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Background: Acute myeloid leukemia (AML) is a hematopoietic malignancy with

poor outcomes and high recurrence. Disulfidptosis, a novel form of programmed

cell death driven by aberrant disulfide bonds and F-actin collapse, provides

insights into cancer progression and treatment.

Methods: We investigated the correlation network and prognostic values of

disulfidptosis-related genes (DRGs) in AML. Unsupervised clustering was

performed to reveal distinct disulfidptosis-related AML subtypes. We

implemented the differential analysis and enrichment analysis to explore the

difference of the distinct subtypes in biological processes. Least absolute

shrinkage and selection operator (LASSO) Cox model was used to generate a

disulfidptosis-related signature. We employed the ESTIMATE, CIBERSORT, and

scRNA analyses to assess the tumor microenvironment of AML. Moreover,

experiments validated the functions of PTPN6 and CSK in OCI-AML2 cells.

Results: We identified 10 prognostic DRGs and revealed two disulfidptosis

subtypes. DRGs significantly affected immune processes like interferon-gamma

response and MHC class II antigen presentation. LASSO algorithm was

implemented to established a 6-gene signature (HLA-DRB5, CCDC124, PTPN6,

HLA-DMA, CSK, ISG15) that predicted prognosis in two validation cohorts more

robustly than other signatures. Disulfidptosis was correlated with tumor

microenvironment immune cells, especially monocytes. The two risk

subgroups differed significantly in susceptibilities of multiple chemotherapy

drugs, indicating disulfidptosis as a potential therapeutic target. Knockdown of

PTPN6 and CSK inhibited the proliferation of AML cells and increased apoptosis.
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Conclusions: Our study provides insights into DRG prognoses and

immunomodulation, establishing a robust 6-gene risk model for predicting

AML outcomes that may enhance precision medicine and treatment strategies.
KEYWORDS
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1 Introduction

Acute myeloid leukemia (AML) is a type of cancer that affects

the blood and bone marrow. It is a heterogeneous disease

characterized by the abnormal growth of myeloid cells that are

responsible for producing blood cells. AML is a complex disease,

and its etiology and pathogenesis are not entirely understood (1).

While standards of care for AML have advanced significantly in

recent years, the 5-year overall survival rate remains low, among

patients aged 60 and older, especially for high-risk subsets such as

TP53-mutant AML (2–5). Presently, a conventional risk

stratification system combining cytogenetic risk with molecular

abnormalities is employed to predict the likelihood of complete

response, relapse, and overall survival in accordance with national

guidelines (6). However, this system has limitations when applied to

patients who do not have identifiable chromosomal or genetic

alterations (7). Hence, it is imperative to develop a more precise

risk stratification system for AML patients to select appropriate

therapies and forecast clinical outcomes with greater accuracy.

Programmed cell death (PCD) is a natural process by which

damaged or abnormal cells are eliminated from the body, which

includes apoptosis, necroptosis, pyroptosis, ferroptosis, and

cuproptosis (8). PCD plays a critical role in maintaining the

health and proper functioning of tissues and organs. In

malignancies, PCD is a double-edged sword that can inhibit

tumor growth and progression while promoting tumor immune

escape and drug resistance (9). Recently, Boyi Gan et al. discovered

a new type of PCD called disulfidptosis in a SLC7A11-dependent

manner (10). Actin cytoskeleton proteins in SLC7A11-high cells

undergo aberrant disulfide bond formation and F-actin collapse

under glucose starvation. They identified a series of genes that

promote or suppress disulfidptosis through CRISPR screens and

functional studies. In addition, they found that inhibiting glucose

transporter protein can suppress tumor growth, indicating that

disulfidptosis has the potential to become a new therapeutic target.

The study of disulfidptosis-related genes (DRGs) in AML helps

provide new insights into tumorigenesis and progression, and

improve clinical management and precision medicine for

each patient.

