TORS) are

increasingly being employed for the effective removal of suitable

early-stage LCA (7). However, owing to the concealed nature of the

laryngeal site and the lack of early diagnostic methods, LCA is

always diagnosed at advanced stages (III-IV) (8). This late diagnosis

limits the patients’ therapeutic options and significantly affects their

quality of life. Numerous studies have increasingly focused on

exploring the molecular biomarkers of LCA, however, despite the

identification of some potential molecular targets such as TLSs,

NOTCH1, and BMP2, new effective therapeutic targets for LCA

have not yet been confirmed (9–11). Hence, it is crucial to identify

early diagnostic markers and explore the molecular mechanisms

which affect the prognosis of LCA.

The metabolic processes of malignant tumors were different from

those of normal tissues, because they require higher and faster

amounts of materials to support the proliferation of tumor cells.
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Consequently, tumor cells tend to undergometabolic reprogramming

to meet these elevated demands (12, 13). Because of such differences

between malignant tumors and normal tissues, it is possible to

explore targeted therapies against the metabolic dependence of

tumor cells. According to some scholars, several anti-tumor

pathways targeting metabolic enzymes have been identified,

including: 5-fluorouracil, Capecitabine, Pemetrexed, and Raltitrexed

targeting to Thymidylate synthase (TS); Methotrexate, Pemetrexed

targeting to Dihydrofolate reductase (DHFR); Pemetrexed targeting

to Glycinamide ribonucleotide formyltransferase (GARFT), et al.

(14). In addition, many studies have employed multi-omics

strategies for metabolic subtype classification. Yuan et al. revealed

the metabolic heterogeneity associated withHER2 in gastric cancer in

response to immunotherapy and neoadjuvant chemotherapy (15).

Similarly, Li et al. employed a multi-omics analysis to reveal TAM2-

related glycolysis and pyruvate metabolism remodeling in pancreatic

cancer (16). Hepatocellular carcinoma was classified into three

metabolic subclasses: C1, C2, and C3 (17). Similarly, uterine corpus

endometrial carcinoma is classified into two types, C1 and C2 (18).

However, the metabolism-related molecular characteristics of LCA

remained unreported.

In this study, we utilized unsupervised clustering analysis to

categorize LCA into two distinct subtypes based on metabolism-

related gene expression profiles for the first time. The

reproducibility of the two subtypes was confirmed using two

independent datasets. Moreover, each subtype features by

different somatic alterations, immune infiltration profiles, DNA

methylation patterns, metabolic features, and clinical outcomes. We

further developed diagnostic and prognostic models by employing

the Random Forest (RF) and least absolute shrinkage and selection

operator (LASSO) Cox regression methods.
2 Materials and methods

2.1 Data source

The data used in this study was primarily obtained from two

public databases. RNA-seq data, clinical information, DNA

methylation data, and DNA mutation data from 114 LCA

samples and 12 matched normal mucosal samples were
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downloaded from The Cancer Genome Atlas (TCGA, available at

http://cancergenome.nih.gov). This dataset was employed to

identify of LCA subtypes, and the construction of diagnostic and

prognostic models. Additionally, a single-cell RNA sequencing

dataset (GSE252490) (19) and three bulk RNA sequencing

datasets (GSE130605 (20), GSE27020 (21), GSE142083 (22) were

acquired from National Center for Biotechnology Information’s

Gene Expression Omnibus (GEO, accessible at https://

www.ncbi.nlm.nih.gov/geo). These datasets were used to validate

the reliability and generalizability of the findings. Specifically,

GSE130605, which included 50 LCA tissue samples and 50

matched normal tissue samples, was used to validate the

metabolic subtype results. GSE27020, containing 109 LCA

samples, was used for both metabolic subtype validation and

prognostic risk model validation. GSE142083, comprising 53 LCA

samples and 53 matched normal samples, was employed to validate

the diagnostic prediction models. GSE252490 consists of three LCA

samples with lymph node metastasis and was used to validate

metabolic subtypes, diagnostic prediction models, and prognostic

risk assessment models at the single-cell level.
2.2 Discovery and confirmation of subtypes
related to metabolism

The previous 2752 genes associated with metabolism were

collected for further analysis (23). First, by selecting genes with

high median absolute deviation values (MAD > 0.5) in the

expression profiles of the TCGA dataset, we obtained 1534 genes.

Using COX regression analysis of survival in the TCGA cohort with

the R package “survival”, genes significantly associated with prognosis

were identified (P < 0.05). These genes across all patients were then

utilized for consensus clustering analysis with the R package

“ConsensusClusterPlus” (24, 25). To identify robust clusters, the

cumulative distribution function (CDF) and consensus heatmap

were applied to choose the optimal K. Consequently, the TCGA

dataset samples were divided into two subtypes, designated as LCA1

and LCA2. Next, by using the R package “DESeq2” (26), differential

gene expression analysis was conducted between the two subtypes.

