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Background: Previous studies have shown that glycolysis-related genes (GRGs)

are associated with the development of breast cancer (BC), and the prognostic

significance of GRGs in BC has been reported. Considering the heterogeneity of

BC patients, which makes prognosis difficult to predict, and the fact that

glycolysis is regulated by multiple genes, it is important to establish and

evaluate new glycolysis-related prediction models in BC.

Methods: In total, 170 GRGs were selected from the GeneCards database. We

analyzed data from the Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-

BRCA) database as a training set and data from the Gene Expression Omnibus

(GEO) database as a validation cohort. Based on the overall survival data and the

expression levels of GRGs, Cox regression analyses were applied to develop a

glycolysis-related prognostic gene (GRPGs)-based prediction model. Kaplan

(KM) survival and ROC analyses were performed to assess the performance of

this model. GeneOntology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) analyses were used to identify the potential biological functions of

GRPGs. cBioPortal database was used to explore the tumor mutation burden

(TMB). The tumor immune dysfunction and exclusion indicator (TIDE) was used

to estimate the patient response to immune checkpoint blockade (ICB). The

levels of tumor-infiltrating immune cells (TICs) and stromal cells were

quantitatively analyzed based on gene expression profiles.

Results: We constructed a prediction model of 10 GRPGs (ADPGK, HNRNPA1,

PGAM1, PIM2, YWHAZ, PTK2, VDAC1, CS, PGK1, and GAPDHS) to predict the

survival outcomes of patients with BC. Patients were divided into low- and high-

risk groups based on the gene signature. The AUC values of the ROC curves were

0.700 (1-year OS), 0.714 (3-year OS), 0.681 (5-year OS). TMB and TIDE analyses

showed that patients in the high-risk group might respond better to ICB.

Additionally, by combining the GRPGs signature and clinical characteristics of

patients, a novel nomogram was constructed. The AUC values for this combined
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prediction model were 0.827 (1-year OS), 0.792 (3-year OS), and 0.783 (5-year

OS), indicating an outstanding predictive performance.

Conclusion: A new GRPGs based prediction model was built to predict the OS

and immunotherapeutic response of patients with BC.
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1 Introduction

Breast cancer (BC) is the most common malignant tumor in

women in the United States, accounting for 31% of all newly diagnosed

cancers in women and 15% of cancer-related deaths (1). The incidence

of breast cancer has been increasing slowly (1). In China, the incidence

and mortality rates of BC in women have shown similar trends (2).

With improvements in therapeutics such as adjuvant chemotherapy,

targeted treatment, and immunotherapy, BC-related mortality has

been reduced. However, the decline in BC mortality has slowed

down in recent years (3). Since the heterogeneity of BC led to

different therapeutic responses and survival outcomes, there is an

urgent need to identify new biomarkers to develop effective risk

models to stratify patients using advanced bioinformatics techniques.

Several prognostic models have achieved good results in predicting the

overall survival (OS) of BC patients (4, 5).

Metabolic rewiring is a well-known hallmark in cancer (6).

Metabolites and sufficient energy are necessary for the initiation and

proliferation of cancer cells (7). By providing ATP and lactic acid,

increased glycolysis can promote cancer progression and drug

resistance (8, 9). Under aerobic conditions, non-cancer cells

prefer to convert glucose to pyruvate in the first step and

thereafter to CO2 through mitochondrial oxidation (10). Under

hypoxic or anaerobic conditions, cells use glycolysis to convert

glucose to lactic acid. On the other hand, cancer cells are inclined to

produce large amounts of energy by high glycolytic progress even in

the presence of adequate oxygen, which is also a characteristic of BC

and is known as the Warburg effect. Many glycolysis-related genes

and proteins, including key enzymes in the aerobic glycolytic

pathway, have been found to be abnormally expressed in BC and

are essential for cancer development. These key enzymes include

hexokinase (HK) (11), phosphofructokinase (PFK) (12), pyruvate

kinase (PK) (13), and glucose transporters (GLUTs) (14). In

addition, activation of some oncogenes [c-myc (15) and HIF-1

(16)] and mutations in tumor suppressors [such as p53 (17)] have

also been implicated in the aerobic glycolysis of BC. Several studies

have shown that the inhibition of glycolysis can decrease the activity

of cancer cells (18, 19). In recent years, a newly identified

posttranslational modification (PTM) associated with lactic acid,

lactylation, has opened up a new opportunity to investigate the link

between glycolysis and epigenetic regulation (20). Thus, a deep

understanding of the role of glycolysis in the occurrence and
02
progression of BC may help to predict the prognosis of patients

more accurately. Previous studies have investigated glycolysis-

related genes and their functions in BC development. A four-

glycolysis-gene-based (ALDH2, PRKACB, STMN1, and ZNF292)

signature was identified as being related to the recurrence of BC

patients (21). A glycolytic expression signature based on another

four genes (PGK1, SDHC, PFKL, and NUP43) predicted the

survival of BC (22). Another eleven-gene signature related to

glycolysis was developed to predict the survival in BC patients

(23). Comprehensive research on glycolysis that provides new

targets and information is still needed.

Interaction between cancer and stromal cells leads to metabolic

competition and symbiosis. Metabolic reprogramming of cancer

cells (such as elevated aerobic glycolysis) can shape the

metabolism of neighboring cells and vice versa (24). Tumor

microenvironment (TME) comprises the extracellular matrix,

immune cells (lymphocytes, macrophages, and natural killer cells),

stromal cells, and adipocytes, which are important in cancer

progression and immunotherapy (25). Immunotherapy has

become a key pillar of cancer treatment, the effects of which are

associated with the TME (26). Currently, the adverse effects of

immunotherapy have prompted an increase in research focused on

identifying BC patients who can receive more clinical benefit from

immunotherapy using new predictive biomarkers (27).