In this paper, we performed a comprehensive analysis of the

clinical significance and immunomodulation of DRGs in AML. By
02
examining the prognostic values of DRGs in AML and correlating

their expression with immune cell infiltration, we aim to gain

insights into the role of these genes in AML pathogenesis and

their potential as therapeutic targets. We also developed a robust

risk model for predicting the outcomes based on DRGs and

combined clinical features to generate a nomogram. Finally, we

conducted functional studies of two genes (PTPN6 and CSK) in

AML cells OCI-AML2. Our findings could provide a basis for the

development of personalized therapies for AML patients based

on DRGs.
2 Materials and methods

2.1 Data collection and preprocessing

We performed the GDCquery function of “TCGAbiolinks”

package to download the gene expression of TCGA-AML

patients. The clinical information, including age, gender,

cytogenetic risk, and overall survival (OS) time, were also

retrieved by “GDCprepare_clinic” procedure. Patients without

follow-up information or with a survival time of less than 30 days

were excluded from this study. Referring to similar studies (11), we

chose expression matrix in the format of TPM for subsequent

analysis. Human genome annotation was performed using

GENCODE GRCh38 v36, in line with the Genomic Data

Processing Pipeline on the GDC website (https://gdc.cancer.gov/

about-data/gdc-data-processing/genomic-data-processing).

Data from GSE106291 (12) and GSE37642 (13) were obtained

through the NCBI-GEO database (https://www.ncbi.nlm.nih.gov/

geo/), while beat-AML cohort were sourced from a previous study

(14). Both the GSE106291 and beat-AML cohorts utilized RNA-seq

data, consistent with our approach, and were normalized using

TPM. The GSE37642 dataset is annotated based on the GPL570

platform, and we applied Robust Multichip Average (RMA)

normalization and log2 transformation to these data.

Eligible samples were screened according to the following

criteria: (a) complete gene expression data without any NA or

missing values, (b) complete survival information and

clinicopathological characteristics, including gender, age, white

blood cell (WBC) count, and cytogenetic risk, and (c) survival
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follow-up longer than 30 days. Finally, 126 patients from the

TCGA-AML cohort, 250 patients from the GSE106291 cohort,

140 patients from the GSE37642 cohort, and 649 patients from

the beat-AML cohort were included in subsequent analyses.

The scRNA expression profile of GSE154109 and cell

annotation information were downloaded from TISCH website

(http://tisch.comp-genomics.org/) (15).

The DRGs were obtained based on the results of the CRISPR

screens in previous study (10), and we only selected candidate genes

with p-value < 0.001.
2.2 Identification of disulfidptosis-related
subtypes

The univariate Cox method was applied to investigate the

prognostic values of DRGs. Based on expression profiles of

prognostic DRGs, we identified two disulfidptosis-related subtypes

in TCGA-AML cohort using the “ConsensusClusterPlus” package

(16) with the parameters of clusterAlg = “hc”, distance = “spearman”

and reps = “1000”. We used the principal component analysis (PCA)

algorithm to visualize the distribution of two disulfidptosis-related

subtypes and employed Kaplan-Meier (KM) product limit analysis to

compare survival rates of the two subtypes.
2.3 Function annotation and PPI network

The DEGs between the two disulfidptosis-related subtypes were

identified using the “limma” package (17) with the threshold of |

log2 fold change (FC)| > 1 and adjusted p-value < 0.05. We used

GO-BP terms to annotate the disulfidptosis-related DEGs and

compared the differences between the distinct subtypes in

HALLMARK genesets retrieved from the MSigDB database

(downloaded on January 17, 2023). STRING database (https://

string-db.org/) was used to construct the PPI network of

disulfidptosis-related DEGs. We further employed the MCODE

module to determine hub genes and selected the top 2 clusters to

visualize in Cytoscape software.
2.4 Generation of 6-gene signature in AML
and performance

The prognostic values of hub genes in AML were evaluated by

univariate Cox algorithm. The hub genes with a p-value < 0.05 were

selected for LASSO Cox model to build the 6-gene signature. Based

on the coefficients and expression levels of each gene, a risk score

formula was established as follows:

