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Ischemic stroke (IS) is a significant contributor to disability and deathworldwide, with

limited treatments beyond early intervention. The importance of CD4+ T cells in the

advancement of IS has been highlighted by recent studies, providing new insights

into immunomodulatory strategies. This review describes the spatiotemporal

dynamics of CD4+ T cells and their subsets at different stages of IS. The signaling

pathways activated by IS regulate the distribution of CD4+ T cells and their subsets,

which further influences the inflammatory response and disease progression. In the

acute and subacute stages, CD4+ T cells exacerbate neuronal damage. In contrast,

CD4+ T cells, which are predominantly composed of Treg cells (Tregs), promote

tissue repair and neurological recovery in the chronic stage. In light of recent findings

that challenge traditional views, we analyze the underlying mechanisms and

potential explanations for these discrepancies. In addition, we summarize the

potential of targeting CD4+ T cells as a therapeutic strategy for IS. Although no

drugs specifically targeting CD4+ T cells have been developed, certain drugs that

modulate CD4+ T cells show potential for IS treatment. Moreover, multitarget drugs

integrated with nanomaterials are currently undergoing preclinical investigation. We

further explore the challenges in the clinical translation of CD4+ T-cell-targeted

therapies and discuss potential strategies to address these challenges. In conclusion,

a deeper comprehension of the complex effects of CD4+ T cells and their subsets on

IS will contribute to diseasemanagement and drug development, thereby improving

the quality of life for IS patients.
KEYWORDS
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1 Introduction

Stroke has become the second greatest cause of disability and death globally, with

ischemic stroke (IS) accounting for 87% of all stroke cases (1). Early revascularization has a

narrow therapeutic window, is not helpful for late functional recovery, and can cause

secondary reperfusion-induced brain injury (2). Immunomodulatory strategies are

important, as neuronal damage after IS initially results from sterile inflammation caused

by the damage-associated molecular patterns (DAMPs) release (3).
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The involvement of CD4+ T cells is essential in this process. Due

to the varying effects of these cells on different stages of IS, the acute

and subacute phases are collectively classified as the early stage,

whereas the chronic phase is referred to as the late stage (the acute

phase: 0–7 days after IS; the subacute phase: 7 days–3 months after

IS; and the chronic phase: from 3 months onward) (4). In the acute

phase, DAMPs activate immune cells with a proinflammatory

phenotype and induce an inflammatory cascade (5). The damaged

blood‒brain barrier (BBB) allows CD4+ T cells to infiltrate the

lesion site within 24 hours after IS (6). These cells present typical

features of innate immune cells at this stage (7). In the subacute

phase, CD4+ T cells continue to infiltrate the infarct region in a

time-dependent manner, further exacerbating neuronal damage (8).

However, in the chronic phase, although CD4+ T cells still infiltrate

the brain, the inflammatory response gradually diminishes, which

promotes tissue repair and regeneration (9). However, different

studies have reached conflicting conclusions concerning the effects

of CD4+ T cells on IS. These contradictions were clarified by the

discovery of CD4+ T-cell subsets, which have varying effects on

different stages of IS (10, 11). Given the complexity of the

mechanisms of different CD4+ T-cell subsets in IS, a

comprehensive analysis of their effects on the immune response

after IS is essential for understanding the pathological process of IS

and identifying potential therapeutic targets.

Immunosuppressive therapy for IS is necessary during the acute

and subacute phases due to brain inflammation, whereas the

periphery is in a state of immunosuppression because massive

peripheral immune cells migrate to the brain (12). Therefore,

immunosuppressive therapy further exacerbates peripheral

immunosuppression, which leads to severe infections in patients

with acute ischemic stroke (AIS). The central and peripheral

immune states are also reversed in the chronic phase. Therefore,

neither immunosuppression nor immune activation alone can

involve both central and peripheral treatment after IS. CD4+ T

cells and their subsets are potential immunomodulatory targets for

IS (13–15). Owing to the spatial and temporal distribution of CD4+

T cells, targeting these cells can flexibly regulate central and

peripheral immune responses. In addition, the selective

upregulation of anti-inflammatory subsets and downregulation of

proinflammatory subsets is possible according to the effects of

different CD4+ T-cell subsets. This approach accounts for the

different characteristics of central and peripheral immune

responses at different stages of IS, thereby avoiding unnecessary

immunosuppression or excessive inflammation. Moreover, CD4+

T-cell-targeted therapy in the chronic phase extends the therapeutic

window for IS patients, which offers potential benefits for patients

who are ineligible for revascularization therapy. Therefore, targeting

CD4+ T cells and their subsets has significant clinical value.

This review analyzes the temporal distribution and functional

characteristics of different CD4+ T-cell subsets involved in the

poststroke immune response and summarizes clinical agents that

target CD4+ T cells for IS treatment. We aim to provide new

insights and potential directions for immunotherapy for IS.
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2 Subsets and functions of CD4+ T
cells

The differentiation of CD4+ T cells begins with classical

costimulatory signals necessary for their activation (16, 17). After

the invasion of different antigens into an organism, antigen-

presenting cells (APCs) facilitate the formation of adaptive tissue

microenvironments. The binding of MHC II molecules on APCs

and T-cell receptors (TCRs) on CD4+ T cells provides the first

signal, and stimulatory or inhibitory costimulatory molecules on

APCs deliver the second signal by binding to CD28 receptors on

CD4+ T cells. These costimulatory molecules modulate key

transcription factors within CD4+ T cells, thereby guiding their

differentiation into distinct subsets. The tissue microenvironment

induced by APCs simultaneously contains a diverse array of

cytokines. These cytokines regulate gene expression in CD4+ T

cells to form specific functional effector subsets.

