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The role of B2M in cancer
immunotherapy resistance:
function, resistance mechanism,
and reversal strategies
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1Lanzhou University Second Hospital, Lanzhou, China, 2Department of Surgical Oncology, Lanzhou
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Immunotherapy has emerged as a preeminent force in the domain of cancer

therapeutics and achieved remarkable breakthroughs. Nevertheless, the high

resistance has become the most substantial impediment restricting its clinical

efficacy. Beta-2 microglobulin (B2M), the light chain of major histocompatibility

complex (MHC) class I, plays an indispensable part by presenting tumor antigens

to cytotoxic T lymphocytes (CTLs) for exerting anti-tumor effects. Accumulating

evidence indicates that B2M mutation/defect is one of the key mechanisms

underlying tumor immunotherapy resistance. Therefore, elucidating the role

played by B2M and devising effective strategies to battle against resistance are

pressing issues. This review will systematically expound upon them, aiming to

provide insight into the potential of B2M as a promising target in anticancer

immune response.
KEYWORDS
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1 Introduction

Immunotherapy is a promising therapeutic modality for cancer following surgery,

chemotherapy, radiotherapy, and targeted therapy. Distinct from conventional therapies, it

exerts anti-tumor efficacy by activating or reconstituting immune defense system, thereby

further prolonging the survival of cancer patients and enhancing their quality of life (1, 2).

At present, prominent tumor immunotherapies incorporate immune checkpoint inhibitors

(ICIs) (3, 4), cancer vaccines (5–7), and chimeric antigen receptor T cells (CAR-T) (8–10),

which have revolutionized tumor treatment and represent a significant milestone in the

field. Despite the fact that unprecedented durable response has been observed in clinical

practice, the majority of patients do not respond to the treatment (primary resistance), and

some responders relapse after subsequent treatment (secondary resistance) (11–13). Thus,

augmenting the therapeutic potency of immunity and transcending immune resistance
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constitute the cardinal challenges within the contemporary sphere

of tumor therapy. Against this backdrop, in-depth exploration of

biomarkers related to the mechanism of tumor immunotherapy

resistance is of tremendous significance. Notably, programmed cell

death ligand 1 (PD-L1), cytotoxic T lymphocyte-associated protein

4 (CTLA-4), Janus kinase 1/2 (JAK1/2), signal transducer and

activator of transcription 3 (STAT3), and phosphatase and tensin

homolog (PTEN) have been pinpointed as key biomarkers of

immune therapy resistance (14–17). Nevertheless, additional

biomarkers are required to provide a scientific basis and

directional guidance for enhancing the efficacy of tumor

immunotherapy, reversing immune resistance, and resulting in

significant amelioration in survival among oncological patients.

B2M, originally discovered as a low molecular protein in the

serum of patients with renal tubular lesions (18), is predominantly

synthesized by platelets, lymphocytes, and polymorphonuclear

leukocytes. It is ubiquitously present in blood, urine, cerebrospinal

fluid, saliva, and colostrum, albeit in trace amounts. Notably, its levels

are not influenced by gender, age, or the amount of muscle tissue

(19). Under physiological conditions, B2M levels in serum remain

relatively stable due to constant production and efficient renal

clearance. Specifically, B2M is filtered through the glomerulus and

nearly completely reabsorbed by the proximal tubules (20).

Therefore, abnormal elevation of B2M in serum and urine serve as

sensitive indicators of proximal tubule function and glomerular

filtration efficiency, making it a valuable surrogate biomarker for

renal impairment (21). Moreover, serum B2M has been recognized as

a biomarker for a variety of diseases, such as lymphoma, coronary

artery, inflammatory, central nervous system and autoimmune

diseases (20, 22, 23). Structurally, B2M is a non-glycosylated

protein consisting of 119 amino acids with a molecular weight of

approximately 12 kDa, encoded on chromosome 15 (15q21.1). It

consists of seven antiparallel b-chains that form two b-sheets
connected by a single disulfide bond, presenting in a characteristic

immunoglobulin (Ig)-like b-sandwich structure (24). As an

indispensable subunit (a crucial component of the light chain) of

MHC-I molecule, it is entrusted with presenting endogenous tumor

antigens to CTLs to elicit immune killing effects. However, emerging

evidence suggests that B2M expression is frequently compromised in

numerous cancers due to deficiency, mutation and epigenetic

suppression (25–27), and B2M alterations are associated with low

response rates. B2M mutation/defect can significantly diminish the

recognition of cancer cells by lymphocytes, thereby inducing tumor

immune evasion and resistance to immunotherapy. A melanoma

patient with B2M defeat developed resistance subsequent to receiving

PD-1 inhibitor (28), whereas a high level of B2M mRNA was linked

to enhanced response to PD-1-based immunotherapy (29). These

findings underscore the critical role of B2M in immunotherapy

resistance and suggest its potential as a target for overcoming

resistance. To date, only one review has delved into the role of

B2M in cancer immunotherapy, highlighting that B2M alterations are

prevalent across various cancers and are linked to tumor immune

escape and immunotherapy resistance, and may serve as a potential

biomarker for ICIs treatment (27). Interestingly, this review not only

elucidates the biological functions of B2M, its expression regulation,
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mechanisms B2M-related immunotherapy resistance, and the

association between B2M and immunotherapy resistance along

with the reversal strategies, but also explores the correlation using

emerging technologies such as single-cell RNA sequencing (scRNA-

seq), imaging mass cytometry (IMC) and CRISPR/Cas9.

Additionally, it was observed that in the context of B2M defect,

antigen recognition by CTLs is impaired, while other immune cells

(such as CD4+ T lymphocytes, NK cells, and gd T cells) may still

retain their ability to kill tumor, further indicating that the activation

of these cells can overcome immunotherapy resistance caused by

B2M deficiency.
2 Biological function of B2M

B2M is located on chromosome 15 and encompasses 4 exons.

The sequence of B2M gene exhibits certain homology with

immunoglobulin (Ig) constant region and MHC class I molecule

a3 domain (30). Structurally, B2M consists of two disulfide-linked

b-sheets and can form amyloid fibers under specific pathological

circumstances (31). B2M is prevalently expressed in considerable

nucleated cells, encompassing immune cells and tumor cells. Serum

B2M is regarded as a biomarker for the severity of infections,

amyloidosis, renal injury, lymphoproliferative diseases, and aging-

related disorders (23, 32), while the B2M on the cell membrane

surface non-covalently binds to the heavy chain of MHC-I molecule

to execute diverse immune functions. The most typical one is to

present tumor antigens by participating in the formation of the

antigen peptide-MHC class I complex (pMHC-I) to activate CTLs

and exerted effects by reinvigorating our immune system to battle

against cancer.