In our study, we integrated TCGA data and applied univariate

and multivariate Cox analyses to identify 10 significant glycolysis-

related prognostic genes (GRPGs) in BC. We evaluated the potential

of GRPGs as markers associated with survival and prognosis of

patients with BC. Notably, GRPGs were successfully employed to

construct a nomogram by combining clinical data. The GRPG-

based model can predict patient outcomes and immunotherapy

efficacy. It showed good performance on different datasets and

improved the current BC stratification.
2 Materials and methods

2.1 Data collection

The training BC dataset was downloaded from the Cancer

Genome Atlas Breast Invasive Carcinoma database (TCGA-

BRCA). A total of 1222 count sequencing data of BC samples
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(1109 tumor samples vs. 113 normal samples) were obtained, which

were standardized into Fragments Per Kilobaseper Million (FPKM)

format (28). The clinicopathological data corresponding to the

samples were downloaded from the UCSC Xena database (http://

genome.ucsc.edu) (29), including age, TNM stage, pathologic stage,

estrogen receptor (ER) status, progesterone receptor (PR) status,

human epidermal growth factor receptor 2 (HER2) status, whether

or not triple-negative breast cancer (TNBC) status, and survival

outcome (OS, overall survival; DSS, disease-specific survival; PFI,

progression-free interval). We also selected the “Masked Somatic

Mutation” data from TCGA official website (https ://

portal.gdc.cancer.gov/) as the somatic mutation data of TCGA-

BRCA. In addition, we downloaded the expression profile datasets

GSE20685 (30), GSE42568 (31) and GSE29044 (32) of BC patients

from the Gene Expression Omnibus (GEO) database. The three

datasets were based on the GPL570 platform. GSE20685 contains

327 primary breast cancer samples. GSE42568 and GSE29044

included 121 (104 BC and 17 normal breast) and 109 (73 BC and

36 normal breast) samples, respectively. The GSE20685 dataset was

used for verification. Specific information of the TCGA and GEO

cohorts is shown in Supplementary Table S1. The workflow of this

study is illustrated in Figure 1.
Frontiers in Immunology 03
2.2 Construction and evaluation of the 10-
GRPGs prediction model

The GeneCards database (33) (https://www.genecards.org/)

provides comprehensive information about human genes. We

used “glycolysis” as the search keyword to find related genes and

only retained “Protein Coding” as well as “Relevance score > 2.00”

genes as glycolysis-related genes (GRGs). We obtained 170 GRGs

from GeneCards by screening. After removing a gene that was

missing from TCGA-BRCA, there were 169 GRGs included in our

study (Supplementary Table S2).

The expression profile of each GRG in TCGA-BRCA was

normalized using a log2 transformation. We combined the

expression of 169 GRGs with OS to conduct univariate Cox

regression analysis. GRGs significantly associated with OS (P<0.05)

were identified as glycolysis-related prognostic genes (GRPGs), which

were displayed by a forest plot and analyzed by multivariate Cox

regression to construct a GRPG-based prediction model. According to

the multivariate regression results, we calculated the risk score with

coefficients using the following formula: riskscore  =  oiCoefficient 

(hub genei)*mRNA Expression (hub genei). Patients were divided

into low- and high-risk groups using the median risk score as the
FIGURE 1

Overall workflow of this study.
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threshold. A risk factor diagram was used to display the risk score

distribution, survival status, and expression profile of GRPGs in

TCGA-BRCA. Kaplan-Meier (KM) survival analysis was performed

to evaluate the difference in OS between the low-risk and high-risk

group (34). In order to further assess the performance of this 10-

GRPGs prediction model, the time-dependent receiver operating

characteristic (ROC) curves were plotted by R package

“survivalROC.” The area under the time-dependent ROC curve

(AUC) was used to evaluate the predictive efficiency of the model.
2.3 Establishment and evaluation of the
predictive nomogram

Some clinical parameters affect BC patient prognosis. Cox

regression analyses were also performed to demonstrate the

independent prognostic value of the 10-GRPGs prediction model

and clinical characteristics. We constructed a nomogram by

integrating the risk scores of the GRPGs prediction model with

clinicopathological variables to evaluate the survival status of

patients with BC. At the same time, the prognostic ability of this

nomogram was evaluated by ROC, calibration plots and decision

curve analysis (DCA). KM analysis was used to prove the prognostic

value of this nomogram.
2.4 Functional and pathway
enrichment analysis

Gene Ontology (GO) analysis (35)is a common method for

large-scale functional enrichment research, including biological

process (BP), molecular function (MF), and Cellular components

(CC). The Kyoto Encyclopedia of Genes and Genomes (KEGG)

(36) is a widely used database that stores information about

genomes, biological pathways, diseases, and drugs. The R package

“clusterProfiler” was used to perform GO and KEGG enrichment

analyses to discover the potential biological functions of GRPGs.
2.5 Differentially expressed genes, GSEA
and GSVA enrichment analysis

Differentially expressed genes (DEGs) in the low-risk and high-

risk groups were identified by differential analysis of the expression

profile data. Gene set enrichment analysis (GSEA) and gene set

variation analysis (GSVA) were used to explore enriched

biological pathways.
2.6 Immunotherapy efficacy and immune
cell infiltration

cBioPortal database (37, 38) (http://cbioportal.org) was used to

analyze the tumor mutation burden (TMB) data of BC patients in

the TCGA-BRCA. The tumor immune dysfunction and exclusion

indicator (TIDE) was used to estimate the patient response to
Frontiers in Immunology 04
immune checkpoint blockade (ICB). Higher TIDE scores

corresponded to greater immune escape and a lower response

rate to ICB. To evaluate the relationship between the prediction

model and tumor-infiltrating immune cells (TICs), we used ssGSEA

(39)to estimate the composition and abundance of TICs. In

addition, the levels of TICs and stromal cells in the BC samples

were quantitatively analyzed based on their gene expression

profiles. The stromal score, immune score, ESTIMATE score, and

tumor purity were obtained (40). The correlations between immune

cells in different groups were calculated using the Spearman

algorithm and visualized using the R package “ggplot2.”
2.7 Statistical analysis

All data processing and analyses were performed using the R

software (Version 4.1.2). For the comparison of two groups of

continuous variables, the statistical significance of normally

distributed variables was estimated by independent Student’s t-test,

and the Mann-Whitney U test was used (Wilcoxon rank sum test) to

analyze the differences among non-normally distributed variables.