Genes with an absolute |log2 fold change (FC)| > 0.5 and an adjusted

P-value < 0.05 were considered potential candidate genes. Finally, the

same consensus clustering analysis was performed on datasets

GSE130605 and GSE27020 using the same candidate genes to

validate metabolism-associated subtypes in other cohorts.
2.3 Immunoinfiltration analysis

Single-sample GSEA (ssGSEA) was applied to estimate the

relative fraction of 13 immune-related functions and 23 immune

cells between the two subtypes by using the “Gene Set Variation

Analysis (GSVA)” package (27). We assessed the infiltration of

immune components, stromal components, and tumor components

using the ESTIMATE algorithm, which provided the ImmuneScore,
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StromalScore, ESTIMATEScore, and TumorPurity (28).

Additionally, we compared the expression levels of several

immune checkpoint genes between the two subtypes (29).
2.4 Calculation of gene signatures related
to metabolism

A total of 114 metabolism-relevant pathways were gathered

from previously published research (17, 27). The R package

“GSVA” (27) was used to quantify the enrichment degree of

metabolism-relevant signatures for each sample. Gene Ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) (30)

enrichment analyses were applied to the highly expressed

metabolism-relevant genes of the two subtypes, respectively.
2.5 Characterization of mutations

Mutation annotation format (MAF) files for LCA were

downloaded from the TCGA and processed by the “maftools” R

package. Besides, mutation information was also analyzed by using

the “maftools” R package (31) between the two subtypes.
2.6 Differences in DNA methylation
between the subtypes

To explore the epigenetic differences between the two subtypes,

methylation data for LCA was downloaded from the TCGA

database. Differentially methylated CpG sites were identified by

using the “limma” R package (32). Then, 1471 CpG probes were

considered as the most differentially methylated sites between the

two subtypes (Absolute |log2 fold change (FC)| > 0.25 and Adjusted

P-value < 0.01). In order to better explore the epigenetic differences,

GO enrichment analysis (30) was applied to the highly methylated

genes of the two subtypes, respectively.
2.7 Identification of metabolism-associated
diagnosis model for LCA

To explore a robust diagnostic model, we initially identified

differentially expressed genes between tumor and normal samples

from the TCGA dataset by using the R package “DESeq2” (26). By

applying the stringent criteria of absolute |log2 fold change (FC)| >

2 and an adjusted P-value < 0.01, we successfully identified 293

differentially expressed genes. Subsequently, using the R package

“randomForest” (33), we developed a diagnostic model to

distinguish tumor tissues from normal tissues. A Nomogram (34)

was generated to facilitate clinical application by using the top six

significant genes which were identified in the random forest model,

by employing the R package “rmda”. Then, the R package “ROC”

was used to evaluate the prediction accuracy of the Nomogram.
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Furthermore, decision curve analysis (35) was conducted to assess

the clinical utility of the diagnostic model by using the R package

“rmda”. For external validation, we used an independent GEO

dataset (GSE142083, n = 106) to validate the performance and

robustness of the diagnostic model.
2.8 Identification of metabolism-associated
genes prognosis model

To construct a metabolism-related prognosis model, the 56 final

metabolism-related genes were incorporated into LASSO Cox

regression analyses. Kaplan-Meier (KM) curves were constructed

to compare the survival differences between the high- and low-risk

score groups (36). To estimate the model’s predictive accuracy, the

package “ROC” was used to assess the area under the curve (AUC)

values of ROC curves for survival state and 1-, 3-, and 5-year

survival rates. The RiskScore and other clinical parameters

predictions of the 5-year survival rate in the TCGA dataset were

also assessed by using ROC curves. Univariate and multivariate Cox

regression analyses of clinicopathological features were further

conducted to evaluate whether the RiskScore was an independent

predictive factor. The GEO dataset (GSE27020, n = 109) was used

for validation. TheWilcoxon test was used to analyze the differences

in prognostic signature genes’ expression and RiskScore

distribution between the two subtypes. ssGSEA was applied to

estimate the relative fraction of 13 immune-related functions and

23 immune cells by using the “GSVA” package (27). OncoPredict

was used to estimate differences in drug sensitivity between the two

groups using the R package “oncoPredict” (37, 38).
2.9 Single-cell analysis further validated
the subtypes, diagnostic models and
prognostic models

To analyze the single-cell RNA sequencing from the GEO

database (GSE252490) for laryngeal squamous cell carcinoma

(LSCC), we used the packages including “Seurat” and “SingleR”

(39) to carry on standard quality control procedures including

“PercentageFeatureSet”, “NormalizeData”, “HarmonyIntegration”,

“RunPCA”, “FindNeighbors”, “FindClusters”, “RunUMAP”, and

“FindAllMarkers” functions. Besides, we used the “SingleR”

package and the existing markers from the previous studies (19)

to distinguish the cell types. Copy number variation (CNV) scores

for epithelial cells were calculated using the “CopyKat” package

(40), with B cells as the reference. To understand the biological roles

of marker genes within each cluster of malignant epithelial cells, we

utilized the “clusterProfiler” and “org.Hs.eg.db” software packages.