B2M, the light chain (b chain) of the MHC-I complex, serves as

one of the most salient functions in participating in MHC-I-

restricted tumor antigen presentation, including four principal

steps (Figure 1): (1) Proteasome-mediated degradation of

endogenous protein for the acquisition of antigenic peptides; (2)

The conveyance of antigenic peptides to the endoplasmic reticulum

(ER) by the transporter associated with antigen processing (TAP);

(3) The loading of antigenic peptides into the peptide-binding

groove of the MHC-I complex to constitute a stable pMHC-I

complex and its translocation to the surface of tumor cells via the

Golgi; (4) The recognition of the pMHC-I complex by CTLs to exert

immune killing effects. Endogenous protein antigen (tumor

antigen) is degraded by proteasome in the cytoplasm for the

attainment of antigenic peptides. Next, antigenic peptides are

transported to the endoplasmic reticulum by TAP and are pruned

by endoplasmic reticulum aminopeptidase 1 (ERAP1) and

endoplasmic reticulum aminopeptidase 2 (ERAP2) to acquire

mature antigenic peptides consisting of 8-9 amino acids (30). In

the ER, human leukocyte antigen-I (HLA-I), B2M, endoplasmic

reticulum protein 57 (ERp57), Tapasin, and calreticulin collectively

form a peptide-loading complex (PLC), facilitating the folding of

the MHC-1a chain and obtaining mature MHC-I complex (33).

Subsequently, antigenic peptides are loaded into the peptide-

binding groove to form a stable pMHC-I complex, which
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https://doi.org/10.3389/fimmu.2025.1512509
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Han et al. 10.3389/fimmu.2025.1512509
disengages from the PLC and is transported to the surface of tumor

cells through Golgi for recognition by the T cell receptor (TCR) on

CTLs to eradicate tumor cells.
3 Regulation of B2M expression

The expression of B2M is modulated by multiple mechanisms. At

the genetic level, B2M mutation facilitates tumor immune evasion

through hampering antigen presentation. Currently, B2M mutation

comprises point mutation, frameshift mutation, and loss of

heterozygosity (LOH), which have been documented in malignant

tumors like gastric cancer, colorectal cancer, renal cancer, and

melanoma. In advanced melanoma, it was determined that 29.4%

of patients exhibited B2M gene mutation, deletion, or LOH (34);

similarly, HLA LOH was detected in 40% of non-small cell lung

cancer (NSCLC) patients (35). Nucleotide-binding oligomerization

domain-Like Receptor family Caspase recruitment domain

containing 5(NLRC5), also known as the Class I transactivator

(CITA), constitutes the CITA enhanceosome complex through

binding to RFX5 and RFXAP and serves as a transcriptional
Frontiers in Immunology 03
activator to expedite the expression of MHC class I molecule.

Yoshihama et al. (36) divulged that the methylation of the NLRC5

promoter was inversely associated with B2M expression in melanoma

and engendered a diminution in MHC -I molecule expression and

the advent of tumor immune escape. On the contrary, the Kobayashi

team utilized a gene-specific system based on CRISPR/Cas9

technology, designated as TRED-I (Targeted reactivation and

demethylation for MHC-I), to accomplish targeted demethylation

of the NLRC5 promoter, induce an augmentation in NLRC5

expression, thereby upregulating MHC-I, B2M, TAP1 and genes

encoding immune proteasome components (LMP2/PSMB9/b1i,
LMP7/PSMB8/b5i), ultimately culminating in enhanced tumor

immunogenicity (37). Consequently, NLRC5 contributes to

reconstituting the expression and antigen presentation of B2M/

MHC-I on tumor cells to potentiate CD8+ T cell dominated

anticancer immunity.

In addition, the expression of B2M is also subjected to

epigenetic mechanisms, encompassing DNA methylation, histone

methylation, and histone deacetylation. In 2019, the research team

led by Mark A. Dawson at the Peter MacCallum Cancer Centre in

Australia employed whole-genome CRISPR/Cas9 screening to
FIGURE 1

Schematic Illustration of B2M participating in MHC-I restricted tumor antigen presentation.
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demonstrate that polycomb repressive complex 2 (PRC2) can

silence key genes involved in the MHC-I antigen processing

pathway, thereby facilitating T cell-mediated immune evasion.

Furthermore, they ascertained that histone modifications like

H3K4me3 and H3K27me3 enriched in the promoter region of the

B2M gene inhibited the expression of MHC class I molecule (38).

Grounded on the aforementioned findings, a study (39) revealed

that after treating Renca cells with alpha ketoglutarate (the specific

substrate of histone demethylase), the abundance of H3K4me1 and

the expression level of B2M protein significantly elevated, while the

abundance of H3K4me3 decreased, indicating that histone

methylation might orchestrate the expression of the B2M gene.

Methylation of the B2M gene promoter was observed to

interrelate with transcriptional inactivation and down-regulation

of B2M expression in colorectal cancer featuring microsatellite

instability (MSI) (40), which was up-regulated using the DNA

methyltransferase inhibitor, DNMTi. Previous studies have

demonstrated that histone deacetylase inhibitor (HDACi) can

reverse immune resistance by upregulating the expression of

genes pertinent to antigen processing and presentation pathways

(including B2M) in melanoma cell lines (41). Analogously, in

clinical practice, HDACi can also enhance B2M/MHC-1

expression to address resistance to ICIs therapy (42–44).

Empirical studies have unequivocally demonstrated that the

interferon-g (IFNg) molecule potentiates the transcriptional

functions of NF-kB and IRF via the JAK/STAT signalling cascade,

attaches to the enhancer A region and the interferon-stimulated

response element (ISRE) of the MHC-I promoter region, upsurges

the expression of genes such as MHC-I, B2M, and TAP transporter

proteins, to amplify the antigen-presenting capacity. Nevertheless,

mutation in genes affiliated with the IFN-g/JAK/STAT signaling

pathway have been identified in a wide spectrum of cancer, giving

rise to antigen presentation impairments and resistance to ICIs

treatment (45, 46). A plausible explanation for this phenomenon is

that the compromised IFN-g/JAK/STAT signaling axis instigates

the inactivation of the histone dimethyltransferase WHSC1, thereby

restricting the expression of B2M/MHC-I (47). On the contrary,

non-coding RNA (ncRNA) is proficient in curbing the expression of

genes associated with the antigen presentation pathway. In

colorectal cancer, miR-148a-3p is eminently capable of repressing

the expression of calnexin (CANX) and B2M/MHC-I, thereby

decidedly restricting the anti-cancer efficacy of CTLs (48).

Additionally, in esophageal cancer, miR-148-3p and miR125a

markedly depress the expression of MHC-I and B2M,

conspicuously curtailing the overall survival of cancer patients (49).
4 Mechanisms of resistance to B2M-
related immunotherapy

In 2020, the Society for Immunotherapy of Cancer (SITC)

delineated primary and secondary resistance to ICIs therapy for

advanced tumors (50). The ascertainment of the mechanism of

tumor immune resistance and the sifting of the beneficiary

population are among the urgent problems to be tackled in the
Frontiers in Immunology 04
contemporary medical era. Presently, the mechanisms of tumor

immune resistance consist of: (1) intrinsic resistance mechanisms;

(2) extrinsic resistance mechanisms; (3) host-related resistance

mechanisms. Among them, the mechanism of immunotherapy

resistance related to B2M is mainly manifested as antigen

presentation impairment (51, 52). that is, B2M reduction/defect

impairs the proper assembly and transport of MHC-I molecules

to the cell surface. As a result, CD8+ T cells fail to recognize

the “danger signals” presented on the tumor cell surface, thereby

preventing the initiation of an effective immune response.