The “survival” package of R was used for survival analysis, the

Kaplan-Meier survival curves were used to show the difference in

survival outcomes, and the log-rank test was used to evaluate the

significance of the difference in survival time between the two groups.

If not specified, P<0.05 was considered statistically significant.
3 Results

3.1 GRPGs and associated prognostic
prediction model

By combining GRGs from the GeneCards database with those

from TCGA-BRCA, 169 GRGs were selected (Figure 2A). We

performed univariate and multivariate Cox regression analyses on

these GRGs in TCGA-BRCA and found that 10 GRGs (ADPGK,

HNRNPA1, PGAM1, PIM2, YWHAZ, PTK2, VDAC1, CS, PGK1,

and GAPDHS) were significantly associated with OS (P<0.05).

These ten GRGs were identified as GRPGs that contributed to the

prediction model (Figures 2B, C, Supplementary Table S3). We

calculated the risk scores for BC patients in TCGA-BRCA to

evaluate survival risk using the following formula: risk score=

(-0.393) × ADPGK + (-0.387) × HNRNPA1 + (-0.209) × PGAM1

+ (-0.196) × PIM2 + (-0.145) × YWHAZ + 0.186 × PTK2 + 0.286 ×

VDAC1 + 0.391 × CS + 0.545 × PGK1 + 1.43 × GAPDHS. With the

median risk score as the threshold, patients in TCGA-BRCA were

divided into high- and low-risk groups. The risk score distribution,

survival status of BC patients, and gene expression levels of the 10

GRPGs are shown in Figure 2D.

Differential analyses of the expression of these GRPGs between

BC tumors and adjacent normal tissues were also performed in

TCGA-BRCA (Figure 3A), GSE42568 (Figure 3B), and GSE29044

(Figure 3C) datasets. Seven GRPGs (PIM2, PGK1, ADPGK,

YWHAZ, PTK2, PGAM1, and VDAC1) were significantly

upregulated in the TCGA-BRCA tumor tissues. In addition,
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GSE29044 had more differentially expressed GRPGs between

normal and tumor tissues (CS, PGK1, HNRNPA1, ADPGK,

YWHAZ, PTK2, and PGAM1) than GSE42568 (CS, HNRNPA1,

ADPGK, and PTK2). GO and KEGG enrichment analyses were

conducted to predict the biological mechanisms of the GRPGs

(Figure 3D). GO enrichment analysis showed that the biological

process (BP) of GRPGs was mainly involved in pyruvate

metabolism, glycolysis, ATP generation from ADP, ADP

metabolism, and nucleoside diphosphate phosphorylation

(Figure 3E, Supplementary Table S4). Moreover, KEGG

enrichment analysis revealed that GRPGs were also enriched in

carbon metabolism, amino acid biosynthesis, and glycolysis/

gluconeogenesis pathways (Figure 3F, Supplementary Table S5).

These results indicate that these GRPGs are involved in glycolysis.
3.2 The characterization of the two risk
groups and survival analysis

The clinicopathological and survival information of the low-risk

and high-risk groups for TCGA-BRCA are shown in Figures 4A–L
Frontiers in Immunology 05
and Supplementary Table S6. There were significant differences in T

stage (Figure 4A), M stage (Figure 4C), pathological stage

(Figure 4D), age (Figure 4E), OS (Figure 4F), DSS (Figure 4G),

PFI (Figure 4H), and HER2 status (Figure 4K) between the two

groups (P<0.05).

The Kaplan-Meier survival curve showed that the high-risk

group had a poorer outcome than the low-risk group (Figure 5A).

We also assessed the relationship between the expression level of

each GRPG and OS in patients (Figures 5B–K). We found that the

survival differences of the low-expression and high-expression

groups of five GRPGs (PGK1, ADPGK, PTK2, PGAM1, and

HNRNPA1) were significant (P<0.05). To evaluate the robustness

of this 10-GRPGs signature, we used GSE20685 as a validation

cohort to assess its performance. Similar to the results of TCGA-

BRCA, BC patients in the high-risk group had a worse prognosis

(Figure 5L). The AUC values of the ROC curves for TCGA-BRCA

were 0.700 (1-year OS), 0.714 (3-year OS), and 0.681 (5-year OS)

(Figure 5M), indicating the predictive ability of this prediction

model. In addition, differential analyses of the expression of 10

GRPGs between the low- and high-risk groups were conducted

using TCGA-BRCA. Significant differences were observed in almost
FIGURE 2

GRPGs selection using univariate and multivariate Cox regression analyses. (A) The Venn diagram displayed how 169 GRGs were selected.
(B) Univariate Cox regression analysis selected 10 GRPGs correlated with OS. (C) Multivariate Cox regression analysis result was shown by the forest
plot. (D) The risk factor diagram showed the risk score distribution, the survival status of BC patients, and the gene expression levels of 10 GRPGs.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1512859
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Huang et al. 10.3389/fimmu.2025.1512859
all GRPGs between these two groups, except for GAPDHS

(Figure 5N). The expression patterns of the 10 GRPGs in the

low- and high-risk groups are shown in the heatmap (Figure 5O).

The differentially expressed genes (DEGs) of the low-risk group

versus the high-risk group were analyzed, and 1148 DEGs were

identified (|logFC|>0.5 and adjusted P<0.05) (Figure 6A). We used

to explore the biological functions of these DEGs. The related

functions at the top of the list are shown in Figure 6B and

Supplementary Table S7. In addition, GSEA (Figure 6C,

Supplementary Table S8) revealed that these DEGs were

significantly enriched in four biological pathways: oxidative

stress-induced senescence (Figure 6D), cellular senescence

(Figure 6E), folate metabolism (Figure 6F), and primary

immunodeficiency (Figure 6G).