Additionally, we investigated the developmental paths of various

malignant epithelial cell categories using the Monocle2 algorithm

(41). Furthermore, we employed the “AddModuleScore” (42) to

compute scores related to subtypes, diagnostic model, and

prognostic model, which were based on the mean expression

levels of genes.
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2.10 Statistical analysis

All statistical analyses were performed using R software (version

4.3.2 and version 4.4.0). The Wilcoxon test was used to analyze the

differences among groups. Survival data were analyzed using the KM

curves. In particular, P < 0.05 was considered to be statistically significant.
3 Results

3.1 Two distinct tumor subtypes in LCA
were identified by Consensus clustering

To investigate the metabolic heterogeneity in LCA, we collected

2752 metabolism-related genes from previous studies for clustering

analysis (22). The workflow of this study is illustrated in Figure 1.

Initially, we adopted four study methods: MAD > 0.5, univariate

COX regression analysis of survival, consensus clustering analysis,

and differential expression analysis of the two subtypes. This

process yielded 56 genes and two metabolism-related subtypes

including LCA1 and LCA2 (Figure 2A, Supplementary Figure S1).

Principal component analysis (PCA) was performed to assess the

composition of the two subtypes and confirm the stable expression

differences between the two subtypes (Figure 2B). Survival analysis

revealed that the prognosis of LCA1 was significantly better than

that of LCA2 (P<0.001) (Figure 2C), whereas the clinical

characteristics of the two subtypes did not show any significant

differences (Supplementary Table S1). Finally, we validated the

reproducibility of the two subtypes in the two independent

datasets including GSE130605 and GSE27020. We identified

similar metabolism-related molecular subtypes of LCA in both

the GSE130605 (Figures 3A–C; Supplementary Figure S2), and

the GSE27020 datasets (Figures 3D–F, Supplementary Figure S3)

by performing consensus clustering analysis of the final candidate

genes and conducting PCA on the entire transcriptome data.
3.2 Metabolic profiling of the two subtypes
showed significant differences

We further investigated the metabolic characteristics of the two

subtypes. Initially, the GSVAmethod was used to calculate the scores of

114 metabolic related pathways’ scores. LCA1 exhibited 44 specific

metabolic signatures, while LCA2 had nine (Figure 4A; Supplementary

Table S2). Then, this study applied differentially expressed gene (DEGs)

analysis to analyze the 2752 metabolism-related genes, and 143 highly

expressed genes in LCA1 and 194 in LCA2 were identified (Absolute |

log2 fold change (FC)| > 1 and Adjusted P-value < 0.05). Both KEGG

pathway and GO functional enrichment analyses were used to analyze

the highly expressed genes in the two subtypes, respectively

(Figures 4B, C; Supplementary Figure S4A). Finally, the results of the

enrichment analyses indicated that LCA1 had higher levels of

metabolism processes compared with LCA2, which were related to

amino acids, lipids, and vitamins. In contrast, LCA2 tumors showed
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few enrichments of metabolic signatures such as glycosylation, which

indicated their lower metabolic activities.
3.3 LCA2 showed a higher degree of
immune infiltration

It is well established that the amino acid metabolism

reprogramming in tumors plays a critical role in controlling the
Frontiers in Immunology 05
differentiation and function of immune cells (43). To explore the

differences in immune infiltration between LCA1 and LCA2, we

calculated the ImmuneScore, StromalScore, ESTIMATEScore, and

TumorPurity by using the ESTIMATE algorithm. Consequently,

LCA2 had a higher StromalScore and ESTIMATEScore, whereas

LCA1 had a higher TumorPurity (Figure 5A). Then, the result of

“ssGSEA” analysis showed higher scores for the three immune-

related functions and 11 immune cells in LCA2 (Figures 5B, C).

Additionally, because T cell and natural killer cell inhibition are
FIGURE 1

Flow chart of this work.
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known to be important mechanisms for immune escape in cancer,

we continued to explore the different expression levels of various

immune checkpoint genes between the two subtypes. Consequently,

several checkpoint genes showed higher expression levels in LCA2,

which indicated that a higher level of immunosuppression was

observed in this group of LCA2 (Figure 5D).
3.4 Nonsense mutations of NSD1 and
genome-wide hypomethylation occurred
in the LCA1

The tumoral genomic landscape has been shown to correlated

with antitumor immunity. To investigate whether differences exist in

somatic mutation frequencies and patterns between the two subtypes,

we compared the somatic variations of the two subtypes and found a

higher tumor mutation burden in LCA1. In addition, the genes with

high mutation frequencies in each subtype are shown in Figures 6A,

B. Consequently, we found that 11 genes were shared between the

two subtypes, whereas each subtype had nine unique high-frequency

mutated genes. Notably, the mutation frequency of the histone

methyltransferase NSD1(69%) in LCA1 was much higher than that

in LCA2. However, in terms of variant and SNV classification, the two

metabolism-related subtypes showed similar trends (Figures 6C, D).
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The histone methyltransferase NSD1 is strongly associated with