The antigen-driven molecular expression of APCs and the

formation of distinct cytokine environments determine the

differentiation of CD4+ T-cell subsets, which ultimately enables

adaptive immune responses to specific antigenic challenges (18).

Currently, researchers have identified nine CD4+ T-cell subsets.

Their differentiation mechanisms and functions are specifically

illustrated in Figure 1.
3 Spatiotemporal dynamics of CD4+ T
cells and their subsets in IS

Following IS, the initial activation and proliferation of CD4+ T

cells are antigen-independent. CD4+ T cells are activated through a

classical antigen-dependent response only in the late stage of IS (7).

Many molecules, such as chemokines (19) and the lipid molecule

sphingosine-1-phosphate (S1P) (20), signal the recruitment of

CD4+ T cells. CD4+ T cells subsequently migrate through

interactions with adhesion molecules on the vascular endothelial

cell surface and eventually infiltrate the ischemic infarct region

through the disrupted BBB (21). Recent studies have reported that

the choroid plexus and meninges might be other routes for CD4+ T-

cell entry following IS (22) (Figure 2).

CD4+ T cells rapidly decrease in number in the circulation and

infiltrate the brain within 24 hours following IS (6). Within the first

week, the brain contains few CD4+ T cells, and their numbers

increase significantly by day 7 and persist for up to 30 days. In the

early stage, Th1, Th17, and follicular helper T cells (Tfh) cells are the

predominant CD4+ T cells (23). The number of these cells decreases

by day 7 and gradually increases in the late stage. In contrast, Th2

cells exhibit the opposite pattern. Treg cells (Tregs) are rarely

observed in the brain in the early stage (24). Their numbers

increases on day 7 and persists throughout the late stage of IS.

These findings indicate that CD4+ T-cell subsets enter the brain

at different stages of IS, with the process being affected by different
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molecules (Table 1). In early IS, microRNA-494-3p induces Th1

differentiation through the upregulation of gene transcription (25).

Mucosa-associated lymphoid tissue lymphoma translocation

protein 1 (MALT1) and Interferon gamma (IFN-g) promote Th1

and Th17 cell proliferation by increasing the levels of

differentiation-related cytokines (26, 27). The regulation of cell

apoptosis by FasL (28) and cell metabolism by acetyl coenzyme A

carboxylase 1 (ACC1) (29) also increases the proportion of Th17/

Treg ratio. Additionally, CXCL13 expression increases the

recruitment of Tfh cells into the infarct region (30). In the late

stage, IL-6 and IL-33 promote Th2/Treg differentiation. They

inhibit Th1/Th17 differentiation by modulating the secretion of

the corresponding cytokines at the same time (31, 32).

The spatiotemporal distribution of CD4+ T cells and their

subsets after IS is closely linked to their effects on disease

progression. The inflammatory microenvironment induced by IS

regulates the migration and functional states of these cells over time,

thereby shaping their immunomodulatory effects during different

stages (5). These dynamic changes suggest that CD4+ T-cell subsets

infiltrating the brain during early IS exacerbate cerebral damage,
Frontiers in Immunology 03
whereas those present in late IS facilitate functional recovery

(Table 2). However, recent findings challenge the conventional

understanding. Th17 cells, which are proinflammatory immune

cells, might promote neurogenesis and angiogenesis in the late stage

of middle cerebral artery occlusion (MCAO) (33, 34). Although

numerous studies have reported that Tregs reduce the infarct

volume by suppressing inflammatory responses after MCAO (35),

Tregs might also contribute to cerebrovascular endothelial

dysfunction in the early stage of IS (36). Next, we discuss in detail

the roles and mechanisms of CD4+ T cells and their subsets.
4 Effects of CD4+ T cells on different
stages of IS

4.1 CD4+ T cells promote neuronal death
in early IS

The massive cell death caused by the inflammatory response

during the early stage of IS leads to severe brain damage. CD4+ T
FIGURE 1

Subsets and functions of CD4+ T cells. (Figures 1-4: Created with BioRender.com).
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cells induce neuronal death through cell–cell interactions and

interleukin secretion (Figure 3).

Following IS, the expression of FasL increases on CD4+ T cells.

The interaction between FasL on CD4+ T cells and Fas on neurons

directly kills neurons by activating apoptosis-related signaling

pathways (37). CD4+ T cells also indirectly increase neuronal

apoptosis by microglia (28). CD4+ T cells induce M1 phenotypic

polarization by the NF-kB signaling pathway and promote neuronal

death. In turn, neurons paradoxically induce the polarization of

microglia toward the M1 type, which causes a cascade response and

impaires the poststroke outcomes.

Brain-infiltrating CD4+ T cells release Nox2-derived superoxide

following stroke, which promotes neuronal death (38). Additionally,

treatment with CD4+ T-cell-derived IL-21 upregulates the expression

of the autophagy-associated gene ATG6 in MCAO model mice,
Frontiers in Immunology 04
which indicates that IL-21 increases neuronal autophagy following

IS (39).
4.2 CD4+ T cells exacerbate cognitive
dysfunction in late IS

During the chronic phase of IS, CD4+ T cells impair

neurological recovery by inducing apoptosis in neural stem/

progenitor cells (NSPCs) (11) and initiating a delayed immune

response (40).