Risk   score =  o
n

i=1
Coefi  �Expi

where Coef represents the regression coefficient of gene and Exp

represents the expression value.
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The AML patients were dichotomized into high- and low-risk

groups based on the median risk score. The KM product limit

method and log-rank test were conducted to explore the survival

status between the high- and low-risk groups. Additionally, we

evaluated the predictive accuracy of our risk signature for 1-year, 3-

year, and 5-year clinical outcomes using receiver operating

characteristic (ROC) curve method.
2.5 Correlation analysis between risk
scores and immune cell infiltration

The association of the risk signature with immune cell

infiltrations in the AML microenvironment was analyzed using

the R packages ESTIMATE (18) and CIBERSORT (19). The

correlation coefficient between the risk scores and infiltration

scores was estimated by Spearman’s algorithm.
2.6 scRNA analysis

We performed scRNA data analysis using the “Seurat” package

(v4.3.0). Quality control was applied by excluding cells with extreme

values in nFeature_RNA (fewer than 200 or more than 5000 features)

and cells with more than 20%mitochondrial RNA content, as these are

indicative of damaged or dying cells. The top 2000 highly variable genes

were selected for downstream analysis based on their coefficient of

variation. The clustering analysis was conducted using a resolution of

0.5. Cell type annotation was acquired using the TISCH website as

mentioned previously. We determined six types of cells based on the

canonical cell markers and visualized these cells using the DimPlot

function through Uniform Manifold Approximation and Projection

(UMAP) method. The AddModuleScore procedure was executed to

estimate the disulfidptosis scores across cell types.
2.7 SNV and drug sensitivity analyses

We executed the tmb function of “maftools” package (20) to

calculate the TMB value for each individual in TCGA-AML. We

employed the “oncoPredict” package (21) to estimate the IC50

values of chemotherapy drugs for AML patients, and conducted

Spearman’s method to calculate the correlation coefficient of risk

scores with drug susceptibilities.
2.8 Cell culture and transfection

The AML cell line OCI-AML-2 was obtained from MeisenCTCC

(Zhejiang, China) and cultured following the supplier’s recommended

protocols. To knock down the expression of PTPN6 and CSK, small

interfering RNA (siRNA) specific for PTPN6 and CSK, as well as

scrambled negative control siRNA (si-NC), were obtained from Sango

Biotech (Shanghai, China). The target sequence of the siRNA of
frontiersin.org
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PTPN6 and CSK is as follows: (siCSK-1: 5’-GUACGCGC

CUCAUUAAACCAATT-3 ’ ; siCSK-2: 5 ’-UGUCUCCUCA

AGUUCUCGCUATT-3’; siCSK-3: 5’-CUCUGGGAAAUCUACUCC

UUUTT-3’;

siPTPN6-1: 5’-GCAUGACACAACCGAAUACAATT-3’;

siPTPN6-2: 5’-CGACAUGCUCAUGGAGAACAUTT-3’;

siPTPN6-3: 5’-CGGCACCAUCAUCCACCUCAATT-3’).

OCI-AML-2 cells were transfected with 50 pM siRNA targeting

PTPN6 and CSK1 and a negative control using Inni-fectin™ SC-

sRNA Suspension Cell Transfection Reagent for 48 hours in

accordance with the supplier’s recommendations.
2.9 Western blot

WBwas performed following our previously reported protocol (22).
2.10 Cell proliferation assay

Cells (5×103 per well) were seeded in 96-well plates and incubated

for 48 hours and then treated with 50 nM siRNA for 0, 24, 48, 72 and

96 hours. Cell proliferation and cytotoxicity were subsequently assessed

using a Cell Counting Kit-8 assay according to the manufacturer’s

protocol (Beyotime Biotechnology, Shanghai, China).
2.11 Flow cytometry

Cells were seeded in 6-well plates and incubated for 24 hours. The

culture medium was replaced with siRNA medium containing 50 mM
siPTPN6andsiCSKandincubatedfor48hours.Cellswerethencollected,

washed and resuspended in buffer according to the manufacturer’s

instructions. 10 mL of Annexin V-FITC and 10 mL of PI were added

separately, incubated at room temperature for 20minutes and analyzed

using a flow cytometer (BectonDickinson, Franklin Lakes, NJ, USA).
2.12 Statistical analysis