DNA methylation. To further investigate the methylation differences

between the two subtypes, we examined the different methylated CpG

sites in the TCGA cohort. A total of 1471 CpG probes were

significantly differentially methylated between the subtypes

(Absolute |log2 fold change (FC)| > 0.25 and Adjusted P-value <

0.01) (Figure 7A). Genes with methylation changes in LCA1 were

highly enriched in calcium-dependent cysteine-type endopeptidase

activity, negative regulation of neuronal differentiation, Fc-gamma

receptor signaling pathway, and aggresome. Differentially methylated

genes in LCA2 were highly enriched in hormone secretion, hormone

transport, regulation of the G protein-coupled receptor signaling

pathway, regulation of hormone secretion, and DNA-binding

transcription activator activity. (Figure 7B).
3.5 The diagnostic panel, which was
derived from machine learning, exhibited
an excellent performance

To develop a robust diagnostic panel, we first identified 273

metabolic genes with significant differential expression between

tumor and normal samples through DEGs analysis in the TCGA

cohort (Absolute |log2 fold change (FC)| > 2 and Adjusted P-value <
FIGURE 2

Metabolism-related genes’ profile of LCA defined two subtypes in TCGA cohort. (A) Heatmap showed that two metabolic subtypes were defined in
TCGA cohort. 56 final candidate genes were shown. Patients were arranged based on the subtypes. Clinical information was also annotated for each
patient. (B) Principal component analysis (PCA) was applied between the two subtypes among the whole transcriptome data. (C) The result of
Kaplan-Meier curves indicated that the overall survival time were significantly different between the two subtypes in the TCGA dataset. P value was
calculated by the log-rank test between the two subtypes.
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0.01) (Figure 8A, Supplementary Table S3). Then, machine learning

was used to develop a model to predict the clinical status in this study.

The random forest model was trained using minimum error regression

trees, and the six most essential genes were selected to discriminate the

tumor from normal samples (Figures 8B, C). Next, a nomogram was
Frontiers in Immunology 07
developed for clinical use using logistic regression analysis (Figure 8D).

To further investigate the characteristics of our diagnostic model, we

examined the distribution of the model genes in the TCGA samples

and the independent dataset GSE142083. The heatmap demonstrated

substantial expression differences in the model genes between the
FIGURE 3

Repeatability verification in other two independent datasets, GSE130605 and GSE27020. (A, D) Heatmaps showed that two metabolic subtypes were
defined in the GSE130605 and the GSE27020 cohorts, respectively. Clinical information was also annotated for each patient. (B) Consensus matrix
clustered patients of GSE130605 dataset into 2 clusters. (C, E) Principal component analyses (PCA) were applied between the two subtypes by using
the whole transcriptome data in both GSE130605 and GSE27020 cohorts. (F) The result of Kaplan-Meier curves indicated that the disease-free
survival (DFS) was significantly different between the two subtypes in the GSE27020. P value is calculated by the log-rank test between subtypes.
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tumor and normal samples (Figures 8E, F). In order to validate the

performance of the diagnostic panel, we calculated the predicted scores

of each sample. ROC analysis showed an AUCs of 1 for TCGA and

0.947 for GSE142083, indicating that the model had an excellent

diagnostic predictive value (Figures 8G, J). We also observed

significant differences in the predictive scores between tumor and

normal samples (Figures 8I, L). Decision Curve Analysis (DCA) plots

also confirmed the predictive superiority of our diagnostic model in

both TCGA and GSE142083 datasets (Figures 8H, K).
Frontiers in Immunology 08
3.6 The metabolic prognostic model
accurately predicted the outcomes of
patients with LCA

As a precise prognosis could enable precise intervention in

tumors and help in the clinical treatment of patients, we also

attempted to develop a machine-learning-derived prognostic

model. First, using the LASSO regression algorithm and

multivariate COX regression analysis, we selected ten essential
FIGURE 4

Association between the acquired metabolic subtypes and metabolism-relevant signatures. (A) Heatmap showed the differential enrichments of 114
metabolism-related pathways in the TCGA cohorts (the pathways of P < 0.05 were shown in the heatmap, by Wilcon rank-sum test). (B, C) The
result of KEGG enrichment analysis showed the highly expressed metabolism-relevant genes’ profiles of the two subtypes.
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genes, with six acting as protective factors (GPT, CHRNB1,