NSPCs are crucial for late-stage IS repair. Depleting CD4+ T

cells increases the survival and proliferation of NSPCs in mice at 3

days and 7 days after MCAO. Compared with CD4+ T-cell-deficient

mice, wild-type mice present higher Fas expression in NSPCs. These
FIGURE 2

CD4+ T-cell response after ischemic stroke (IS). Following IS, DAMPs release from the injured blood-brain barrier (BBB) to the periphery and are
presented by antigen-presenting cells (APCs). APCs activate circulating CD4+ T cells by the binding of MHC II and TCR, which is the first stimulating
signal of CD4+ T cell activation. The second stimulating signal of CD4+ T cell activation is the binding of CD28 and B7. CD28 family includes CD28,
PD-1 and CTLA-4, in which PD-1 and CTLA-4 play the inhibitory role in CD4+ T cell activation. After being activated, CD4+ T cells are recruited into
the brain. The expression of adhesion molecules such as VCAM-1 and E-selectin promote the recruitment and infiltration of CD4+ T cells.
Meanwhile, inflammatory mediators and S1P also induce CD4+ T cells to flow into the brain.
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findings suggest that CD4+ T cells promote NSPC apoptosis after

MCAO through the activation of the Fas/FasL pathway (11).

The B-cell response is associated with poststroke cognitive

impairment (PSCI). The infiltration and aggregation of B cells in

the infarct region are promoted by CD4+ T cells. Myeloid cells

subsequently surround the infarct and form ectopic lymphoid

structures. This process drives B cells to produce antigen-specific

autoantibodies, exacerbating late neurological deficits and cognitive

decline (40).
5 Effects of Th1 cells on different
stages of IS

5.1 Th1 cells disrupt the BBB and promote
the inflammatory response in early IS

The number of tight junctions (TJs) is reduced by Th1-derived

IFN-g following IS, leading to a disruption in BBB integrity (41).

This process not only severely damages the BBB but also allows
Frontiers in Immunology 05
large amounts of IFN-g to enter the brain, which in turn exacerbates

ischemic damage.

Although not verified in models of cerebral ischemia, the

inflammatory response is aggravated by Th1 cells through the

secretion of proinflammatory cytokines that stimulate immune cell

activation and promote proinflammatory cell differentiation (42).
5.2 Th1 cells promote neurological
functional recovery in late IS

Fourteen days after MCAO, IFN-g activates the JAK/STAT1

signaling pathway by binding to IFN-g receptor 1, which is

expressed on extracellular vesicles derived from NSCs (43). This

process increases neuronal survival and improves poststroke

neurological function.

Additionally, IFN-g can induce the expression of specific

miRNAs in exosomes derived from human NSCs to promote

neuronal survival (44).
FIGURE 3

Effects of CD4+ T cells on ischemic stroke (IS). In the early stage of IS, CD4+ T cells induced neuronal death in multiple manners. These cells directly
kill neurons by activating Fas/FasL signaling pathway. In addition, CD4+ T cells promote M1 phenotype polarization by NF-kB pathway and then
induce neuronal death. Moreover, the secretion of IL-21 and reactive oxygen species (ROS) increase the neuronal injury. In the late stage of IS, CD4+

T cells reduce the survival and proliferation of neural stem/progenitor cells (NSPCs). These cells also induce delayed B cells to infiltrate into the
infarct region, which alleviates the poststroke cognitive impairment (PSCI).
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6 Effects of Th2 cells on different
stages of IS

6.1 Th2 cells promote neuronal survival in
early IS

Th2 cells exert poststroke protection by secreting cytokines,

such as IL-4 and IL-13 (45, 46). The M2 phenotype in microglia/

macrophages can be induced by both IL-4 and IL-13. This

phenotypic switch alleviates early inflammation in the brain and

reduces neuronal death after IS.

In addition, IL-4 potentiates the AKT/MAPK pathway by binding

to IL-4R on neurons, which increases neuronal survival (47). However,
Frontiers in Immunology 06
Liu et al. indicates that IL-4 protects neurons by delaying neuronal

apoptosis rather than reducing neuronal loss (48).
6.2 Th2 cells promote brain repair in late IS

Treatment with IL-4 and IL-13 promotes white matter

recovery and improved sensory and motor functions in the late

stage of MCAO (46, 48). IL-4 can directly stimulate

oligodendrocyte progenitor cell (OPC) differentiation and

remyelination by activating the IL-4/PPARg signaling pathway,

which increases the integrity of the white matter following

experimental IS (49).
FIGURE 4

The mechanism by which Treg cells (Tregs) affect ischemic stroke (IS). Tregs inhibit the proinflammatory response in AIS. However, these cells can
also exacerbate brain injury through thrombus formation. During subacute and chronic stage of IS, Tregs have a protective effect on IS. In subacute
IS, Tregs suppress the inflammatory response by secreting anti-inflammatory cytokines. These cells also inhibit neutrophils-derived MMP-9 to
release by PD-1/PD-L1 signaling pathway, which alleviated the blood-brain-barrier (BBB) disruption. In addition, transplantation of Tregs in the gut
alter the microbiota and increase the short-chain fatty acid production, which protect the integrity of BBB by brain-gut axis. After Tregs infiltration
into the brain in the chronic stage of IS, Tregs promote the neuronal repair. These cells activate oligodendrocytes and M2 phenotypes but inhibited
astrocytes to induce neuronal repair.
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TABLE 1 The modulation of CD4+ T-cell differentiation after IS.

Molecule
name

Molecule
type

Effect Mechanism Author Year

MicroRNA-494 MiRNA Th1 shift Promoting the STAT4 transcription Zhao et al. (25) 2020

MALT1 paracaspase Th1 and Th17 shift Activating NF-kB signaling pathway Chen et al. (26) 2021

IFN-g chemokine
Promoting Th1 proliferation and chemotaxis to the

injured site
Serving as related

differentiation cytokines
Seifert et al. (27) 2014

CXCL13 chemokine Increasing Tfh recruitment Promoting cell recruitment Rayasam et al. (30) 2022

FasL
Death

receptor ligand
Promoting Th17 while suppressing Tregs Regulating cell apoptosis Zhao et al. (28) 2018

IL-6 cytokine Promoting Th2/Tregs; inhibiting Th1
Affecting corresponding

cytokines secretion
Yao et al. (31) 2019

IL-33 cytokine Promoting Th2/Tregs; inhibiting Th1/Th17
Affecting corresponding

cytokines secretion
Guo et al. (32) 2023
F
rontiers in Immuno
logy
 07
 frontie
TABLE 2 The effects of CD4+ T cells and their subsets on IS at different stages.