The statistical analysis and data visualization were conducted

using R software (v4.2.2). Unless otherwise stated, a two-tailed

Student’s t-test was utilized to compare differences between distinct

AML subtypes. We compared differences in OS using KM survival

curves and calculated the p-value using the log-rank test. We

considered p < 0.05 statistically significant.
3 Results

3.1 Identification of two disulfidptosis-
related subtypes in AML

The overall work pipeline of this study is depicted in the flow

chart (Supplementary Figure S1). A total of 48 DRGs were obtained
Frontiers in Immunology 04
from the previous study, and we performed Spearman’s analysis to

explore the relationship of these DRGs. The result showed that,

overall, these DRGs were positively correlated, while several genes

was negatively correlated (Figure 1A). For example, disulfidptosis-

promoting gene SLC7A11 was negatively correlated with

disulfidptosis-suppressing genes NDUFB11, GYS1, and SCO2.

Through PPI analysis, we found that respiratory chain complex I

was hub network (Figure 1B). To comprehensively evaluate the

prognostic values of DRGs, we applied univariate Cox regression

analysis and obtained 10 prognostic DRGs (Figure 1C). These

DRGs were then used to identify disulfidptosis-related subtypes in

TCGA-AML using the ConsensusClusterPlus package. Based on the

consensus clustering results, we found that the optimal cluster

number was 2, and thus we divided the patients into two

disulfidptosis-related subtypes, cluster 1 and cluster 2

(Figures 1D-F). PCA also showed that the two subtypes were well

separated (Figure 1G). The KM results indicated that cluster 2 had

higher survival advantages than cluster 1 (p = 0.00092) (Figure 1H).

The boxplot also suggested the two subtypes had distinct expression

patterns of prognostic DRGs (Figure 1I).
3.2 Functional annotation and PPI network
analysis of disulfidptosis-related DEGs

To investigate the biological functions and pathways that were

differentially enriched between the two disulfidptosis-related

subtypes (cluster 1 vs cluster 2), we identified 906 dysregulated

genes between cluster 1 and cluster 2 (Figure 2A). GO annotation

showed that the DEGs were mainly involved in immune-related

processes, such as “leukocyte cell−cell adhesion”, “leukocyte

proliferation” and “regulation of leukocyte proliferation”

(Figure 2B). In addition, we compared the differences in

HALLMARK gene sets between the two subtypes, and found that

“Fatty acid metabolism”, “Interferon gamma response” and “Myc

target v1” were significantly enriched in cluster 1 (Figure 2C). We

also found that cluster 1 had higher expression levels of multiple

immune checkpoints molecules (Figure 2D). To explore the

potential interactions among the DEGs, we constructed a PPI

network using the STRING database, which contained 901 nodes

and 4129 edges. The top 2 clusters were obtained using the MCODE

algorithm, and the hub genes were selected according to their

degree of connectivity in the network. Cluster 1 contained 29

nodes and 252 edges and cluster 2 contained 36 nodes and 29

edges (Figures 2E, F). Interestingly, cluster 1 had multiple immune

checkpoints, such as the MHC complex and PD-1.
3.3 Construction and validation of the
6-gene signature

To further explore the prognostic value of the hub genes

identified in the PPI network, we performed univariate Cox

method, and found that 42 genes were significantly associated

with clinical outcomes (P < 0.05) (Figure 3A). We then used these
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1513040
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gong et al. 10.3389/fimmu.2025.1513040
genes to construct a risk model using LASSO Cox algorithm, which

resulted in a 6-gene signature (HLA-DRB5, CCDC124, PTPN6,

HLA-DMA, CSK, and ISG15) (Figures 3B, C). The risk score

formula was established using the coefficients derived from the

LASSO analysis as follows: Risk score = (0.00328 * Exp HLA-

DRB5) + (0.245 * Exp CCDC124) + (0.0754 * Exp PTPN6) +

(0.121 * Exp HLA-DMA) + (0.0776 * Exp CSK) + (0.0131 * Exp

ISG15). AML patients were dichotomized into high-risk and low-

risk groups according to the median risk score, with the low-risk

subgroup having a prominent survival advantage (p < 0.0001)