CYP2D6, PLCH2, ABCF2, and EPHX2) and four as risk factors

(HS3ST2, TPCN2, TRPC1, and PHYHD1) (Figures 9A–C). The

RiskScore formula is shown in the Additional file1, RiskScore

formular. Based on the median of the RiskScore, the TCGA

samples were classified into high- and low-risk groups. Next, the

result of KM analysis revealed significantly longer survival time in

the low-risk group (Figure 9G). To assess the accuracy of our model,

we performed ROC analysis, yielding AUC values of 0.802, 0.912,

and 0.920 for the 1-, 3-, and 5-year survival rates, respectively

(Figure 9D). The results of the comparative analysis indicated that
Frontiers in Immunology 09
the RiskScore had the highest predictive ability for 5-year survival

compared with other clinical parameters (Figure 9F). Moreover, the

clinical characteristics did not show significant differences between

the two groups, implying that the prognostic model was actually an

independent factor for prognosis prediction (Supplementary Table

S4). In addition, we used the independent dataset GSE27020 from

GEO to validate the model. However, owing to the lack of

expression data for TPCN2 and PHYHD1, the RiskScores for

GSE27020 were not perfectly verified for repeatability. However,

the results of the KM analysis still showed significant differences in

disease-free survival (DFS) between the groups (Figure 9H).
FIGURE 5

Tumor immune infiltration differences of the two subtypes in TCGA cohort. (A) Immune components, stromal components and tumor components
were counted by ESTIMATE algorithm, while tumor mutation burden (TMB) was counted by using the R package ‘maftools’. (B) Box plot compared
the differences of 13 immune-related functions and 28 immune cells between the two subtypes by using the “GSVA” package. (C) Heatmap showed
the differences of immune-related cells in the two subtypes. (D) Box plot compared the 11 immune checkpoint genes’ expression between the two
subtypes. (*P < 0.05, **P < 0.01, ***P < 0.001, Wilcon rank-sum test).
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Furthermore, ROC analysis for GSE27020 yielded AUC values of

0.649, 0.694, and 0.776 for the 1-, 3-, and 5-year progression-free

survival rates, respectively (Figure 9E).

To better investigate the characteristics of our prognostic

model, we examined the distribution of the RiskScore in TCGA

samples (Figures 10A–D). Additionally, univariate and multivariate

Cox regression analyses were performed to assess the prognostic

significance of the variable factors, including sex, age, stage, Tumor

size (T), Nodal status (N), and RiskScore. As a result, Sex, N, and

RiskScore were identified as significant prognostic factors

(Figure 10B, Supplementary Figure S4B). Notably, the distribution

of the RiskScore between the two metabolic subtypes showed
Frontiers in Immunology 10
significant differences in both the TCGA and GSE27020 datasets

(Figures 10E, F).

We also explored the differences in immune cell infiltration

between the high- and low-risk groups. Several conclusions were

drawn. Firstly, the result of ssGSEA analysis indicated that the

scores of 5 immune cell scores and 1 immune-related function were

higher in the high-risk group (Supplementary Figures S5A–C).

Furthermore, correlation analysis between immune cells and the

RiskScore was conducted using TIMER, XCELL, ABS,

CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER, EPIC, and

CIBERSORT, with significant results (P < 0.05) displayed

(Supplementary Figure S5D). Finally, OncoPredict was utilized to
FIGURE 6

Comparison of the DNA mutations between the metabolic subtypes in TCGA cohort. (A, B) Waterfall plots showed the differences in DNA mutations
between the two subtypes. The top 20 genes in terms of the frequency of mutation were shown. (C, D) The variant classifications, variant types and
SNV classes’ summary of two metabolism groups were shown in the plots.
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forecast drug sensitivity in the LCA. Differences in drug sensitivity

differences with P < 0.001 between the two groups were presented in

Supplementary Figure S5E.
3.7 Subtype, diagnostic, and prognostic
related genes were analyzed in the single-
cell sequencing

To explore gene expression related to metabolic subtypes,

diagnostic and prognostic models at the single-cell sequencing

level, we analyzed a single-cell dataset comprising three samples,

GSE142083. After a series of quality control procedures, 16,452 cells

were selected for further analysis. Initially, using an appropriate

resolution, the cells were divided into 14 clusters and annotated

with five cell types (Figure 11A; Supplementary Figure S6A). Marker

genes for the five cell types are shown in (Figures 11B, D). The most

differentially expressed genes in each cell type are shown in

Figure 11C. Next, epithelial-derived cells were extracted for further

analysis. Epithelial-derived cells were classified into six clusters using

an appropriate resolution (Figure 12B). Duplicates were identified

and removed from the six clusters (Supplementary Figures S6B, C).

Furthermore, the “CopyKat” algorithm was then applied to each

sample individually, which classified epithelial-derived cells into

malignant and non-malignant categories (Figures 12A, C). Then,

we examined the distribution of diagnostic model-related genes in

epithelial-derived cells (Figure 12D) and scored these cells by using

the “AddModuleScore” function. Notably, the diagnostic scores for

malignant and non-malignant epithelial cells were significantly

different (Figure 12E).