GRPGs have a potential role in predicting response to

immunotherapy in BC patients. The result showed that high-risk

group had a higher TMB score than the low-risk group, suggesting
Frontiers in Immunology 06
that the high-risk group had a better response to immunotherapy

(Figure 7A). A positive correlation between the risk scores and TMB

scores was found for TCGA-BRCA (Figure 7B). Similarly, the high-

risk group had a lower TIDE score, indicating that the high-risk

group had a higher response rate to ICB (Figure 7C). The risk scores

were negatively correlated with the TIDE scores (Figure 7D). To

evaluate the relative abundance of cancer cells, immune cells, and

stromal cells, we used the “estimate” package in R to calculate stromal

scores, immune scores, ESTIMATE scores, and tumor purity scores.

The high-risk group showed significantly lower stromal and immune

scores and ESTIMATE scores, but higher tumor purity scores than

the low-risk group (Figures 7E–H). In addition, risk scores were

negatively correlated with stromal, immune, and ESTIMATE scores,

but positively correlated with tumor purity scores (Figures 7I–L). The

above results indicated that BC in the low-risk group had more

immune and stromal cell abundance. Next, we estimated the

quantified abundance of many immune cell types using ssGSEA to
FIGURE 3

Differential expression and GO/KEGG enrichment analyses of GRPGs. Differential expression analyses of 10 GRPGs between BC tumor and adjacent
normal tissues were performed in TCGA-BRCA (A), GSE42568 (B), GSE29044 (C). Biological process (BP) and KEGG enrichment analyses of 10
GRPGs were shown in histogram (D) and network diagrams (E, F). **: P value<0.01, ***: P value<0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1512859
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Huang et al. 10.3389/fimmu.2025.1512859
determine the TICs differences in the low-risk and high-risk groups.

According to ssGSEA, the infiltration of 21 immune cell types,

including activated B cells, activated CD4+ T cells, activated CD8+

T cells, activated dendritic cells, and macrophages, was significantly

higher in the low-risk group than in the high-risk group. Only the

number of central memory CD8+ T cells was lower in the low-risk

group (Figure 8A). Correlation analyses of TICs showed that the

abundance of TICs was mostly positively correlated in the low-risk

group (Figure 8B) or in the high-risk group (Figure 8C). The dot plots

of the correlation between TICs and GRPGs revealed that the

expression levels of PIM2, PGK1, PGAM1, and CS were positively

correlated with the abundance of TICs, whereas the expression levels

of PTK2 and GAPDHS were negatively correlated with the

abundance of TICs (Figures 8D, E). Taken together, these results

indicate the effectiveness of risk score in BC immunotherapy and

immune cell infiltration prediction.

We analyzed the genetic alterations of GRPGs in both groups

and found that the main types of alterations included missense
Frontiers in Immunology 07
mutations, nonsense mutations, frameshift dels, frameshift ins,

splice sites, in-frame dels, and in-frame ins. TP53, PIK3CA, TTN,

CDH1, GATA3, MAP3K1, MUC4, MUC16, and KMT2C were the

GRPGs with the highest mutational abundance in both groups

(Figures 9A, B, sorted by the total number of mutation sites).

Waterfall plots showed that five GRPGs (PIK3CA, TP53, CDH1,

TTN, GATA3) were commonly mutated (>10%) in the low-risk

group samples (Figure 9C), whereas five GRPGs (TP53, PIK3CA,

TTN, GATA3, and MUC16) were commonly altered (>10%) in the

high-risk group samples (Figure 9D). We then analyzed the copy

number variations (CNV) of these GRPGs. Figures 9E, F show the

top 20 gene amplifications in the low-risk and high-risk groups,

respectively. NUP133 and PARP1 had the highest amplification

frequency in the low-risk group, whereas MYC and PFKFB2 were

amplified in the high-risk group. Figures 9G, H show the top 20

gene deletions in the low-risk and high-risk groups, respectively.

OGT and PGAM4 had the highest deletion frequencies in

both groups.
FIGURE 4

Clinicopathological and survival information of the low-risk and high-risk group for TCGA-BRCA. (A) T stage, (B) N stage, (C) M stage, (D) pathologic
stage, (E) age, (F) OS, (G) DSS, (H) PFI, (I)ER status, (J) PR status, (K) HER2 status, (L) TNBC or non-TNBC.
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3.3 Data stratification and
subgroup analyses

Depending on the molecular type of BC (ER+/-, HER2+/-, ER

+HER2+/non-ER+HER2+, TNBC/non-TNBC), specific genetic

alterations and the corresponding number of samples are shown

in Figures 10A–H. Regardless of the molecular type of BC, the

number of samples harboring TP53 and PIK3CA mutations is

always at the forefront.
Frontiers in Immunology 08
Differential analyses of the expression of 10 GRPGs in different

molecular types of BC were conducted using TCGA-BRCA.

Significant differences existed in 8, 8, 6, and 10 GRPGs between

the ER+ and ER- subgroups (Figure 11A), HER2+ and HER2-

subgroups (Figure 11B), ER+HER2+ and non-ER+HER2+

subgroups (Figure 11C), and TNBC and non-TNBC subgroups

(Figure 11D), respectively. The expression patterns of 10 GRPGs in

BC of different molecular types are shown in heatmaps

(Figures 11E–H). In addition, HER2+ BC, ER+HER2+BC, and
FIGURE 5

Kaplan-Meier survival analyses in BC patients based on risk stratification and the expression level of each GRPG. The OS difference between low-risk
and high-risk group was shown in (A). Kaplan-Meier survival analyses were based on the expression levels of CS (B), PIM2 (C), PGK1 (D), GAPDHS (E),
HNRNPA1 (F), ADPGK (G), YWHAZ (H), PTK2 (I), PGAM1 (J), VDAC1 (K) in TCGA-BRCA. (L) The OS difference between low-risk and high-risk group in
GSE20685 was displayed by the KM curves. (M) AUC values were calculated in ROC analysis for risk scores predicting the OS from TCGA-BRCA.
(N) Differential expression analyses of 10 GRPGs between low-risk group and high-risk group were performed in TCGA-BRCA. (O) The expression
patterns of 10 GRPGs were shown in the heatmap.
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non-TNBC BC patients showed significantly higher risk scores than

HER2- BC, non-ER+HER2+BC, and TNBC BC patients,

respectively (Figures 11I–L).