(Figure 3D). The 6 -gene signature also exhibited moderate

predictive performance for OS, with area under the curve (AUC)
Frontiers in Immunology 05
values of 0.761 at 1 year, 0.732 at 3 years and 0.706 at 5 years,

respectively (Figure 3E). Univariate and multivariate Cox regression

analysis showed that the 6-gene signature was an independent

prognostic factor for OS after adjusting for other clinical features

(Univariate: HR = 1.0527, P < 0.001; Multivariate: HR = 1.047, P <

0.001) (Figure 3F). Furthermore, we divided TCGA-AML patients

into distinct subgroups according to age, gender, cytogenetics, and

white blood cell count to explore the applicability of 6-gene signature

in different subgroups. The survival curves suggested worse OS in the

high-risk group compared to the low-risk group across various strata

of clinical variables (Supplementary Figures S2A-D). These results

highlight the robust prognostic value of our risk signature for AML
FIGURE 1

Molecular subtypes of AML patients based on 10 DRGs with prognostic values. (A) Correlation network of mRNA levels of 48 disulfidptosis-related
genes. (B) Identification of the hub network through PPI analysis. (C) Hazard ratios (HR) forest plot of 10 prognostic DRGs with a p-value < 0.05.
(D) Consensus heatmap when k = 2. (E, F) Distribution and relative change of cumulative distribution function (CDF) curves when k = 2-6. (G) The
clear border was shown between the two AML subtypes in the PCA plot. (H) KM method was implemented to compare the overall survival (OS)
probabilities of the two cluster. (I) The expression pattern of the 10 prognostic DRGs between the cluster 1 and cluster 2. *P < 0.05, **P < 0.01,
***P < 0.001, ****P < 0.0001 and ns represents not significant.
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FIGURE 2

Functional characterization of disulfidptosis-associated DEGs. (A) The volcano plot of DEGs between the two disulfidptosis-related cluster. Up: DEGs
upregulated in Cluster 1. Down: DEGs downregulated in Cluster 1. (B) The top 10 terms of GO-BP results enriched in Cluster 1. (C) GSEA analysis
showed the top 5 pathways of the 50 hallmark genesets based on the fold change (FC) of all genes. (D) The cluster 1 had higher expression levels of
immune checkpoints than the cluster 2. (E) The top-ranked sub-network (18 scores) in the PPI network and its enrichment results. (F) The 2nd-
ranked sub-network (13 scores) in the PPI network and its enrichment results. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 and ns represents
not significant.
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FIGURE 3

Generation and validation of a disulfidptosis-related 6-gene signature in AML. (A) The univariate Cox analysis was conducted to screen the hub
genes with prognostic values. (B) Coefficient profiles of each prognostic gene. (C) The distributions of partial likelihood deviance for log(lambda).
(D) The low-risk AML patients had prominent OS advantage compared with high-risk (p < 0.0001, log-rank test). (E) Receiver operating characteristic
(ROC) curves for 1-, 3- and 5-year OS of TCGA-AML cohort. (F) Combined the Univ- and Multiv-Cox analyses of the 6-gene signature and other
clinicopathological variables. (G) Independent validation of the risk model in external cohorts (beat-AML, GSE106291, and GSE37642). (H) Comparing
the C-index of our signature with seven other signatures. (I) ROC curves for our signature and another signature. (J) Nomogram for predicting the
OS of AML patients. The red dots showed the survival probability of one of AML patients. (K) Calibration curves between observed and predicted OS
for 1-, 3-, and 5-year.
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patients, maintaining its predictive power even when accounting for

various clinical parameters.