In addition, malignant epithelial cells (6451 cells) were then

extracted and classified into five clusters using an appropriate

resolution (Figure 13A). Highly expressed genes in the five clusters

were analyzed by using Gene Ontology (GO) enrichment

(Figure 13B). Next, the five clusters were categorized into high (G3

and G4) and low (G0, G1, and G2) variant groups based on CNV

scores, which were obtained from the “CopyKat” algorithm
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(Figure 13C). Furthermore, we also investigated the distribution of

genes related to prognostic risk models in malignant epithelial cells

and scored the malignant epithelial cells to obtain the prognostic

scores by using the ‘AddModuleScore’ function (Supplementary

Figure S6D). The “AddModuleScore” function was used to score

genes associated with subtyping (Supplementary Table S5). Cells were

scored based on the characteristic genes that were highly expressed in

the two subtypes, and subsequently were divided into LCA1 (G2 and

G3) and LCA2 (G0, G1, and G4) groups (Figure 13D). The

relationships between CNV groups and prognostic scores was also

investigated. Significant differences in the prognostic scores were

observed between the high- and low-variant groups (Figure 13F).

Additionally, notable discrepancies in prognostic scores were

observed between the metabolic subtypes (Figure 13G). Finally, a

pseudotime trajectory analysis using “Monocle 2” was performed to

explore the underlying evolution of epithelial cells with diverse CNV

scores and prognostic scores (Figure 13E).
4 Discussion

Currently, the classification of LCA mainly relies on the sites of

its occurrence and the types of pathology, but remains inadequate

for treatment guidance (8). In addition, the lack of diagnostic and

therapeutic biomarkers has led to delayed late-stage diagnosis and

unimproved 5-year survival rates in LCA. To enrich the

classification method, we classified LCA into two subtypes based

on the 56 metabolism-related genes. And we further explored the

differences in clinical and metabolic characteristics, immune

infiltration, DNA mutations, DNA methylation, transcriptional

data, and single-cell data between the two subtypes. In addition,

we established highly reliable diagnostic and prognostic models

using machine learning methods. These findings were validated to

ensure robustness by using three independent bulk RNA datasets

and a single-cell RNA dataset. In conclusion, our findings extended

the molecular subtyping of LCA and deepen our understanding of

metabolic heterogeneity within this tumor.
FIGURE 7

Differences of the DNA methylation between the two subtypes in the TCGA dataset. (A) Heatmap showed the differences of the DNA methylation in
two metabolism subtypes. (B) GO enrichment was used to analyze the highly methylated genes of two subtypes.
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There is a consensus that the metabolic reprogramming of

tumors leads to distinct metabolic profiles compared to normal

tissues (13, 14), however, the metabolism of different tumors and

different sections of the same tumor is also heterogeneous (44).

Moreover, the metabolic preferences of tumors change dynamically

during cancers progression (45). Tumor metabolic heterogeneity is
Frontiers in Immunology 12
a prominent feature of tumor development and has an important

impact on the effectiveness of treatment and prognosis (46). A

previous study demonstrated that metabolic heterogeneity in lung

cancer tissues may lead to tumor progression and drug resistance

(47). In our study, the enrichment of metabolic pathways between

the LCA subtypes also showed heterogeneity; LCA1 was enriched in
FIGURE 8

Machine learning identified a metabolism-associated diagnosis prediction model for LCA. (A) Heatmap showed the differences of metabolism-
related genes’ expressions between normal and tumor in the TCGA cohort (logFC>2, P<0.01). (B) Plots showed the result of the Random-forest
analysis based on the candidate DEGs. (C) Circle plot showed the positions of diagnosis model related genes. (D) A nomogram was developed by
the diagnosis model’s genes. (E, F) Heatmaps showed the diagnosis genes expression between normal and tumor samples in the TCGA dataset and
the GSE142083 dataset. (G, J) The diagnosis model’s accuracies of prediction in the TCGA dataset and the GSE142083 dataset were assessed by the
ROC curves. (H, K) Decision curve analysis confirmed the predictive superiority of the diagnostic model. (I, L) The plots showed the prediction
scores differences between the normal samples and tumor samples.
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the amino acid, lipid, and vitamin pathways, whereas LCA2 was

mainly enriched in glycosylation. Glycosylation has been shown to

promote tumor invasion (48), suggesting that the therapies

targeting glycosylation-related metabolic pathways could be

explored for LCA2. Meanwhile, the degree of metabolic pathway
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abnormality was significantly higher in the LCA2 group. Previous

studies have shown that a high degree of metabolic abnormality

usually leads to a shorter survival time or resistance to anti-tumor

treatments, including chemotherapy, radiotherapy, targeted

therapies, and immunotherapy (49).
FIGURE 9

Identification of metabolic prognosis prediction model for LCA. (A) LASSO regression analysis based on survival time and survival state was applied
among 56 final metabolism-related genes in the TCGA cohort. (B) The result of the Multi-COX regression analysis based on survival time and survival
state was shown in the plot. (C) Circle plot showed the positions of prognosis-model related genes. (D) The ROC curves assessed the ability of the
RiskScore in predicting survival rates at 1, 3 and 5 years in the TCGA dataset. (E) The ROC curves assessed the ability of the RiskScore in predicting
survival rates at 1, 3 and 5 years in the GSE27020 dataset. (F) The predictive abilities of the RiskScore and other clinical parameters at 5-year survival
rate in TCGA dataset were assessed by the ROC curves. (G, H) The results of Kaplan-Meier curves showed huge differences in survival state between
two risk groups in both TCGA dataset and GSE27020 dataset. P value was calculated by the log-rank test between groups.
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Although immunotherapy has been widely adopted for cancer

treatment (50), progress in LCA immunotherapy has been limited.