Next, we conducted survival subgroup analyses based on

clinicopathological variables. Patients from TCGA-BRCA were

classified into different subgroups: T1-T2 stage vs. T3-4 stage; N0

stage vs. N (+) stage (N1-N3); M0 vs. M1 stage, pathologic stage I-II

vs. pathologic stage III-IV, age ≤ 60 vs. age>60, ER- vs. ER+, PR- vs.

PR+, HER2- vs. HER2+, non-ER+HER2+ vs. ER+HER2+, and non-

TNBC vs. TNBC. The KM curves indicated that risk scores showed

excellent ability to predict prognoses in BC patients stratified by T/

N stage, pathologic stage, age, ER status, PR status, HER2 status,

and non-TNBC/TNBC status (Figures 12A–T). Nevertheless, no

significant survival difference was observed between the low-risk

and high-risk groups in M1 (P=0.863) and ER+HER2+ patients
Frontiers in Immunology 09
(P=0.054). These results indicate that the risk scores had good

predictive value in different clinical subgroups.
3.4 Establishment of a nomogram for
clinical application

We integrated risk scores with other clinical risk factors in

TCGA-BRCA to further evaluate the independent prognostic value

of our prediction model. Univariate and multivariate Cox analyses

were performed to analyze the clinicopathological data

(Figures 13A, B, Table 1). TNM stage, age, ER status, PR status,

HER2 status, and risk scores were effective predictors of OS in the

univariate Cox analyses (P < 0.1). We combined these clinical

factors and risk scores to evaluate survival risk by calculating
FIGURE 6

Differentially expressed genes (DEGs) of low-risk group versus high-risk group. (A) 1148 DEGs were shown in the Volcano plot (|logFC| > 0.5 and
adjusted P<0.05). (B) 20 enriched biological functions obtained by GSVA analysis were shown in the heatmap. (C) Mountain plot showed the four
main biological features of DEGs achieved by GSEA enrichment analysis. DEGs were significantly enriched in oxidative stress induced senescence
(D), cellular senescence (E), folate metabolism (F) and primary immunodeficiency (G).
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prognostic combined risk scores: Combined risk scores = stageT2×-

0.04816+stageT3×-0.86080+stageT4×1.12257+stageN1×0.35266

+stageN2×0.72070+stageN3×0.95139+stageM1×1.11801

+stageMX×-1.18466+Age>60×1.01152+ERPositive×-1.06914

+PRPos i t i v e×0 .24354+HER2Pos i t i v e× -0 .07732+ r i sk

scores×1.03767-1.57445. The constant value (-1.57445) can

effectively adjust baseline risk, so that the combined risk score

output by this model can reflect the true prognosis of patients. The

introduction of this constant value takes into account the potential

influencing factors that are not included in this model, making the

combined risk scores of different patients comparable and

providing some support for the interpretability of this model.

To facilitate clinical application, we built a visualized

nomogram to predict the 1-year, 3-year and 5-year OS of patients

with BC (Figure 13C). These clinical factors were included in the

nomogram as parameters. The calibration curves (Figures 14A–C)

indicated that the predicted curves were in good agreement with the

ideal curves. DCA curves showed that this combined prediction

model had good clinical predictive effects (Figures 14D–F). Using
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the median combined risk score as the threshold, patients were

further divided into a combined high-risk group and a combined

low-risk group. KM curves revealed that BC patients with a

combined high-risk score had poorer outcomes than those in the

combined low-risk group (Figure 14G). The AUC values of the

ROC curves for this combined prediction model were 0.827 (1-year

OS), 0.792 (3-year OS), and 0.783 (5-year OS) (Figure 14H),

confirming the reliability of our study.
4 Discussion

Heterogeneity, a characteristic of breast cancer (BC) with

diverse phenotypes and morphologies, makes it difficult to predict

the prognosis of patients (41). Altered glucose metabolism exists in

all BC types, which plays an important role in driving cancer

progression and therapy resistance. Reprogramming of BC

glucose metabolism is characterized by hyperactivity of glycolysis

and accumulation of lactate. An increase in aerobic glycolysis,
FIGURE 7

Estimation of TMB, TIDE, stromal score, immune score, ESTIMATE score and tumor purity score in low-risk and high-risk group. (A) The histogram
showed the differential TMB scores between the low-risk and high-risk group. (B) A positive correlation between risk scores and TMB scores was
found by Spearman correlation test. (C) The histogram showed the differential TIDE scores between the low-risk and high-risk group. (D) A negative
correlation between risk scores and TMB scores was found by Spearman correlation test. Violin plots showed the differential stromal score (E),
immune score (F), ESTIMATE score (G) and tumor purity score (H) between the high-risk and low-risk groups. Risk scores were negatively correlated
with stromal score (I), immune score (J) and ESTIMATE score (K) but were positively correlated with tumor purity score (L). ***: P value<0.001.
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known as the Warburg effect, which is induced by the upregulation

of key glycolytic enzymes and glucose transporters, can provide BC

cells with ATP and an acidic microenvironment (42). An increasing

number of genetic signatures has been explored to improve the

ability to predict the prognosis of BC patients. Although the

prognostic significance of GRGs in BC has been reported (21, 22),

considering that glycolysis is a multi-step enzymatic reaction that is

regulated by multiple genes, a new GRPG-based signature for

predicting BC patient prognosis is needed. Furthermore, the

emergence of a novel epigenetic modification (43), lactylation, has
Frontiers in Immunology 11
made glycolysis and lactate research focus again. It is necessary to

expand our knowledge of GRPGs to explore the underlying

mechanisms. Thus, it is important to establish and assess

glycolysis-related prediction models for BC.