Phases of stroke Types of CD4+ T cells Effects on stroke Mechanisms

Acute phase

CD4+ T cells Detrimental Promoting neuronal death

Th1 cells Detrimental Disrupting the BBB; Promoting inflammatory response

Th2 cells Protective Promoting neuronal survival

Th17 cells Detrimental
Impairing the BBB integrity;
Inducing neuronal death

Tregs Paradoxical
Inhibiting neuroinflammation;

Increasing thrombo-inflammatory

Th22 cells Protective
Inhibiting neuronal apoptosis;
Suppressing oxidative stress;

Reducing inflammatory response

Tfh cells Detrimental Promoting neuronal apoptosis

CD4+CD28- T cells Detrimental Increasing proinflammatory cytokines release

Subacute phase

CD4+ T cells Detrimental Promoting neuronal death

Tregs Protective
Inhibiting proinflammatory response;

Promoting the BBB repair

Chronic phase

CD4+ T cells Detrimental Increasing neurological deficits

Th1 cells Protective Promoting neuronal survival

Th2 cells Protective Promoting brain repair

Th17 cells Unsure Regulating neurogenesis and angiogenesis

Tregs Protective Promoting brain repair
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7 Effects of Th17 cells on different
stages of IS

7.1 Effects of Th17 cells on early IS

7.1.1 Th17 cells disrupt the BBB in early IS
Th17 cells are involved in IS primarily through IL-17 secretion,

although gdT cells and astrocytes are the main contributors of IL-17

in early stroke (50).

IL-17A reduces the levels of TJs proteins and increases MMP-2

expression through the interaction with IL-17A receptors on the

vascular endothelial cells, which exacerbates BBB injury (51). The

binding of IL-17A and IL-17A receptors also activates the myosin

light chain and induces the contraction of cerebral microvascular

endothelial cells, which increases the interendothelial cell distance

and BBB permeability (52).

In addition, IL-17 can directly induce endothelial cell apoptosis

through the activation of caspase-3, thereby promoting BBB

damage (53).

7.1.2 Th17 cells induce neuronal apoptosis in
early IS

The expression of IL-17A receptors on the neuronal surface also

increases after IS. The binding of IL-17 and IL-17A receptors can

directly induce neuronal death after oxygen–glucose deprivation/

recovery (OGD/R) (54). Additionally, IL-17A increases calcineurin-

mediated dephosphorylation of the mammalian target of rapamycin

(55). It induces excessive neuronal autophagy, which promotes

neuronal death. After IS, TRPC6/CREB maintain neuronal

survival and function by increasing neuronal cellular tolerance to

hypoxia (56). IL-17A can increase TRPC6 hydrolysis to promote

neuronal death and neurological dysfunction.
7.2 Effects of Th17 cells on late IS

7.2.1 Th17 cells modulate neurogenesis in late IS
The effects of IL-17 and Th17 cells on poststroke neurogenesis

continues to be debated.

IL-17 knockout promotes hippocampal neurogenesis and

improves cognitive deficits by upregulating the Wnt signaling

pathway (57). However, IL-17 derived from astrocytes inhibits

calpain 1 activity through p38 MAPK activation, which increases

the proliferation and differentiation of NPCs after IS (58). In

addition, IL-17 induces neurite outgrowth in the postsympathetic

ganglion through the activation of NF-kB (59). These findings

suggest that IL-17 from different sources plays different roles in

neurogenesis after IS. Therefore, clarifying the source of IL-17 and

the effects of different sources of IL-17 on IS is crucial.

Moreover, Th17-derived IL-17 inhibits OPC proliferation and

promotes myelin damage by attenuating serine/threonine kinase

activity (60). Th17 cells can also directly activate NOTCH1 in OPCs

to promote defective remyelination (33). However, researchers have

not clearly determined whether Th17 cells affect remyelination

after IS.
Frontiers in Immunology 08
7.2.2 Th17 cells increase angiogenesis in late IS
Angiogenesis is important for neurologic recovery after IS.

Although few studies have investigated the role of IL-17-mediated

angiogenesis in IS, IL-17 promotes angiogenesis in individuals with

diabetes and inflammatory diseases (61, 62).

In IL-17 knockout mice, the levels of vascular endothelial

growth factor and CD34 are reduced in the brain 28 days after

MCAO (34). Astrocyte-derived IL-17A reportedly mediates

angiogenesis in rats with IS (63), but the effect of Th17 cells on

angiogenesis after IS remains to be explored.
8 Effects of Tregs on different stages
of IS

8.1 Tregs mediate both inflammation and
thrombosis in AIS

The effect of Tregs on AIS remains paradoxical. Tregs leads to a

reduction in infarct volume and an improvement in neurological

function by suppressing proinflammatory responses in MCAO

mice (35).

However, a Foxp3+ Treg depletion unexpectedly reduces the

infarct volume and improves neurological function scores 24 hours

after MCAO (36). This finding was later confirmed by Schuhmann

et al. (64). The harmful effects of Tregs differ from their traditional

immunoregulatory functions, which are mediated by an inside-out

signaling mechanism. These Tregs are predominantly localized in

cerebral blood vessels rather than in the brain parenchyma, which is

consistent with the physiological process of IS and the high adhesive

capacity of Tregs (64). In AIS, brain tissue damage is driven mainly

by localized inflammation and microvascular dysfunction. Twenty-

four hours after MCAO, chemokines released from the brain tissue

activate intracellular signaling pathways in Tregs, which upregulate

the expression of surface receptors. These receptors interact with

ligands on endothelial cells and platelets, causing thrombus

formation and promoting the secondary brain injury

(36) (Figure 4).