This phenomenon effectively renders tumor cells “invisible” to

the immune system, allowing them to evade immune surveillance

and elimination, ultimately promoting tumor growth, metastasis

and resistance. Prior investigations have revealed that B2M

mutation may aid tumor cells to break away from the normal

immune response and attenuate the efficacy of CTLs based

immunotherapies by impeding MHC class I-mediated tumor

antigen presentation (27, 30). Among melanoma patients

undergoing anti-PD-1 treatment, Sade-Feldman et al. (34)

ascertained that B2M LOH in non-responders was threefold that

in responders. Furthermore, IFN-g potentiates CTLs activity by

inducing upregulation of MHC-I complex and concurrently elicits a

robust tumor-killing response via pro-apoptotic and anti-

proliferative effects. However, the existence of genetic mutation

and defect affiliated with the IFN-g/IFNGR/JAK/STAT pathway

can also give rise to resistance against ICIs. It is worth mentioning

that recent research has shown that inhibiting autophagy

can restore B2M/MHC-I expression and improve antigen

presentation, thereby enhancing anti-tumor T cell responses (53),

indicating that autophagy pathway can also promote immune

escape by degrading B2M/MHC-I, indirectly contributing to

immune resistance.
5 Correlation between B2M and
immunotherapy resistance based on
scRNA-seq and IMC

scRNA-seq represents an advanced technology that facilitates high-

throughput transcriptomic analysis at the single-cell level. This

approach not only identifies novel cell types and rare cell

populations but also provides precise insights into tumor

heterogeneity, the intricate interactions between tumor cells and their

microenvironment, and the detailed evolutionary trajectories of

individual tumors, so as to further explore the mechanism of tumor

immunotherapy resistance (54, 55). IMC compensates for the lack of

tissue spatial information in scRNA-seq and effectively resolves the

serious cross-color issue among fluorescent groups. Building upon in

situ immunohistochemistry (IHC), this technology integrates

cytometry by time of flight (CyTOF) and laser ablation techniques,

allowing for the simultaneous detection of abundance variations and

spatial distribution of up to 50 targets within tissue samples at

subcellular resolution, thereby generating single-cell proteome map

across temporal and spatial dimensions (56, 57). Owing to its

distinctive technical merits, IMC has emerged as a powerful tool in
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the realm of tumor research. Utilizing scRNA-seq and IMC

technologies to unravel the correlation between B2M and

immunotherapy resistance offers valuable insights for overcoming

resistance and devising innovative therapeutic strategies (Table 1).

In May 2020, the Samsung Medical Center (SMC) team

conducted scRNA-seq on tumor samples from 44 patients with

lung adenocarcinoma (58). This study not only identified a cancer

cell subtype tS2 closely associated with lung adenocarcinoma

metastasis but also uncovered that the reprogramming of tumor-

derived vascular endothelial cell subsets in lung adenocarcinoma

patients impaired antigen presentation (including B2M) and the

homing activity of immune cells (58). These findings provide new

insights into understanding cell behavior and tumor immune evasion

mechanisms within the tumor microenvironment (TME) of lung

adenocarcinoma. The team led by Weijian Liu in China utilized

scRNA-seq technology to characterize the immunosuppressive tumor

microenvironment profile of osteosarcoma (OS) and discovered that

MHC-I (HLA-A, HLA-B, and HLA-E)/B2M genes were

downregulated, indicating diminished tumor immunogenicity in

OS (59). To further investigate whether the downregulation of

MHC-I/B2M is prevalent in OS, they assessed the expression of

MHC-I/B2M in OS patient samples by IHC. The results confirmed

that high-grade OS indeed exhibited downregulation of MHC-I/

B2M. Based on these findings, we propose that the downregulation

of MHC-I/B2M in high-grade OS may contribute to resistance to

immune therapy. What’s more, several scholars conducted a

comprehensive analysis of 738 regions with varying degrees of T-

cell infiltration from 29 colorectal cancer patients using multiple

detection techniques (WES, TCR-seq, RNA-seq, IMC/mIF). They

discovered that B2M expression in the tumor parenchyma was lower

in non-responsive groups compared to responsive groups, while no

significant difference was observed in the tumor stroma (60). Sandra

et al. (61) analyzed formalin-fixed, paraffin-embedded (FFPE) tissue

microarray (TMA) samples from patients with metastatic melanoma

who received PD-1 blockade therapy using IMC technology. Their

findings indicated that higher B2M expression correlated with better

immune therapy response and longer progression-free survival (PFS)

and overall survival (OS). Collectively, these studies implied that

silent mutation and loss of B2M are linked to immunotherapy

resistance (62, 63), while upregulating B2M may offer a new

therapeutic strategy for overcoming resistance. However, Natasja

and his colleagues isolated gdT cells from 5 mismatch repair-

deficient (MMR-d) colon cancer tissue for scRNA-seq, revealing

that PD-1, activation, proliferation and killer genes expressed by

gd1 and gd3 T cells were significantly upregulated in B2M-deficient

tumors (64). Additionally, they performed IMC analysis on 17MMR-

d colon cancer patients who had not undergone ICB treatment. The

results showed a notable increase in the infiltration of gdT cells in

B2M-mutant tumors, with these cells exhibiting high intraepithelial

localization characterized by significant expression of CD103, CD39,

GZMB, Ki-67, and PD-1. Subsequently, they established two patient-

derived tumor organoid cell lines and generated B2M knockout (B2M

KO) cell lines using CRISPR technology. The authors exposed these

B2M KO and parental B2M wild-type (B2M WT) counterparts to

expanded gd T cell subsets and quantified gd T cell activation by
Frontiers in Immunology 05
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reactivity against the B2M KO cell lines compared to B2M WT cell

lines. These findings unveil that gdT cells can serve as crucial effectors

in ICIs therapy for combating HLA-I/B2M-deficient cancers, which

represent a novel mechanism and therapeutic approach for

monitoring tumor immune resistance.

6 Correlation between B2M and
immunotherapy resistance based on
CRISPR/Cas9

The CRISPR/Cas9 system, hailed as a revolutionary “gene

scissors” technology, is renowned for its flexibility, convenience,

high throughput, efficiency, and precision. It has found extensive

application in various fields, including tumor functional gene

screening, signal pathway analysis, and resistance target discovery.

The CRISPR-Cas9 system comprises two components: Cas9

nuclease and single guide RNA (sgRNA). The sgRNA plays a

critical role in recognizing specific genomic sequences. Upon

complementary base pairing with the target DNA sequence, the

Cas9 protein, which possesses endonuclease activity, cleaves the

DNA at the specified site. Following cleavage, the broken DNA

undergoes repair via either non-homologous end joining (NHEJ) or

homology-directed repair (HDR), enabling genome editing,

insertion, or defect (65). Utilizing CRISPR/Cas9 high-throughput

gene screening technology, it is possible to establish stable cell lines

with targeted gene knockouts (Table 2), thereby providing an

excellent platform for screening resistance targets (66).