Some drugs, including cetuximab, pembrolizumab, and nivolumab,

have been just used in combination therapy after surgery for

advanced LCA (7). The analysis of immune infiltration across the

subtypes of LCA1 and LCA2 in our study revealed that the

infiltration of immune cells, ESTIMATE scores, and certain

immune functions (APC_co_inhibition, Parainflammation,

T_cell_co_inhibition) were significantly higher in LCA2. In

addition, multiple immune checkpoint genes (HAVCR2, LAIR1,

PDCD1LG2, BTLA, CD274) were expressed at higher levels in
Frontiers in Immunology 14
LCA2, suggesting that immunotherapy targeting these inhibitory

sites (51) may be effective in this group.

The two subtypes also displayed different patterns of DNA

changes. Notably, as a transcriptional regulatory protein with histone

methyltransferase activity, NSD1 exhibits a markedly higher mutation

frequency in LCA1. Moreover, NSD1 is primarily involved in processes

such as methylation, transcriptional regulation, DNA binding, nuclear

receptor binding, and histone modification. As nonsense mutations

predominated in NSD1 variants within LCA1, the expression of NSD1

appeared to be a significantly reduced in LCA1 (Supplementary Figure

S4C). This may account for the reduced methylation level observed in
FIGURE 10

The prognosis model’s characteristics and its relationships with the subtypes. (A, D) Heatmaps showed the prognosis related genes’ expression among risk-
groups and metabolism subtypes. (B) Forest plot of univariate and multivariate cox regression analysis exhibited the relationship between RiskScore and
overall survival in LCA patients. (C) The plots showed the distribution differences of Riskscore between risk-groups. (E, F) The plots showed the distribution
differences of the RiskScore between the two subtypes in both the TCGA dataset and the GSE27020 dataset. (*P < 0.05, **P < 0.01, ***P < 0.001, Wilcon
rank-sum test).
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LCA1. Similarly, a previous study indicated that inactivating mutations

in NSD1 and NSD2 in LCA are associated with a favorable prognosis

(52). Furthermore, inactivating mutations in NSD1 can inhibit tumor

growth, decrease methylation, and reduce immune infiltration (53, 54).

All these observations are aligned with our observations. Hence,

NSD1 has a great potential as a key molecule in the classification,

prognosis estimation, and targeted treatment of LCA, warranting

further explorations.

Indeed, these two isoforms really showed significant differences

in their methylation levels. Methylation plays a role in gene silencing,

X-chromosome inactivation, and genome stability (55, 56).

Moreover, immune infiltration and function are also closely related

tomethylation levels (57). Up to now, methylation inhibitors are used

to treat certain hematological malignancies. These DNA methylation

inhibitors can mediate alterations in immune cells functions

associated with acquired immunity (58). Typically, cancers exhibit

genome-wide hypomethylation and site-specific hypermethylation,

and the interactions between genome-wide hypomethylation and

site-specific hypermethylation have something to do with the

epigenetic and metabolic reprogramming (59). In the present study,

LCA1 exhibited lower levels of methylation, lower immune

infiltration, and higher metabolic enrichment, which may be
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significantly associated with high-frequency nonsense mutations of

NSD1. Furthermore, the results of the enrichment analysis of

methylated sites also revealed the significant differences between

the two subtypes: LCA2 methylated sites were enriched in DNA

transcription and hormone-related pathways, particularly in insulin

secretion. Hormone secretion and transport have been better

explored in some hormone-dependent tumors, such as breast and

prostate cancers, and hormone therapies have been employed in their

treatment (60, 61). Meanwhile, insulin-related traits are also thought

to be strongly associated with cancer development (62, 63).

Therefore, the relationship between LCA and insulin-related

features requires further investigation.

Patients with LCA often experience a poor quality of life due to

the late-stage diagnosis (8). Thus, there is an urgent need to develop

non-invasive early screening methods to enhance the precision of

medical strategies. Over the past several years, researchers have

utilized machine learning algorithms to uncover the hidden

relationships between multi-omics data and disease conditions, as

well as to develop predictive models (64, 65). In our study, the

diagnostic model we had established by machine learning with six

signature genes could effectively distinguished tumor samples from

normal samples. This model was validated using the independent
FIGURE 11

Grouping and identification of cells in laryngeal cancer tissues. (A) Umap plot showed the distribution of the five types of cells. (B) Bubble plot
showed the marker genes of different cell types. (C) Heatmap showed the relative expression of the top ten most differentially expressed genes in
each cell type. (Epithelial; T cells; Myeloid cells; B cells and Fibroblasts.) (D) Feature plots presented the typical marker genes’ expressions for each
cell type.
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dataset GSE142083 to ensure its generalizability. The results of the