Therefore, Tregs might either exert a protective effect by

suppressing inflammation or exacerbate brain damage through

thrombus formation in AIS. These findings suggest that the effect

of Tregs on IS pathology might depend on their spatiotemporal

distribution and microenvironmental regulatory signals.
8.2 Effects of Tregs on subacute IS

8.2.1 Tregs suppress the inflammatory response
in subacute IS

The anti-inflammatory effects of Tregs appear in the peripheral

nervous system rather than in the brain in the subacute phase.

These cells secret anti-inflammatory cytokines after IS (65). These

cytokines weaken the inflammatory response by inhibiting

proinflammatory cytokine production and inducing inflammatory

immune cell death in a cytolytic manner.
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In addition, peripheral Tregs alleviate the inflammatory

response in the brain by the brain–gut axis. An elevated

proportion of Tregs in the lamina propria of the large intestine

alters the gut microbiota and increases short-chain fatty acid levels

(66). Moreover, an increase in the number of Tregs inhibits Th17-

cell differentiation and gdT-cell proliferation to disrupt their

invasion into the brain (67).

8.2.2 Tregs promote BBB repair in subacute IS
Following IS, endothelial cells activate C-C chemokine receptor

type 5 (CCR5) on Tregs, which increases the expression of PD-L1 in

Tregs (68). The binding of PD-L1 on Tregs to PD-1 on neutrophils

then inhibit MMP-9 production and alleviate BBB disruption.

IL-35 secreted by Tregs also promotes BBB repair (69).

Ischemia induces the production of reactive oxygen species (ROS)

and thioredoxin-interacting protein (TXNIP) in endothelial cells to

exacerbate inflammatory injury. IL-35 inhibits the ROS/TXNIP/

caspase-1 pathway and increases TJ expression, thereby attenuating

the BBB disruption after IS.
8.3 Tregs promote neuronal repair in
chronic IS

During the late stage of IS, Treg depletion exacerbates white

matter lesions and sensorimotor dysfunction (70).

Tregs induce microglial differentiation toward a reparative

phenotype and promote oligodendrocyte regeneration, which

leads to improvements in neuronal repair and behavioral

functions (24). Tregs also inhibit astrocyte proliferation and

neuronal apoptosis through the IL-6/STAT3 pathway, which

maintains brain integrity and attenuates poststroke neurological

deficits (10).
9 Effects of other CD4+ T-cell subsets
on different stages of IS

9.1 The protective effect of Th22 cells on
early IS

Although no studies on the poststroke effects of Th22 cells have

been published, IL-22, a product of Th22 cells, has been investigated

in IS (71).

During the early stage of ischemia, JAK2/STAT3 signaling

mediates neuronal apoptosis, oxidative stress and the

inflammatory response. IL-22 administration regulates this

process to exert a protective effect on early IS.
9.2 Tfh cells induce neuronal apoptosis in
early IS

In early IS, the harmful effect of Tfh cells was mediated by the

secretion of IL-21. IL-21 secreted by Tfh cells activates the JAK/
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STAT3 pathway by binding to IL-21R expressed on neurons,

leading to caspase 3/7-mediated neuronal apoptosis after IS (30).
9.3 CD4+CD28- T cells increase
proinflammatory cytokine release in early
IS

CD4+CD28- T cells are sometimes classified as specific Th1

cells, which are associated with aging and immune disorders (72).

However, CD4+CD28- T cells are found only in elderly individuals

and patients, which limits the study of these cells (73).

In AIS patients, the number of CD4+CD28- T cells in the blood

is positively related to the National Institute of Health Stroke Scale

(NIHSS) score (74). AIS might activate the costimulatory receptor

CD137 on CD4+CD28- T cells to induce proinflammatory cytokine

release (75).
10 Potential of CD4+ T cells and their
subsets in the clinical diagnosis and
treatment of IS

10.1 CD4+ T cells and their subsets predict
the clinical prognosis of IS patients

An early assessment of CD4+ T-cell proportions or specific

markers in the peripheral blood of AIS patients can aid in predicting

the early severity of injury and long-term potential for recovery.

Although the association between CD4+ T cells and the IS prognosis

should theoretically correspond to the effects of their subsets on

disease progression, clinical studies have not identified statistically

significant correlations for certain CD4+ T-cell subsets. Th17 cells

and Tregs exhibit the highest predictive value among these subsets,

which is likely due to their critical roles throughout IS progression.

10.1.1 Assessment of early brain injury in IS
patients: improving diagnostic efficiency and
reducing healthcare costs

In patient with early IS, the proportions of CD4+ T cells and

their subsets in the peripheral blood serve as indicators of the

severity of acute brain injury through their correlations with the

infarct volume and the NIHSS score.

Compared with healthy individuals, AIS patients presented a

lower Treg proportion in the periphery at admission. A reduced

Treg proportion was associated with an increased infarct volume

and worsened early neurological deficits (76). Further research

reported that a greater proportion of CCR5+ Tregs was linked to

smaller infarct volumes in patients with mild IS than in those with

severe IS (77).

Additionally, markers associated with Th17 cell levels provided

insights into stroke severity in the early stages. The expression of

long noncoding RNA urothelial carcinoma-associated 1 (lncRNA

UCA1) was positively correlated with the proportion of Th17 cells

in blood samples collected within 12 hours of stroke onset. The
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significantly elevated levels of the lncRNA UCA1 indicated a short-

term functional impairment (78). Conversely, the expression of cell

division cycle 42 (CDC42) was negatively correlated with Th17 cell

proportions and was significantly lower in AIS patients than in

controls. CDC42 expression was negatively correlated with the

NIHSS score (79).