Previous studies have successfully utilized CRISPR/Cas9

technology to establish knockout models of B2M, JAK1, and

LMP2 in the mouse EMT6 breast cancer cell line, as well as B2M

knockout clone model in the mouse MC38 colon cancer cell line. In

vivo experiments demonstrated that mice bearing tumors derived

from B2M (EMT6 and MC38) or Jak1/LMP2 (EMT6) knockout

single-cell clones exhibited no response to aPD-1 or aPD-L1
treatment (67). Similarly, Gettinger et al. (68) employed CRISPR

technology to knock out B2M in mouse lung cancer cells. Wild-type

and B2M-knockout cells were injected into the right legs of

immunocompetent A/J mice. When tumor volumes reached

approximately 30 mm³, the mice were randomly assigned to

receive anti-PD-1 or isotype control antibodies. The results

indicated that mice harboring intact B2M responded to PD-1

antibody treatment, whereas those with B2M KO tumors showed

no therapeutic benefit from PD-1 blockade. Furthermore, Kearney

et al. (69) performed a series of genome-wide screens using a

CRISPR/Cas9-based custom immune escape library in colon

cancer mouse models. They identified that the absence of crucial

genes (caspase-8, JAK1, STAT1, B2M, TAP1) in TNF signaling,

IFN-g signaling, and antigen presentation pathways conferred

resistance to CD8+ T cell and NK cell-mediated cytotoxicity. In

conclusion, these findings underscore the significant part of B2M

deficiency in mediating immunotherapy resistance. However,

several studies have reported that high immunogenic cancer

patients with B2M defect can still exhibit durable responses to
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TABLE 1 Summary of publications on B2M and immunotherapy resistance based on scRNA-seq and IMC.

Ref No. Research
technique

Cancer type Target Cells (n) Patients (n) Main finding

Kim et al. (58) scRNA-seq
CyTOF
WES
IHC
FC

LUAD tS2
B2M

208,506 cells 44 The study identified a cancer cell subtype tS2 that
deviated from the normal differentiation trajectory and
dominated metastasis, revealing that remodeling of
tumor-derived vascular endothelial cell subsets reduced
antigen presentation (including B2M) and immune cell
homing activity, providing new insights into
understanding cellular behavior and tumor immune
escape mechanisms in lung cancer TME.

Liu et al. (59) scRNA-seq
Bulk RNA-seq
FISH
FACS/IHC
FC

OS HLA-A
HLA-B
HLA-E
B2M
CD24

– GSE152048
GSE162454
85

The downregulation of MHC-I and B2M diminished
immunogenicity in high-grade OS, which may be a
potential mechanism for cancer immunotherapy
resistance. In addition, CD24, a novel “don’t eat me”
signal, also facilitated immune evasion of
osteosarcoma cells.

Michele et al. (60) IMC
mIF
WES
RNA-seq
TCR-seq
IHC

CRC B2M
MHC-I
Wnt
IFN-g
TMB
CD74
CD3
CD8

20,890 T
cells
16,748
macrophages

29 In CRCs, low TMB served as a marker of resistance,
which was considered to be associated with higher
activation of the Wnt pathway leading to immune
microenvironment of “cold tumors”. Additionally, the
correlation of B2M deficiency with immune resistance
and overall low PD-1 and PD-L1 expression, were
specific characteristics of CRCs.

Sandra et al. (61) IMC
QIF
DSP

Melanoma B2M
MHC-I
LAG3
CD8
CD4
CD3
CSF1R
PD-1

– 312 This research confirmed the reliability and effectiveness
of the AQUA platform in IMC analysis, and found that
high B2M expression was associated with better
immunotherapy response and longer PFS and OS
based on IMC, QIF and DSP technologies, revealing
that B2M has significant potential as a biomarker for
evaluating the efficacy of immune therapy.

Natasja et al. (64) scRNA-seq
Bulk RNA-seq
WGS
IMC
IHC
FC
CRISPR/Cas9

MMR-d cancers
(CRC, STAD,
UCEC, COAD)

B2M
CD103
CD39
GZMB
Ki-67
CD4
KIR

4,442 gd
T cells

TCGA: 239
DRUP: 71
Hartwig:
2,256
NICHE:10
IMC:17
PDTOs:2

gdT cells can function as critical effectors in ICIs
therapy against HLA-I/B2M-deficient cancers,
representing a novel mechanism and therapeutic
strategy for monitoring tumor immune escape.

Gurjao et al. (80) scRNA-seq
Bulk RNA-seq
WES
IHC
MIF

dMMR
/MSI-H CRC

B2M 595 cells 2 The biallelic loss of B2M (frameshift deletion/loss of
heterozygosity) leads to impaired antigen presentation,
which may contribute to intrinsic resistance to immune
checkpoint blockade therapy in dMMR/MSI-H
colorectal cancer. Furthermore, NK cell-based
immunotherapies, particularly those involving the
adoptive transfer of “educated” NK cells, represent a
promising alternative therapeutic strategy.

Song et al. (44) scRNA-seq
FC
WB
qRT-PCR

MCC B2M
TAP1
LMP2
HLA-A
Caspase-3/7

10,816 cells – The HDAC inhibitor Domatinostat promotes cell cycle
arrest, induces apoptosis and upregulates APM genes
and MHC-I/B2M expression to reverse
immune resistance.

Kypraios et al. (62) scRNA-seq
hdWGCNA

T-ALL B2M
HLA-A
HLA-B

– 3 This study identified multiple genes associated with
recurrence, such as HLA-A/B and B2M, through
scRNA-seq and gene co-expression networks analysis
and on paired diagnosis-relapse samples, indicating a
potential role in immune interference and contributing
to resistance.

(Continued)
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TABLE 1 Continued

Ref No. Research
technique

Cancer type Target Cells (n) Patients (n) Main finding

Zhang et al. (63) scRNA-seq
WES
IHC

SCLC MHC-I
B2M
FZD8

24,081 cells 7 In SCLC, antigen processing and presentation of
peptide antigens via MHC-I related genes (B2M) were
less activated in malignant cells of the patients with
lower immune infiltration than those with higher
immune infiltration, which is of great significance for
elucidating the mechanisms of tumor resistance.
F
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scRNA-seq, Single cell RNA sequencing; CyTOF, Cytometry by time-of-flight; WES, Whole-exome sequencing; IHC, Immunohistochemistry; FC, Flow cytometry; LUAD, Lung
adenocarcinoma; TME, Tumor microenvironment; FISH, Fluorescence in situ hybridization; FACS, Fluorescence-activated cell sorting; OS, Osteosarcoma; IMC, Imaging mass cytometry;
mIF, Multiplex immunofluorescence; TCR-seq, T-cell receptor sequencing; CRC, Colorectal cancer; TMB, Tumor mutational burden; QIF, Quantitative immunofluorescence; DSP, Digital
spatial profiling; WGS, Whole genome sequencing; STAD, Stomach adenocarcinoma; UCEC, Uterus corpus endometrium carcinoma; COAD, Colorectal adenocarcinoma; PDTOs, Patient-
derived tumor organoids; dMMR/MSI-H, Deficient mismatch repair/microsatellite instability-high; NK, Natural killer; WB, Western blot; qRT-PCR, Quantitative real-time polymerase chain
reaction; MCC, Merkel cell carcinoma; HDAC, Histone deacetylase; APM, Antigen processing and presentation machinery; hdWGCNA, High-dimensional weighted gene co-expression network
analysis; T-ALL, T cell acute lymphoblastic leukemia; SCLC, Small cell lung cancer.
TABLE 2 Summary of studies on B2M and immunotherapy resistance using CRISPR/Cas9.