ROC analysis and DCA further confirmed the predictive superiority

of the diagnostic model, demonstrating its high clinical utility. On

the other hand, the prognostic model with 10 signature genes

established by machine learning could effectively predict the

prognosis of LCA and was validated using an independent

dataset. Previous studies, such as those using GPT and SMS as

prognostic risk models (AUC=0.748, 0.823, and 0.781 for 1-, 3-, and

5-year survival, respectively) (66), and a study using TMEM2,

DACT1, STMN2, GPR173 as prognostic risk models (AUC=0.814,
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0.859, and 0.782 for 1-, 3-, and 5-year survival, respectively) (67)

also established risk models for LCA. Compared to their models,

our model (AUC=0.802, 0.912, and 0.920 for 1-, 3-, and 5-year

survival, respectively) showed relatively better predictive accuracy.

In the future studies, clinical participants and the improved

machine learning algorithms should be utilized to further validate

and refine the two models for clinical transformation.

Single-cell sequencing analysis has opened a new era in the

exploration of the tumor cell heterogeneity and the tumor

microenvironment infiltration, and has been applied to explore
FIGURE 12

Diagnostic related genes expressions’ analysis based on single-cell sequencing. (A) Chromosomal landscape of CNVs distinguished malignant
epithelial-derived cells from non-malignant epithelial-derived cells in different samples. The references were B cells; chromosomal amplifications
were shown in red and deletions in blue. (B) Umap plots showed the distribution of the seven epithelia-derived cell subclusters. (C) Umap plots
showed the distribution of the malignant epithelia -derived cell and the non-malignant epithelia-derived cells. (D) Feature plots presented the
diagnosis related genes’ expressions for epithelial-derived cells. (E) The diagnosis scores’ distribution between the malignant epithelia-derived cell
and the non-malignant epithelia-derived cells showed huge differences. (*P < 0.05, **P < 0.01, ***P < 0.001, Wilcon rank-sum test).
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cell heterogeneity, immune microenvironment, and drug resistance

mechanisms of various types of malignancies (68, 69). In this study,

we used scRNA-seq analyses to validate the expression of genes

related to metabolic subtypes as well as diagnostic, and prognostic

models. The “copycat” was used to distinguish malignant from non-

malignant epithelial cells and to obtain CNV scores. Diagnostic

scores were calculated for all epithelial-derived cells and were

significantly higher for malignant epithelial-derived cells.

Malignant epithelial cells were classified into LCA1 and LCA2

groups based on the results of the metabolic subtype-related gene

analysis. Prognostic risk scores were calculated for malignant cells.

It was found that significantly higher prognostic scores were

observed in the LCA2 group. These findings were consistent with
Frontiers in Immunology 17
the results observed in the bulk RNA datasets, which further

confirmed the robustness of the metabolic subtypes as well as the

diagnostic and prognostic models.

This study had several limitations. First, the large number of

subtype-determining genes, along with their associated high costs,

poses a challenge for clinical applicability. Second, although we

included a substantial number of patients from both the microarray

and RNA-seq platforms, which suggests that our conclusions may

be highly reliable and robust without platform bias, the outcomes

still require further validation in a prospective study owing to the

retrospective nature of the current research. Third, additional

experimental studies and validation of the signatures of clinical

specimens are necessary for future researches.
FIGURE 13

Prognostic related genes expressions’ analysis based on single-cell sequencing. (A) Location distribution of different types of malignant cells was shown in
umap. (B) GO analysis results showed pathway activation differences among the five cell subclusters. (C) Umap and box plots showed the distribution of the
low-cnv cells and the high-cnv cells. (D) Umap and box plots showed the distribution of the LCA1 cells and the LCA2 cells. (E) Pseudotime analyses of
malignant epithelia-derived cells. (F, G) The prognostic scores’ distribution between both the cnv groups and the two subtypes showed huge differences. (*P
< 0.05, **P < 0.01, ***P < 0.001, Wilcon rank-sum test).
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5 Conclusions

In conclusion, metabolic reprogramming significantly influences

tumor growth, progression, and the tumor microenvironment.

Despite growing attention to therapeutic approaches targeting

tumor metabolism, the diversity and heterogeneity of tumor

metabolism pose challenges to metabolic therapy. A comprehensive

exploration of metabolic pathways and mechanisms across various

tumors is essential to advance metabolic therapies. In this study, we

subtyped LCA based on metabolic factors and examined immune

infiltration, DNA mutations, methylation, and single-cell data, which

laid the foundation for future subclassifications in diagnosis and

treatment. Using machine learning, we developedmetabolism-related

diagnostic and prognostic models with excellent performances. Our

work enhances the understanding of patients with LCA

classifications, facilitating the development of LCA early detection

and shedding light on the precision treatments of LCA.
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