In our study, we built a GRPG-based model to predict the survival

outcomes of BC patients and provided risk stratification. We searched

the GeneCards database for genes related to glycolysis, which were used

in subsequent analyses. The OS data from TCGA-BRCA were used to

perform univariate and multivariate Cox regression analyses to identify

GRPGs, which included 10 hub genes. ADPGK, HNRNPA1, PGAM1,
FIGURE 8

Estimation of TICs in low-risk and high-risk group. (A) The differences of 28 TICs between low-risk and high-risk group were evaluated by ssGSEA
algorithm. The correlation analyses of TICs were conducted in low-risk group (B) and high-risk group (C). The dot plots showed the correlation
between the abundance of TICs and the expression levels of GRPGs in low-risk group (D) and high-risk group (E). *: P value<0.05, ***: P
value<0.001, ns: P values≥0.05.
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PIM2, and YWHAZ were positively associated with survival, while the

expression levels of PTK2, VDAC1, CS, PGK1and GAPDHS were

negatively associated with survival. Based on these GRPGs, we verified

this prediction model using TCGA-BRCA and GEO datasets. KM

survival analyses revealed different prognoses between the high-risk
Frontiers in Immunology 12
and low-risk groups, demonstrating the favorable survival predictive

ability of this model. The time-dependent ROC curves also confirmed

the good predictive performance of these 10 GRPGs. We also found

that patients in the high-risk group had different clinical parameters

than those in the low-risk group, including age, T stage, M stage,
FIGURE 9

Genetic alterations of GRPGs in low-risk and high-risk group. The combined graph displayed the variant classification, variant types, single
nucleotide variations (SNV) class, the number of variants and top 10 mutated genes in low-risk group (A) and high-risk group (B). The waterfall plots
showed the genetic alterations of GRPGs sorted by mutation rate in low-risk group (C) and high-risk group (D). The histograms showed the top 20
gene amplifications in low-risk group (E) and high-risk group (F). The histograms showed the top 20 gene deletions in low-risk group (G) and high-
risk group (H).
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pathologic stage, HER2 status, OS, DSS, and PFI. Moreover, the risk

score originating from these GRPGs could further stratify clinically

defined patients into low- and high-risk groups with different OS.

Through subgroup analyses, we found that this model could accurately

predict survival in subgroups stratified according to T/N stage,

pathologic stage, age, ER status, PR status, HER2 status, and non-

TNBC/TNBC status, but it might not be applicable to M1 patients and

ER+HER2+ patients. In addition, the risk score can be regarded as an

independent prognostic factor. We integrated the data and clinical
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characteristics to build a novel nomogram that utilized the values of

age, TNM stage, ER status, PR status, HER2 status, and risk scores. This

nomogram exhibited superior power and accuracy of estimation with a

higher AUC, suggesting that the combination of risk score with clinical

risk factors is more effective for OS prediction. These results

demonstrated that the GRPG-based prediction model in our study

had good prognostic significance. In a previous glycolysis-related gene

signature, the gene expression profiles and clinical data of breast cancer

patients were obtained from the GEO database. A four-gene based
FIGURE 10

Specific genetic alterations and corresponding number of samples depending on different molecular types of BC. (A) ER-, (B) ER+, (C) HER2-,
(D) HER2+, (E) non-ER+HER2+, (F) ER+HER2+, (G) non-TNBC, (H) TNBC.
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signature (ALDH2, PRKACB, STMN1 and ZNF292) was developed to

separate patients into high-risk and low-risk groups. High expression

level of the PRKACB protein was associated with favorable prognosis,

while high ZNF292 and STMN1 protein expression levels indicated

poor prognosis (21). In a glycolysis-related 4-mRNA signature study

for predicting the survival of patients with breast cancer (22), the AUC

values were 0.74 (training cohort), 0.806 (testing cohort) and 0.769
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(entire cohort). The AUC of the nomogram based on clinical data and

4-mRNA signature risk score at 3-year and 5-year was 0.808 and 0.755,

respectively. The prediction performance of the 4-mRNA signature

study was comparable to ours. Another 11-gene signature related to

glycolysis for predicting survival in patients with BC was developed.

The authors analyzed the data of a training set from TCGA database

and four validation cohorts from the GEO and ICGC databases. The
FIGURE 11

Differential expression of 10 GRPGs and risk scores in different BC subgroups. Differential analyses of the expression of 10 GRPGs was conducted in
ER+/- BC (A), HER2+/- BC (B), ER+HER2+/non-ER+HER2+ BC (C) and TNBC/non-TNBC (D). The heatmaps showed the expression patterns of 10
GRPGs in ER+/- BC (E), HER2+/- BC (F), ER+HER2+/non-ER+HER2+ BC (G) and TNBC/non-TNBC (H). The histograms showed risk scores in ER+/-
BC (I), HER2+/- BC (J), ER+HER2+/non-ER+HER2+ BC (K) and TNBC/non-TNBC (L). *: P value<0.05, **: P value<0.01, ***: P value<0.001.
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result of C-index (0.812), AUC (1-year, 0.836; 3-year, 0.767 and 5-year,

0.792) showed this nomogram predicted as well as ours (23). In other

prognostic models including clinical and social characteristics for

predicting mortality and/or recurrence for female breast cancer, they

performed well in internal validation cohorts, but the results were

unpredictable in external validation cohorts, especially in young and

elderly patients, and in high risk patients (44). In our study, we have
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conducted various detailed analyses around GRPGs. For example, we

provided the clinicopathological and survival information of the low-

risk and high-risk groups and assessed the relationship between the

expression level of each GRPG and OS in patients. Our study also

showed GRPGs had a potential role in predicting response to

immunotherapy in BC patients and we also displayed specific genetic

alterations and differential analyses of the expression of 10 GRPGs in
FIGURE 12

Survival subgroup analyses based on the clinicopathological variables. (A) T1-T2 stage, (B) T3-4 stage, (C) N0 stage, (D) N (+) stage (N1-N3), (E) M0
stage, (F) M1 stage, (G) pathologic stage I-II, (H) pathologic stage III-IV, (I) age ≤ 60, (J) age>60, (K) ER-, (L) ER+, (M) PR-, (N) PR+, (O) HER2-,
(P) HER2+, (Q) non-ER+HER2+, (R) ER+HER2+, (S) non-TNBC, (T) TNBC.
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different molecular types of BC. These elaborate analyses were not

available in the aforementioned studies.