Ref No. Location Target Genome-editing
technology

Effects after CRISPR-engineering

Chariou et al. (67) Cancer cell
Colon cancer (MC38)
Breast cancer (EMT6)

B2M
LMP2
JAK1

CRISPR-KO B2M KO impairs antigen presentation; JAK1 KO
decreases PD-L1 expression; B2M/LMP2/JAK1 KO confer
resistance to aPD-1 and aPD-L1 therapies.

Gettinger et al. (68) Cancer cell
lung cancer
(UN-SCC680AJ)

B2M CRISPR-KO B2M KO induces resistance to PD-1 inhibitor therapy.

Mark et al. (38) Cancer cell
Leukemia (K-562)
SCLC (NCI-H82, NCI-
H146, NCI-H69)
Neuroblastoma (Kelly,
IMR-32)
MCC (MCC-002)

EED
EZH2
SUZ12
MTF2
NLRC5
MHC-1
B2M

CRISPR-KO Core PRC2 members (EED, SUZ12, EZH2) KO
significantly upregulate the expression of critical genes
(B2M, MHC-I) in the MHC-I antigen processing
pathway, thereby reversing T cell-mediated
immune escape.

Kearney et al. (69) Cancer cell
Colon cancer (MC38)

B2M
TAP1
JAK1
STAT1
Tnfrsf1a
Caspase-8
ADO

Genome-wide immune
evasion screening

Knockout of crucial genes (Caspase-8, Tnfrsf1a, ADO,
JAK1, STAT1, B2M, TAP1) in the TNF signaling, IFN-g
signaling, and antigen presentation pathways serve as a
key determinant of resistance to CD8+ T cell and NK cell-
mediated cytotoxicity.

Wang et al. (66) Cancer cell
HCC (MAL1)
Bladder cancer (MB49)
Melanoma (B16-F10)
TNBC (E0771)

KMT2D
TP53
B2M
Grif1
BCOR

CRISPR-KO KMT2D KO potentiates the anti-tumor efficacy of ICIs by
inducing DNA damage, augmenting mutational burden,
enhancing IFN-g-stimulated antigen presentation, and
promoting infiltration of PD-1+ T cells and macrophages.
Additionally, comparing anti-PD-1 treated mice with PBS
treated mice, B2M KO was correlated with anti-PD-
1 resistance.

Dufva et al. (72) Cancer cell
BCL (SUDHL4)
B-ALL (NALM6)
MM (MM1.S, LP1,
KMS11)
CML (K562)
AML (MOLM14)

B2M
TAP1
TAP2
MHC-I

CRISPR-KO Knockout of antigen-presenting genes, including MHC-I
and B2M, enhances the sensitivity of across hematologic
cancer cell lines to NK cells, supporting the “missing-self”
mechanism of NK cell activation.

Torrejon et al. (73) Cancer cell
Colon cancer (MC38)
Melanoma (B16-
F10, YUMMER2.1)

B2M CRISPR-KO In the context of B2M KO, the activation of CD4+ T cells
and NK cells can overcome resistance to PD-1 blockade
therapy to enhance anti-tumor efficacy.

Germano et al. (74) Cancer cell
Colon cancer
(MC38, CT26)

B2M CRISPR-KO In the context of B2M KO, the activation of CD4+ T cells
can overcome resistance to ICIs treatment.

(Continued)
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anti-PD-1 therapy, suggesting the involvement of immune cell

subsets beyond CD8+ T cells in these responses (70, 71). The

collaborative work of Satu Mustjoki’s team from the University of

Helsinki and Constantine S. Mitsiades’ team from Harvard

University utilized genome-scale CRISPR knockout (LOF) screens

to co-culture transfected tumor cells with expanded NK cells for

periods ranging from 24 hours to 2 weeks. They observed that

knocking out antigen presentation genes, including MHC-I and

B2M, enhanced the sensitivity of all blood cancer cell lines to NK

cells, supporting the “missing self” activation mechanism of NK

cells (72). Additionally, Torrejon et al. (73) knocked out B2M gene

in three mouse tumor cell lines (MC38, YUMM2.1 UV, and B16)

with varying baseline MHC-I expression and sensitivities to
Frontiers in Immunology 08
anti-PD-1 therapy by CRISPR/Cas9 technology. Using the OMIQ

platform and CyTOF, they characterized tumor immune infiltration

and found that MC38 and YUMMER2.1 cells with B2M KO

responded to anti-PD-1 treatment alone or in combination with

IL-2 agonists, mediated by CD4+ T cells and NK cells. In contrast,

more aggressive B16 cells lacking B2M showed only a partial

response to IL-2 agonists, dependent on NK cells. Equally,

Germano and his team also used CRISPR-Cas9 to construct B2M

KO MMRd colorectal cancer cell lines (MC38-MMRd-B2M-/-and

CT26-MMRd-B2M-/-) (74), subcutaneously inoculated the cells

into C57BL/6 mice, and administered anti-PD-1 and anti CTLA-4

antibodies and found that B2M-deficient loaded mice treated with

ICIs showed significant tumor regression and that in CD8+ T-cell
TABLE 2 Continued

Ref No. Location Target Genome-editing
technology

Effects after CRISPR-engineering

Freeman et al. (71) Cancer cell
Melanoma (B16-F10)

B2M
TAP1
TAP2
JAK1
JAK2
Ifngr2

CRISPR-KO The immune escape from T cells caused by the knockout
of genes IFN-g signaling pathway (JAK1, JAK2, Ifngr2)
and antigen presentation pathway (TAP1, TAP2, B2M)
promotes tumor vulnerability to NK cells.

Dubrot et al. (70) Cancer cell
Renca Renal Cell Line

Atg5
B2M
H2-T23
TAP1
TAP2

CRISPR-KO Knockout of antigen presentation genes (H2-T23, TAP1,
TAP2, B2M) and the autophagy gene Atg5 can
significantly enhance NK cell-mediated immune
responses, overcome immune resistance, and sensitize
tumors to immunotherapy.

Kobayashi et al. (37) Cancer cell
Melanoma (B16-F10)
Breast cancer (MCF7)

NLRC5
MHC-I
B2M
TAP1

Modified CRISPR/Cas9
system (TRED-1)

Targeting NLRC5 promoter demethylation through
TRED-I system can upregulate MHC-I, B2M, TAP1 and
genes encoding immune proteasome components (LMP2/
PSMB9/b1i, LMP7/PSMB8/b5i), thereby enhancing
CD8+T cell-mediated anti-cancer immunity.