These biomarkers enable a rapid assessment of injury severity

following IS. Moreover, low-cost blood tests provide an effective

preliminary evaluation of a patient’s condition, ultimately reducing

treatment costs.
10.1.2 Prediction of the long-term functional
recovery in IS patients: optimizing personalized
treatment strategies and enhancing long-term
disease management

The levels of peripheral CD4+ T cells and their subsets not only

reflect acute damage but also serve as predictive markers for the

prolonged survival and quality of life for patients after IS.

The CD4+ T-cell count in the peripheral blood was identified as

an independent predictor of the long-term cognitive recovery of AIS

patients, but a statistically significant correlation was observed only

when it was measured within 1 to 3 days after AIS onset (80).

Many studies have reported that a reduced proportion of Tregs

is associated with impaired long-term neurological recovery (76).

Further analysis of Treg subsets in relation to stroke prognosis

showed that a significant reduction in the naive Treg/memory Treg

ratio was associated with cognitive impairment within 90 days after

IS (81). In addition, an increased proportion of CCR5+ Tregs in the

periphery was linked to better functional recovery three months

after IS (77).

Among patients admitted within 24 hours of stroke onset, Th17

cell levels on day 7 poststroke showed the strongest positive

correlation with cognitive impairment, whereas Th17 levels at all

acute-phase time points were positively correlated with IS

recurrence and mortality (23). The expression levels of specific

genes associated with Th17 cell proportions were also closely related

to the IS prognosis. The expression of MALT1, ACC1, and the

lncRNA UCA1 was positively correlated with the number of

peripheral Th17 cells. Notably, high expression of MALT1 and

ACC1 was linked to reduced recurrence-free survival (RFS) (26, 82).

Moreover, high lncRNA UCA1 expression not only shortened RFS

but also increased the risk of recurrence and mortality within three

years (78). In contrast, CDC42 expression negatively correlated

with Th17 cell proportions. A decrease in CDC42 expression on day

3 postadmission was associated with an increased risk of recurrence,

whereas low expression of CDC42 on day 7 predicted increased

mortality (79).

Thus, the early detection of CD4+ T-cell proportions and their

subsets enables effective prediction of the long-term functional

recovery, RFS, and survival outcomes of AIS patients. This

predictive capability facilitates the optimization of individualized

treatment strategies through early rehabilitation and targeted

IS therapy.
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10.2 Potential of targeting CD4+ T cells
and their subsets for IS therapy

10.2.1 Blockade of CD4+ T-cell migration
10.2.1.1 Monoclonal antibodies

In the past, the relationship between CD4+ T cells and IS was

poorly understood. Early research suggested that CD4+ T-cell

infiltration into the brain exacerbated IS, which led to the

hypothesis that blocking the migration of CD4+ T cells to the

brain could improve IS outcomes. Enlimomab, a murine-derived

monoclonal antibody that targets CD54, was developed to test this

approach (83). Although enlimomab reduced the infiltration of

peripheral immune cells and the cerebral infarct volume in animal

models, it worsened IS outcomes in clinical trials (Table 3). This

discrepancy might result from allergic reactions induced by

heterologous immunoglobulins.

As a result, a humanized antibody called natalizumab was

developed. It inhibited the adhesion and infiltration of CD4+ T

cells by targeting a-4 integrin (84). However, the therapeutic effects

of natalizumab on animal models were inconsistent (85, 86). A

phase II clinical trial (ACTION) reported that administering

natalizumab (300 mg) intravenously within 9 hours of AIS onset

verified the safety of the drug but the researchers failed to show

therapeutic efficacy (87). The investigators added groups with

different treatment time windows (within 9 hours or 9–24 hours

after onset) and different natalizumab doses (300 mg or 600 mg) to

verify the efficacy of natalizumab but still did not observe significant

differences in efficacy (88). The lack of therapeutic effects was

probably due to the inadequate and short-lived blockade of CD4+

T-cell infiltration (89). Therefore, simply inhibiting the infiltration

of peripheral immune cells into the lesion area appeared insufficient

to benefit IS patients.

10.2.1.2 Fingolimod

Fingolimod, an S1P receptor (S1PR) antagonist, was originally

approved by the FDA for the treatment of multiple sclerosis (90).

After activation through phosphorylation, fingolimod induced the

loss of S1PR activity by binding to S1PR on the surface of CD4+ T

cells. This interaction led to the sequestration of CD4+ T cells,

which prevented the migration of CD4+ T cells to the brain.

In MCAO rats, fingolimod administration reduced infarct

volume and alleviated neurological deficits (91). Fu et al. reported

that the oral administration of fingolimod (0.5 mg daily; 3

consecutive days) to patients beyond the therapeutic window for

alteplase (t-PA) (after 4.5 hours onset) reduced the infarct volume

and improved neurological function 7 days after IS (92). In patients

eligible for t-PA (within 4.5 hours after onset), the combination of

oral fingolimod resulted in a smaller infarct volume and better

neurological recovery than t-PA alone (93). In addition, oral

fingolimod increased the efficacy of delayed t-PA (after 4.5–6

hours onset) (94). Bridging therapy is also a common approach

for revascularization in IS treatment. Compared with patients

treated with bridging therapy alone, 80% of patients treated with
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fingolimod in combination with bridging therapy presented a

greater ischemic hemidiaphragm tissue salvage index (95). These

findings suggested that fingolimod not only expanded the

applicability of IS therapy, but also enhanced the neuroprotective

effects of revascularization.