GO functional and KEGG enrichment analyses were used to

analyze the potential biological functions of the ten GRPGs. We

found that the biological processes of GRPGs were mainly enriched

in pyruvate metabolism, glycolysis, ATP generation from ADP,

ADP metabolism, and nucleoside diphosphate phosphorylation.

GRPGs in the signal pathways were enriched in carbon

metabolism, biosynthesis of amino acids, and glycolysis/

gluconeogenesis. Glycolysis is the foundation for carbon

metabolism, which not only produces biomolecules for

biosynthesis, but also provides ATP. GO and KEGG enrichment

analyses showed that the GRPGs live up to their name. GSEA can

integrate different data and can be used to evaluate the whole-

genome expression profile of microarray data. GSVA is a

nonparametric and unsupervised analysis method that can be

used to evaluate gene set enrichment. In this study, GSEA and

GSVA were conducted to analyze the enrichment of differentially

expressed genes between the low-risk and high-risk groups. The

results showed that several pathways were significantly enriched,

indicating that GRPGs had a profound impact on BC biological

functions. Furthermore, our study showed that GRPGs might be

involved in regulating the TME and ICB response. TMB data and

TIDE scores revealed that patients in the high-risk group were more

likely to be sensitive to immunotherapy and benefit from ICB
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therapy. As immune and stromal cells play important roles in

tumor growth, progression, and drug resistance, we used four

scoring methods to estimate the abundance of immune and

stromal cells. The stromal score, immune score, ESTIMATE

score, and tumor purity showed different distributions between

the high-risk and low-risk groups, indicating a higher abundance of

cancer cells in the high-risk group than in the low-risk group. The

ssGSEA algorithm was employed to estimate tumor infiltration, and

up to 21 types of immune cell types were significantly lower in the

high-risk group, which indicated that GRPGs had a significant effect

on TME. Therefore, the GRPG-based prediction model is reliable

for predicting the prognosis and immunotherapy efficacy, which

may have potential implications in BC clinical practice.

Of the 10 GRPGs, ADP-dependent glucokinase (ADPGK) catalyzes

ADP-dependent phosphorylation of glucose to glucose-6-phosphate and

may play a role in glycolysis. Mutations in ADPGK have been shown to

enhance BC cell migration and prompt metastasis in vitro experiments

(45). Endoplasmic reticulum (ER)-localized ADPGK plays a critical role

in T cell receptor (TCR)-induced the metabolic shift to aerobic glycolysis

similar to theWarburg effect which is a common phenotype of activated

immune cells (46). Heterogeneous nuclear ribonucleoprotein A1

(HNRNPA1) belongs to the A/B subfamily of ubiquitously expressed

heterogeneous nuclear ribonucleoproteins (hnRNPs). This protein, along

with other hnRNP proteins, is exported from the nucleus, probably

bound to mRNA, and immediately re-imported. An isoform switch
FIGURE 13

Construction a nomogram in TCGA-BRCA. Univariate (A) and multivariate (B) Cox analyses were performed to analyze several clinicopathological
data. (C) The nomogram consisted of TNM stage, age, ER status, PR status, HER2 status and risk scores to predict the probability of 1-year, 3-year
and 5-year OS.
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between the 3’-UTR isoforms of HNRNPA1 in BC has been found, and

high HNRNPA1 protein levels correlate with poor survival in BC

patients (47). HNRNPA1 is correlated with immunosuppressive status

of the tumor immune microenvironment. Targeting HNRNPA1 can

result in aberrant alternative splicing events and generation of

immunogenic neoantigens that elicit anti-tumor immunity (48).

Phosphoglycerate mutase 1 (PGAM1) is widely distributed in

mammalian tissues and catalyzes the reversible conversion of 3-

phosphoglycerate (3-PGA) to 2-phosphoglycerate (2-PGA) in the

glycolytic pathway. PGAM1 expression is upregulated and related to
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poor prognosis in patients with BC (49). PGAM1 expression is positively

correlated with infiltration levels of tumor-promoting immune cells such

as macrophages, NK cells, and myeloid dendritic cells (50). In triple-

negative breast cancer, PGAM1 is identified as a novel target that exhibits

an antitumor effect via the regulation of immunocyte infiltration.

PGAM1 inhibition synergizes with anti-PD-1 immunotherapy

significantly remodeling the tumor microenvironment and leading to

an increase in antitumor immunocytes and a reduction in

immunosuppressive cell infiltration (51). The proviral integration site

of Moloney murine leukemia virus 2 (PIM2) can promote glycolysis, BC
TABLE 1 COX analyses of several clinicopathological data.