Eyquem et al. (96) CAR-T cell TRAC
B2M

CRISPR-KO TRAC/B2M KO reduces the probability of initiating
GvHD and eliciting donor T cell rejection, thereby
enhancing the effectiveness of CAR-T therapy.

Choi et al. (97) CAR-T cell TARC
B2M
PD-1

CRISPR-KO TRAC/B2M/PD-1 KO significantly enhances the anti-
tumor efficacy of EGFRvIII CAR T cells.

Ren et al. (94) CAR-T cell TCR
B2M
PD-1

CRISPR-KO B2M/TCR/PD-1 KO can reduce immunogenicity, prevent
GvHD, and significantly enhance the anti-tumor activity
of CAR-T cells.

Chen et al. (89) CAR-T cell TCR
B2M

CRISPR-KO TCR/B2M KO eliminates GvHD while enhancing the
anti-tumor efficacy of CAR-T cells.

Pavlovic et al. (93) CAR-T cell TRAC
B2M

CRISPR-KO TRAC/B2M KO reduces GvHD and concurrently
enhances the efficacy and safety of allogeneic CAR-T cells.

Liu et al. (92) CAR-T cell TRAC
B2M
PD-1

CRISPR-KO TRAC/B2M/PD-1 KO eliminates GvHD and significantly
enhances the anti-tumor efficacy of CAR-T cells.

Guo et al. (90) CAR-T cell TCR
B2M

CRISPR-KO TCR/B2M KO reduces GvHD and enhances the efficacy
of universal CAR-T cells in patients with relapsed/
refractory lymphoma.

Kagoya et al. (91) CAR-T cell B2M
CIITA
TRAC

CRISPR-KO B2M/CIITA/TRAC KO avoids inducing GvHD and
enhances the anti-tumor effect of CD19 tKO CAR-T cells
KO, Knockout; SCLC, Small cell lung cancer; MCC, Merkel cell carcinoma; PRC2, Polycomb repressive complex 2; NK, Natural killer; HCC, Hepatocellular carcinoma; TNBC, Triple negative
breast cancer; ICIs, Immune checkpoint inhibitors; PBS, Phosphate buffered saline; BCL, B-cell lymphoma; B-ALL, B cell acute lymphoblastic leukemia; MM, Multiple myeloma; CML, Chronic
myeloid leukemia; AML, Acute myeloid leukemia; CAR, Chimeric antigen receptor; GvHD, Graft-versus-host disease; EGFR, Epidermal growth factor receptor.
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depleted mice, ICIs remained efficacious against MMRd B2M-

deficient tumors. Conversely, ICIs failed to induce tumor

regression in CD4+ T cell-depleted mice. Additionally, they

discovered a correlation between low B2M expression and

increased CD4+T cell infiltration in tumors, strongly indicating

that CD4+T cells mediate the response to B2M-deficient tumors

during ICIs treatment. Evidently, it can be seen that in the context

of B2M deficiency, the activation of CD4+ T cells and NK cells can

also overcome resistance to exert anti-tumor functions.
7 Association of B2M with different
immunotherapy resistance and
reversal strategies

Immunotherapy brings new hope to cancer patients, yet it

encounters the challenge of resistance. B2M, a pivotal factor in the

immune regulatory network, plays a crucial role in immunotherapy

resistance. A thorough investigation into the association between

B2M and different immunotherapy resistance, along with identifying

effective strategies to reverse resistance caused by B2M defect

(Figure 2), can not only significantly improve the clinical efficacy of

immunotherapy but also potentially pave new avenues for

overcoming resistance in cancer immunotherapy.
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7.1 ICIs

B2M is a crucial molecule indispensable for the assembly of MHC-

I complexes and tumor antigen presentation, and its defect might be a

prevailing cause of resistance to ICIs therapy. Relevant research

demonstrates that B2M LOH is prevalently observed among cancer

patients who exhibit poor or no response to ICIs (75). B2M defect

induces resistance in ICIs-treated lung cancer patients, while

upregulation of B2M enhances the efficacy of immunotherapy (76).

An association could be found in a cohort study between elevated B2M

expression and superior immune responses and significantly prolonged

survival in metastatic melanoma patients undergoing ICIs treatment

(61). Recently, acquired resistance to pembrolizumab was reported in a

patient with advanced melanoma, which might be attributed to B2M

defect (28). Results from the study showed that B2M truncating

mutation occurred in this patient, resulting in antigen presentation

defect to induce immune resistance. Similarly, Wei et al. (77) reported a

27-year-old female patient with stage IIIB (pT3N2aM0) colorectal

cancer characterized as MSI-H/dMMR who developed resistance

after two months of anti-PD-1 therapy. Next-generation sequencing

(NGS) analysis revealed an increase in TMB to 60 muts/MB and an

MSH2 mutation (p.Q337*) detected in the tumor tissue DNA of the

patient. Additionally, INDEL mutation (c.43_44del) was found at the

microsatellite site of the B2M gene exon, resulting in the expression of a
FIGURE 2

The association of B2M with immunotherapy resistance and reversal strategies.
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B2M chimeric protein p.L15Ffs*41. These results suggest that B2M

mutationmay contribute to ICIs resistance. It is worthy of note that the

intensive and persistent T cell selection pressure generated by ICIs can

conversely promote B2M mutation. It was observed in lung cancer

patients undergoing chemotherapy in combination with ICIs treatment

that B2M experienced heterozygous loss during chemotherapy and

complete loss subsequent to ICIs (68). Nevertheless, some studies have

reported that 85% of B2Mmutant colorectal cancer patients can benefit

from ICIs, manifested as disease stability or partial remission (78). In a

study conducted by Professor Peirong Ding’s team, involving 35 MSI-

H CRC patients receiving PD-1 therapy, no statistically significant

difference was observed in the efficacy between patients with B2M

mutation and those with wild-type B2M (p=0.53). This suggests that

MSI-H CRC patients harboring B2M mutation are also potential

beneficiaries of PD-1 antibody therapy (79). Considering these

findings, we speculate that CTLs antigen recognition becomes

compromised due to B2M mutation/deletion, while other immune

cells such as CD4+ T lymphocytes, NK cells, and gd T cells may

continue to exert cytotoxic effects on tumor cells (64, 70–74, 80).

Unfortunately, there are currently limited studies on B2M, and the

precise mechanisms by which these alternative immune cells are

activated and mediate immune responses in the setting of B2M

deficiency warrant further investigation.