No studies reported severe adverse events including myocardial

infarction, recurrent stroke, or liver dysfunction, in AIS patients

treated with fingolimod (93). However, fingolimod-induced

lymphopenia might increase the risk of infection. Clinical trials

reported that these infections were generally mild and could be

effectively controlled with short-term antibiotic treatment (92). A

novel drug delivery system incorporating cellular manganese

dioxide nanospheres loaded with fingolimod was developed. This

system not only increased targeted drug delivery to infarct regions

but also released oxygen and reduced oxidative stress in addition to

the original actions of fingolimod (96).

10.2.1.3 CircSCMH1

CircSCMH1 promoted functional recovery after IS by reducing

peripheral immune cel l infi l trat ion and upregulat ing

neuroplasticity-related gene expression. However, the clinical

application of conventional circSCMH1 delivery systems was

limited by safety concerns.

Yang et al. developed engineered exosomes to selectively deliver

circSCMH1 to the brain following cerebral ischemia in rodents and

primates. This novel delivery approach not only increased the

therapeutic efficacy but also extended the treatment window for

IS (97).

10.2.2 Regulation of CD4+ T-cell differentiation
Recominant IL-33, IL-2/IL-2Ab and IL-4 nanoparticles, which

regulated CD4+ T-cell differentiation in early IS, exerted

neuroprotective effects on IS in animal models (49, 98, 99). These

agents decreased the ratio of Th1 cells to Th17 cells while increasing

the ratio of Th2 cells to Tregs. Gut microbial therapy might also
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affect IS outcomes by modulating the migration of specific CD4+ T-

cell subsets to the lesion area (100).

Rodents and humans differ significantly in their physiological

structures and immune systems. Some studies have explored the

potential role of humanized cells in IS treatment to simulate the

human environment and facilitate the translation of research

findings. For example, the transplantation of human pluripotent

stem cell-derived vascular endothelial cells promoted the

recruitment of Tregs to the injury site, which significantly

suppressed neuroinflammation and promoted myelin regeneration

after white matter ischemia (101). Additionally, small extracellular

vesicles derived from embryonic stem cells could activate the TGF-b/
Smad signaling pathway following MCAO, which increased Treg

proliferation and ameliorated neurological deficits (102). However,

these studies remain in the preclinical trial phase.

10.2.2.1 Maraviroc

Maraviroc, a CCR5 antagonist, was found to improve PSCI after

IS. A phase II clinical trial (MARCH) reported that oral maraviroc

(300 mg daily or 600 mg daily; 14 consecutive days) improved

cognitive recovery in patients who suffered an IS for at least 1

month. Recurrent cardiovascular events and other maraviroc-

related adverse events were recorded, but no drug-related adverse

reactions were identified (13). The mechanism underlying this effect

might be that maraviroc inhibited the proinflammatory response

and promoted the recruitment of Tregs into the infarct site (103).

10.2.2.2 JPI-289

The PARP-1 inhibitor JPI-289 was initially reported to protect

neuronal survival by attenuating ATP depletion in neurons after

OGD (104). JPI-289 also modulated the poststroke immune

response by increasing the ratio of peripheral Tregs and related

anti-inflammatory factors in IS patients A phase I clinical trial of

JPI-289 in Korea reported its safety and tolerability (14). A phase II

clinical trial is underway to assess the efficacy of JPI-289.
TABLE 3 The potential of CD4+ T cells and their subsets for IS therapy.

Agent Trial phase Efficacy Mechanisms Reference

Enlimomab Phase III clinical trial Enlimomab worsened IS outcomes
Reducing infiltration of peripheral immune cells

by the bind of CD54
(83)

Natalizumab
Phase II clinical
trial (ACTION)

Drug safety was verified but failed to show
therapeutic efficacy

Inhibiting infiltration of peripheral immune cells
by targeting a-4 integrin

(87, 88)

Fingolimod Phase II clinical trial
Drug safety was verified; Improving neurological

function both administration alone and
combination with revascularization

Blocking lymphocyte migration by inhibiting
S1PR activity

(92–95)

CircSCMH1 Preclinical trial
Improving functional recovery in rodent and

primate models
Inhibiting infiltration of peripheral immune cells (97)

Maraviroc
Phase II clinical
trial (MARCH)

Improving long-term cognitive recovery
Promoting the recruitment of Tregs into

the brain
(103)

JPI-289 Phase II clinical trial
Drug safety was verified and the efficacy

evaluation is underway
Increasing peripheral Treg proportion and

related anti-inflammatory factors
(14, 104)

Resveratrol Phase II clinical trial Improving IS outcomes Increasing the proportion of Tregs and cytokines (15)
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10.2.2.3 Resveratrol (RV)

Mice pretreated with vitamin D3 had an increased proportion of

Tregs and a decreased proportion of Th17 cells in the brain 1 day after

MCAO (105). Concurrently, the proportions of Tregs and cytokines

were increased centrally and peripherally in rats pretreated with RV

(15). The administration of atorvastatin after MCAO increased the

proportion of central Tregs and decreased the proportion of

peripheral Tregs in rats (106). All these treatments prevented lesion

expansion and ameliorated neurological deficits. However, only RV

produced clinical benefits in IS patients in clinical trials. Combined

treatment with RV and recombinant tissue plasminogen activator (rt-

PA) improved the NIHSS score compared to treatment with rt-PA

alone. The beneficial effect of RV was more pronounced on patients

who received delayed rt-PA treatment (2–4 hours after onset) (107).
11 Conclusions and perspectives

This review describes the comprehensive involvement of CD4+

T cells and their subsets in the response to IS. We also summarize

their effects on different stages of IS and highlight potential clinical

strategies for targeted therapies.