Characteristics Total (N)
Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

T stage 1,105

T1 281 Reference Reference

T2 645 1.359 (0.907 - 2.037) 0.137 0.953 (0.529 - 1.717) 0.873

T3 139 1.590 (0.944 - 2.678) 0.081 2.365 (1.082 - 5.171) 0.031

T4 40 3.979 (2.145 - 7.384) < 0.001 3.073 (1.156 - 8.166) 0.024

N stage 1,088

N0 521 Reference Reference

N1 369 1.989 (1.355 - 2.921) < 0.001 1.423 (0.821 - 2.467) 0.209

N2 120 2.748 (1.644 - 4.594) < 0.001 2.056 (1.000 - 4.225) 0.050

N3 78 4.099 (2.267 - 7.413) < 0.001 2.589 (0.964 - 6.958) 0.059

M stage 1,106

M0 918 Reference Reference

M1 22 4.759 (2.844 - 7.964) < 0.001 3.059 (1.114 - 8.397) 0.030

MX 166 1.238 (0.732 - 2.094) 0.426 0.306 (0.105 - 0.891) 0.030

Age 1,109

<=60 614 Reference Reference

>60 495 1.940 (1.414 - 2.663) < 0.001 2.750 (1.702 - 4.442) < 0.001

ER 1,058

ER- 240 Reference Reference

ER+ 818 0.727 (0.507 - 1.043) 0.083 0.343 (0.152 - 0.775) 0.010

PR 1,055

PR- 347 Reference Reference

PR+ 708 0.712 (0.511 - 0.991) 0.044 1.276 (0.585 - 2.784) 0.541

HER2 733

HER2- 569 Reference Reference

HER2+ 164 1.605 (0.988 - 2.608) 0.056 0.926 (0.536 - 1.599) 0.782

TNBC 1,109

non-TNBC 993 Reference

TNBC 116 1.459 (0.900 - 2.367) 0.125

Risk scores 1,109 2.718 (2.081 - 3.549) < 0.001 2.823 (1.842 - 4.326) < 0.001
Bold values: P value<0.05.
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tumorigenesis, and paclitaxel resistance through multiple mechanisms

(52, 53). PIM2 plays a key role in immunomodulation, controls IL-15-

mediated survival of natural killer cells and regulates early human Th17

cell differentiation (54, 55). In addition, proinflammatory macrophages

trigger PIM2 expression in hepatocellular carcinoma cells which acquire

the capability to survive, metastasize, and resist T-cell cytotoxicity and

immunotherapy (56). Tyrosine 3-monooxygenase/tryptophan 5-

monooxygenase activation protein zeta (YWHAZ) contributes to

migration, chemotherapy resistance, and recurrence of BC (57, 58).

Protein tyrosine kinase 2 (PTK2) is highly expressed in many cancers

and is involved in cell growth, survival, migration, and invasion. A

previous study confirmed that PTK2 can be used as a prognostic

biomarker for BC and high PTK2 expression was correlated with

infiltrating levels of multiple immune cells (59). Voltage-dependent

anion channel 1 (VDAC1) is a major component of the outer
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mitochondrial membrane. It can be used as a cancer therapeutic target

or diagnostic biomarker (60). VDAC1 mediates the release of mtDNA

into the cytoplasm to enhance cytokine levels by activating immune

responses and regulates mitochondrial Ca2+ transportation, lipid

metabolism and mitophagy, which are involved in inflammation-

related disease pathogenesis (61). Citrate synthase (CS) is a Krebs

tricarboxylic acid cycle enzyme that catalyzes citrate synthesis from

oxaloacetate and acetyl coenzyme A. CS inactivation facilitates aerobic

glycolysis and cancer progression and targeting citrate can be regarded as

a novel therapeutic strategy in cancer treatment (62, 63).

Phosphoglycerate kinase 1 (PGK1) is a glycolytic enzyme that

catalyses the conversion of 1,3-diphosphoglycerate to 3-

phosphoglycerate. Higher PGK1 expression is associated with poor

prognosis (64). Th17-cells of Crohn’s disease patients display

heightened PGK1 and ALDOA and defective response to
FIGURE 14

Evaluation of this nomogram. Calibration curves of 1-year (A), 3-year (B) and 5-year (C) OS predicted by the nomogram showed the relationship
between predicted survival probability and observed fraction survival probability. DCA curves of 1-year (D), 3-year (E) and 5-year (F) OS prediction
showed the clinical predictive effects of this combined prediction model. The OS difference between combined low-risk and high-risk group was
shown in (G). (H) AUC values were calculated in ROC analysis for combined risk scores predicting the OS from TCGA-BRCA.
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unconjugated bilirubin (65). In addition, PGK1 can be regarded as an

immune target in Kawasaki disease (66). Glyceraldehyde-3-phosphate

dehydrogenase spermatogenic (GAPDHS) plays a crucial role in

carbohydrate metabolism and a novel GAPDH inhibitor can suppress

BC growth effectively (67). GAPDH controls effector cytokine

production by engaging/disengaging glycolysis and through

fluctuations in its expression (68). A GAPDH serotonylation system

has been reported recently to promote the glycolytic metabolism and

antitumor immune activity of CD8+ T cells (69). The concordance of

GAPDH expression in tumors with the TICs and immune checkpoints

implies a certain association between GAPDH and the TME as well as

cancer development (70). Collectively, these 10 GRPGs have been

reported to participate in BC development and carcinogenesis

(Supplementary Table S9).

The prognostic model we constructed has certain potential in

patient stratification for immunotherapy and guiding treatment

decisions. By evaluating risk scores, clinical doctors can better

identify high-risk patients and provide valuable information in

treatment choices, especially when developing personalized

immunotherapy plans. However, this study had several limitations.

First, although the TCGA-BRCA dataset provides rich information for

large-scale studies, sample heterogeneity may affect the generalizability

of the results. Second, despite using various statistical methods and

bioinformatics tools to analyze the data, some potential biological

signals may not have been fully captured due to limitations in sample

size and grouping criteria. The complexity of the TME may affect our

interpretation of indicators such as TMB and TIDE bymultiple factors.

In addition, in practical clinical applications, mRNA gene expression

profiling analysis faces many challenges, such as variability and cost

issues in sample collection and processing.
5 Conclusion

We identified 10 GRPGs and constructed an innovative and

reliable prognostic model to predict OS and immunotherapeutic

response in patients with BC. Moreover, a nomogram integrating

this prediction model with clinical characteristics was created to

predict the survival outcomes of patients with BC. Our study offers

clinicians a bioinformatics tool to make individualized treatment

plans and clinical decisions for patients with BC.
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