The combination therapeutic strategies have been accorded

precedence and undergone extensive exploration aimed at reversing

the resistance to ICIs elicited by B2M mutation/defect. Local injection

of oncolytic viruses holds the potential to overcome ICIs resistance

attributed to B2M mutation and enhances anti-tumor responses

through activating the IFN-g/JAK/STAT signaling axis. B2M

frameshift mutation was discerned in a patient with intractable stage

IV metastatic melanoma after receiving the combination therapy of

ipilimumab and nivolumab. Subsequently, the patient underwent

sequential treatment with transgenic oncolytic virus TVCE in

conjunction with pembrolizumab and temozolomide, interestingly,

the metastatic lesions achieved a protracted (19 months) complete

response (81). Furthermore, bempegaldesleukin (NKTR-214, an

immunostimulatory IL-2 prodrug), which is competent in activating

and continuously expanding CD4+ T and CD8+ T cells, manifests a

synergistic anti-tumor effect when combined with ICIs. Systemic

administration of bempegaldesleukin can overcome resistance

incurred by anti-PD-1 treatment and achieve better survival in

knockout B2M melanoma mice (82).
7.2 Cancer vaccines

Cancer vaccines are biological agents used for the prophylaxis

or therapeutics of tumors, in which tumor antigens are introduced

into the patient’s body in various forms (such as nucleic acids,

protein polypeptides, bacterial and viral vectors, DC cells) to

activate specific immune responses and establish long-term

immune memory. They possess crucial clinical significance on

account of the merits of high efficacy, strong specificity, favorable

safety, ae well as long-term immune memory. Nevertheless, cancer

vaccines based on T cells may develop resistance because of B2M
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defect. Benitez’s study discovered that two melanoma patients who

were refractory to MAGE-peptide tumor vaccine treatment with

loss of B2M expression (83). The poor efficacy of cancer vaccination

administration with ODN1826 adjuvant in MHC-I negative models

may be affiliated with B2M deficiency in TC-1 cell lines (84).

Presently, personalized neoantigen vaccines have inaugurated a

novel epoch for cancer vaccines. Neoantigens are exclusively

expressed by tumor cells and can evoke a bona fide tumor-specific

T-cell response, thereby evading “off-target” damage to non-tumor

tissues. Moreover, neoantigens are nascent epitopes originated from

somatic mutations and can avoid central immune tolerance, thus

possessing a high immunogenicity. Tumor neoantigen vaccines can

potentiate immune response elicited by neoantigen-specific T cells,

surmount immune escape, and forge new avenues for achieving

precise immunotherapy. Cao et al. (85)elaborated the HA-OVA-

AuNPs nano-vaccine, which enlisted near-infrared (NIR) irradiation

for photothermal regulation of cytoplasmic antigen delivery to

potentiate downstream MHC-I antigen presentation. Campo et al.

(86) transfected the adenovirus vector harboring B2M gene

(AdCMVB2M) into MHC-I negative/B2M-deficient malignant

tumor (melanoma, colorectal cancer, prostate cancer) cell lines. It

was ascertained that the expression of HLA-I/B2M was positive after

72 hours, escalating the immunogenicity of tumor cells and the

capability of T cell immune recognition. Additionally, enhanced

clinical responses have been procured in the combined treatment

of cancer vaccines and ICIs, which has been validated in clinical

studies. In 2020, a phase IIb clinical trial, NCT02897765, was the first

to incorporate the personalized neoantigen vaccine NEO-PV-01 with

PD-1 inhibitors for NSCLC, advanced melanoma or bladder cancer,

which demonstrated that all subjects exhibited neoantigen-specific

CD4+ and CD8+ T cell responses with conspicuously higher objective

response rate (ORR) than that of monotherapy (87).
7.3 CAR-T therapy

CAR-T therapy, a novel adoptive cell immunotherapy that has

garnered considerable attention in recent years, utilizes genetic

engineering techniques to activate T cells and empower them to

express chimeric antigen receptors (CAR). Through amplifying

CAR-T cells ex vivo, it overcomes the local immunosuppressive

microenvironment and disrupts the host immune tolerance,

targeting and eliminating tumor cells in a non-MHC-restricted

manner. Currently, autologous CAR-T therapy has attained

remarkable breakthroughs in the realm of immunotherapy for B-

cell malignant lymphoma (88). Nevertheless, against the backdrop

of autologous T cell therapy that necessitates customization,

prolonged preparation cycle (approximately 2-3 weeks), limited

quantity, and suboptimal quality, allogeneic CAR-T cell therapy has

emerged. The latter, also known as universal CAR-T and off-the-

shelf CAR-T, pertains to the procedure where T cells are extracted

from healthy donors or obtained through means such as peripheral

blood, umbilical cord blood, or pluripotent stem cells, subjected to

genetic engineering modification and amplification, and ultimately

transferred in vivo to exert the predefined anti-tumor effect.
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However, graft-versus-host disease (GvHD) and host-versus-graft

reaction (HvGA) remain two major obstacles for allogeneic CAR-

T therapy.

In recent years, gene editing technologies (CRISPR/Cas9,

TALEN, ZFN) have contributed to addressing GvHD and HvGA

by knocking out TCR on allogeneic CAR-T along with MHC-I/B2M,

thus improving the anti-tumor effectiveness of CAR-T cells (89–94)

(Table 2). A study (95) utilized the zinc finger nuclease (ZFN) system,

in combination with the Sleeping Beauty transposase/transposition

system, to engineer CAR-T cells that are CD19-specific and lack

endogenous TCR expression. Eyquem et al. (96) utilized CRISPR/

Cas9 technology to target the disruption of endogenous T cell

receptor (TRAC) and B2M, thereby minimizing the probability of

initiating GvHD and eliciting donor T cell rejection, and

subsequently enhancing the efficacy of CAR-T therapy. In 2019,

Choi et al. (97) exploited the CRIPSR/Cas9 system to perform

multiple gene disruptions of TARC, B2M, and PD-1 (PDCD1),

creating allogeneic epidermal growth factor (EGFRvIII) CAR-T

cells that can resist PD-1 inhibition. The results demonstrated that

the EGFRvIII CAR-T therapy conspicuously augmented the anti-

tumor activity in the preclinical model of glioblastoma (GBM) and

significantly ameliorated the survival of the mice model. Nevertheless,

it is worth noting that B2M/MHC-I deficiency might trigger the

activation of natural killer (NK) cells, which would recognize the

allogeneic CAR-T cells as “missing self” and exert immune rejection

(98). Hence, additional research is requisite restrain or eradicate the

reactive NK cells within the host, thereby offering protection to

universal CAR-T cells against being killed by NK cells.
7.4 Therapies based on natural killer cells

NK cells, otherwise designated as natural killer cells, can

nonspecifically eliminate tumor cells without prerequisite stimulation

of tumor antigens. Their killing activity is not circumscribed by MHC

and is independent of antibodies, predominantly hinging upon the

intricate interaction of activating and inhibitory receptors on their

surface. The inhibitory receptors existing on the surface of NK cells,

such as killer immunoglobulin-like receptors (KIRs) and Natural Killer

Group 2 Member A (NKG2A), are capable of recognizing MHC-I

molecule, thereby preventing NK cell activation, polarization, and

degranulation. Nevertheless, tumor cells typically exhibit low or no

expression of B2M/MHC-I, engendering the deprivation of the B2M/

MHC-I/KIRs interaction and subsequently inducing NK cell activation,

a process denominated as “missing self-recognition.” A study revealed

that, the downregulation of B2M expression (approximately 9.8%)

among NSCLC patients was correlated with an augmented infiltration

of NK cells (99). Abnormal overexpression of HLA-E/B2M was found

to be associated with NKG2A-expressing CD94+ T cells and NK cells in

MSI colorectal cancer, and an increased number of NKG2A+CD94+ T

cells was interrelated with an unfavorable prognosis (100). These

findings imply that the HLA-E/B2M-CD94/NKG2A axis may

partake in tumor immune escape, and corresponding strategies to

block B2M/NKG2A may usher in novel prospects for NK cell-based

immunotherapy for cancer patients.
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7.5 Radiotherapy