The dynamic changes in the immune microenvironment

following IS regulate the spatiotemporal distribution of CD4+ T

cells and their subsets, which further influences the disease

progression. In general, elevated levels of CD4+ T cells and their

subsets during the early stage of IS exacerbate the injury, whereas

high numbers of these cells in late IS promote recovery. However,

certain exceptions have been noted. Numerous studies have reported

that CD4+ T cells have detrimental effects on both the early and late

stages of IS (37, 40). Unlike the antigen-independent response of

CD4+ T cells during early IS, the adaptive immune response of CD4+

T cells in late stages requires 3 to 7 days to activate (7). Signals

released following AIS activate CD4+ T cells through antigen

presentation, which subsequently recruit peripheral immune cells

to infiltrate the brain parenchyma (40). In addition, the CD4+ T-cell-

mediated cytotoxicity of NSPCs following MCAO contributes to

delayed poststroke damage, as NSPCs play a critical role in tissue

repair during the late stage of IS (11). Previous studies have often

broadly discussed the role of CD4+ T cells in late IS. However,

significant heterogeneity in their functions in the late stages of IS has

been observed with the identification of different CD4+ T-cell subsets

in recent years. Therefore, studying CD4+ T cells as a whole may

overlook subset-specific effects, which might lead to biased results.

Future research should focus on the specific effects of CD4+ T-cell

subsets rather than generalizing the effects of total CD4+ T cells.

Additionally, the dual role of Tregs in AIS might stem from their

involvement in multiple pathological mechanisms, including the

suppression of inflammation and the disruption of cerebrovascular

endothelial integrity (35, 36). Notably, Tregs that mediate different

mechanisms exhibit distinct spatial distributions, which suggests the

existence of functionally specialized Treg subsets in IS pathology (64).

This hypothesis was further supported by the value of Tregs in

predicting the IS prognosis. Studies have shown inconsistent

correlations between different Treg subsets and IS outcomes. Future
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research should focus on elucidating the complex mechanisms of

Tregs in IS and exploring the functional diversity of their subsets.

Evidence from animal models has indicated that Th17 cells

contribute to early brain injury following IS (51). Clinical studies

also reported that an elevated proportion of Th17 cells was correlated

with increased acute damage and worsened long-term prognosis (23).

However, Th17 cells remained detectable in the brain 30 days after IS

(108). Moreover, Th17 cells mediate neuroregeneration and

angiogenesis in other disease models (33, 61). These findings

suggest that Th17 cells might have distinct functions in late IS

compared with early IS. Therefore, further research is needed to

clarify the specific mechanisms underlying the effects of Th17 cells on

the late stage of IS. Furthermore, existing studies have focused

primarily on the roles of CD4+ T cells and their subsets in the

brain while neglecting their effects on the periphery. Only by

clarifying both the central and peripheral effects of CD4+ T cells

and their subsets can we selectively target these cells for IS therapy.

IS therapies targeting CD4+ T cells remain in the stages of

preclinical research and clinical trials. Researchers are actively

developing multitarget therapeutic agents and designing

nanomaterial-based delivery systems to increase the efficacy and

feasibility of CD4+ T-cell regulation in IS treatment. However, these

studies are still in the preclinical phase, and the number of related

investigations remains limited (96, 97). Three drugs exert potential

protective effects at different stages of IS. The early administration

offingolimod mitigates brain injury (93). RV injection improves the

prognosis of AIS patients undergoing delayed reperfusion therapy

(107). Maraviroc treatment contributes to long-term cognitive

recovery (13). The potential reasons for the failure of clinical

translation described below (1). Preclinical studies generally

utilize young male mice, whereas IS primarily affects elderly

females with comorbidities. This discrepancy may lead to

inconsistent translational outcomes. For example, enlimomab

reduced the infarct volume in mice following MCAO. However,

clinical trials failed to replicate these benefits (83). In contrast,

fingolimod did not improve acute-phase outcomes in MCAO mice

but significantly reduced the infarct volume and neurological

deficits in AIS patients across multiple clinical trials (109). Future

studies should incorporate age- and sex-stratified animal groups or

develop models that include metabolic disorders to better align the

animal models with the human conditions. Additionally,

humanized CD4+ T cells and their subsets could be introduced

into animal models to elucidate their specific roles in IS

pathophysiology (2). A major challenge in IS drug development is

the need for a broad therapeutic window to account for the

unpredictable onset of IS and variable hospital admission times.

Moreover, optimizing the timing of drug administration to balance

efficacy and adverse effects remains a critical issue in clinical

application (3). Current IS therapies modulate multiple immune

cell types but lack specificity in targeting CD4+ T-cell subsets.

Nonselective treatments may not only reduce the protective

effects of certain CD4+ T-cell subsets, but also increase the risk of

adverse effects due to excessive immune suppression (4). Patients

with AIS exhibit a strong inflammatory response in the brain and

significant peripheral immunosuppression. A key challenge in
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clinical translation is developing therapies that exert distinct effects

on the central and peripheral immune systems. The development of

multitarget drugs in combination with novel biomaterials may

provide a promising strategy to overcome the limitations of

current IS treatments. A multitarget approach aims to broaden

the scope of drug action in multiple pathophysiological processes,

thereby addressing the complexity and heterogeneity of IS

pathology in different stages. Therefore, targeting CD4+ T cells in

conjunction with other critical therapeutic targets may not only

improve therapeutic efficacy but also extend the treatment window.

Furthermore, the integration of multitarget drugs and advanced

biomaterials enables targeted delivery and timely release by precise

spatiotemporal control. This approach improves treatment

precision and optimizes drug efficacy, providing clinically

valuable therapeutic strategies for IS patients.

In conclusion, the spatial and temporal distributions and

mechanisms of CD4+ T cells and their subsets after IS require

further investigation. In addition, the development of more targeted

therapeutic agents is necessary to expand the scope of IS treatment

and increase neuroprotective efficacy.
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