Radiotherapy can induce immune activation and elicit anti-

tumor responses through mediating DNA damage in tumor cells,

reshaping tumor immune microenvironment like an in-situ

vaccine, and initiating the release of inflammatory factors, which

may potentially confer benefits upon cancer patients who are

resistant to ICIs again. It has been found that radiotherapy can

facilitate the release of interferon-beta (IFNb) to upregulate B2M/

MHC-I expression on resistant tumor cells, enhance antigen

presentation, and restore responsiveness to PD-1 therapy (101). It

can also significantly increase the transcription of NLRC5, B2M,

and TAP1 in a dose-dependent manner to overcome resistance to

ICIs (102). Moreover, A synergy is attained when radiotherapy is

combined with CAR-T therapy in a mouse glioblastoma model, and

the underlying mechanism could be attributed to the circumstance

that radiotherapy potentiates recognition and cytotoxicity of CD8+

T cells through upregulating B2M/MHC-I (103). The combinations

of Stereotactic radiotherapy (SBRT) with camrelizumab brought

pronounced survival benefit in overall survival (OS) and

progression-free survival (PFS) for unresectable hepatocellular

carcinoma patients, attributed to the “abscopal effect” of

radiotherapy, as demonstrated by one prospective single-arm

clinical trial (104). However, the optimal radiotherapy dose and

fractionation are still under vigorous exploration to evoke systemic

anti-tumor immune responses. On the other hand, radiotherapy

can also induce the production of neoantigens to circumvent

inadequate antigen presentation and promote CTLs infiltration to

boost immunogenicity. Collectively, radiotherapy holds the

potential to serve as a promising alternative for reversing immune

resistance in B2M/MHC-I-deficient cancer patients.
7.6 Other therapies

Mounting evidence suggests that altering the gut microbiota has

turned to be a promising approach to reverse resistance across a

variety of cancer patients. NCT03772899, a Phase 1 clinical trial,

demonstrated that fecal microbiota transplant (FMT) as a latent

strategy for overcoming ICIs resistance in patients with advanced

melanoma (105). V. Gopalakrishnan’s team discovered that the

diversity of gut microbiota was higher in the anti-PD-1 treatment

responsive group (R) than in the non-responsive group (NR) (106). It

was found that the abundance of fecal bacteria for R group was

conspicuously elevated in the FMT experiment of sterile mice,

particularly with a marked enrichment of Bacteroides. Moreover,

the density of CD8+ T cells in the tumor tissues of mice that received

FMT from the R group was higher than that of mice receiving NR

transplant. Notably, the role of cytokines can’t be overlooked as

immune modulators to markedly ameliorate ICIs efficacy for cancer

patients. IFNg can facilitate CD8+ T cell priming and infiltration by

upregulating the expression of B2M/MHC-I on the surface of tumor

cells. The Beck research team, by establishing a B2M-deficient mouse

tumor model, revealed that MHC-I deficiency would result in severe

immune desertification in TME and widespread resistance to ICIs.
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Long-lasting mRNA-encoded interleukin-2 (IL-2) can boost potent

and durable antitumoral immune responses against B2M/MHC-I-

deficient tumors, restore immune cell infiltration, and exhibit highly

pro-inflammatory TME, thereby overcoming resistance incurred by

ICIs treatment (107).
8 Conclusion and prospects

Up to now, immunotherapy has assumed a pivotal role and

emerged as a milestone breakthrough in the history of tumor

treatment. Nevertheless, immune resistance, to a certain extent,

restricts its clinical application and constitutes a “stumbling block”

for the long-term benefit for each patient with cancer. It is an urgently

pressing and hot issue to elucidate the mechanism of immunotherapy

resistance and explore novel therapeutic targets. Among these, B2M

mutation/defect, which leads to antigen presentation dysfunction of

MHC class I molecule, constitutes an important cause of

immunotherapy resistance. Therefore, in-depth investigation into the

role of B2M in tumor immunotherapy resistance and the development

of corresponding strategies are of paramount importance.

This review systematically elaborates on the role and reversal

strategies of B2M in tumor immunotherapy resistance from

multiple perspectives. Notably, we have leveraged emerging

technologies such as scRNA-seq, IMC, and CRISPR/Cas9 to

deeply analyze the association between B2M and tumor immune

therapy resistance. As the light chain of MHC-I molecule, B2M

plays a pivotal role in tumor antigen presentation, with its

expression modulated by diverse mechanisms such as genetics,

epigenetics, cytokines, and non-coding RNAs. B2M mutation/

defect can impair antigen presentation, which constitutes

a significant factor of tumor immunotherapy resistance.

Interestingly, during ICIs treatment, immune cells such as CD4+

T cells, NK cells, and gd T cells mediate responses to B2M-deficient

tumors, offering new avenues to overcome the resistance stemming

from B2M deficiency. Additionally, combination therapies (such as

oncolytic viruses/bempegaldesleukin combined with ICIs),

personalized neoantigen tumor vaccines, optimized CAR-T

therapy (using gene editing technology to knock out B2M), NK

cell therapy, radiotherapy, fecal microbiota transplantation, and

cytokine therapy also provide promising approaches to reverse

immune resistance induced by B2M mutation.

Looking ahead, several critical fields in B2M-related tumor

immunotherapy research warrant further exploration. Firstly,

with the rapid development of high-throughput sequencing,

single-cell multi-omics technology (including proteomics,

transcriptomics, epigenomics, and spatial omics) can be used to

comprehensively analyze the expression profiles and functional

variations of B2M across diverse cell subpopulations within the

tumor microenvironment. It also facilitates the precise mapping of

B2M interaction profiles between tumor cells and immune cells,

elucidating potential synergistic or antagonistic mechanisms, and

providing a more detailed theoretical basis for precision therapy.

Secondly, while CD4+ T cells, NK cells, and gd T cells have been
Frontiers in Immunology 12
identified as key effector cells for ICB treatment in B2M-deficient

cancers, the underlying mechanisms by which these cells mediate

their cytotoxic effects remain to be fully elucidated. Lastly, there is a

need to develop more targeted and efficacious therapies for B2M

mutation/defect, such as small molecule inhibitors or biologics

designed to specifically address antigen presentation defects and

reverse immune resistance. In conclusion, it is imperative that we

make dedicated efforts to translate these issues into practical clinical

applications, thereby actualizing the concept of “from bench to

bedside” possible.
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