To validate the robustness and reproducibility of the 6-gene

signature, we applied it to two independent cohorts of AML

patients. KM results showed that the high-risk subgroup had poor

outcomes in validation sets (Figure 3G), confirming the robustness

and reproducibility of the 6-gene signature in predicting prognosis

in AML. Next, we compared the concordance index (C-index) of

our risk signature to other established signatures, finding our 6-gene

signature had the second highest C-index (Figure 3H). We then

compared the AUC values of our signature to the signature with the

highest C-index, finding our signature had higher discriminative

ability (This study, AUC = 0.828; You Yang et al., AUC = 0.812)

(Figure 3I). Additionally, we generated a nomogram incorporating

the 6-gene signature with other clinicopathological variables

including cytogenetic risk and age (Figure 3J). Calibration

confirmed the model could reliably predict 1-, 3- and 5-year OS

in AML patients (Figure 3K).
Frontiers in Immunology 08
3.4 Tumor microenvironment analysis

The TME is known to affect tumor growth, metastatic spread,

and response to therapy. PCD plays a crucial role in regulating AML

TME and determining clinical outcomes of the tumor therapeutic

approaches (23, 24). In addition, previous result showed that

disulfidptosis-related subtypes had a significant difference in

immune-related processes (Figure 2). Based on these findings, we

explored the relationship between risk scores and the TME in AML.

The boxplot suggested that the high-risk subgroup had higher

scores compared to the low-risk groups in stromal, immune, and

ESTIMATE (Figure 4A). The correlation results also illustrated a

positive correlation between risk scores and infiltration scores

(Figure 4B). Further comparing the 22 types of immune cells, we

found that about half of the immune cells were significantly

different between the two risk groups (Figure 4C). For example,

the high-risk groups had higher monocyte and M2 macrophage

infiltrations while the low-risk groups had higher plasma cell and
FIGURE 4

Differences in tumor microenvironments between risk subgroups of AML patients. (A) Boxplot showed the high-risk AML patients had significantly
higher infiltration levels of TME. (B) There was a positive correlation between patient risk score and TME score. (C) 10 out of 22 immune cell types
showed significantly different infiltration levels between the two risk subgroups. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 and ns
represents not significant.
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resting CD4memory T cell infiltrations. These results indicated that

the two risk groups exhibited distinct TME infiltration patterns,

which could potentially contribute to the poorer prognosis observed

in the high-risk group.

Furthermore, we assessed leukemic stem cell (LSC) activity in our

cohort using the LSC17 signature (25). Patients were categorized into

high and low LSC groups based on the median LSC score. Subsequent

differential analysis revealed a significantly higher disulfidptosis score

in the high LSC group (Supplementary Figure S3). These findings

suggest a potential correlation between LSC properties and the

activation of the disulfidptosis pathway in AML.

We further investigated the relationship of the 6-gene signature

with TME in a scRNA dataset GSE106291. We retrieved from 8

AML patients and obtained expression profiles of 9623 cells for

subsequent analysis. Through dimensionality reduction analysis, we

identified 22 clusters and finally determined 6 types of cells,

including B cells, CD8 T cells, exhausted CD8 T cells, erythroid

progenitor, malignant, and Monocyte/Macrophage (Figure 5A).

The dot plot showed marker genes of each cell type, such as B

cell markers CD79A, CD79B, and MS4A1 (Figure 5B). We executed

the AddModuleScore function to calculate the disulfidptosis scores

across cell types, found that Monocyte/Macrophage had highest

scores (Figure 5C). We further performed cell-cell interaction (CCI)

analysis, and the results indicated that Mono/Macro interacted

more strongly with malignant compared to other cells

(Figures 5D, E). Our findings suggested that disulfidptosis might

play an important role in TME by affecting monocytes/macrophage.
3.5 Somatic mutation frequency in the two
risk groups

To investigate the relationship of the 6-gene signature and SNV in

TCGA-AML, we counted incidence of genetic alterations for each

AML individual using “maftools” package. 19 of 42 (45.24%) patients

had genetic mutations in the high-risk groups, while 19 of 41 samples

(46.34%) had genetic mutations in the low-risk groups (Figures 6A, B).

Interestingly, the low-risk groups had higher NPM1 alterations than

the high-risk group, while lower RUNX1 alterations. In general, AML

patients with NPM1 alterations had a favorable prognosis, while those

with RUNX1 alterations had a poor prognosis (26, 27). We also

compared the TMB between the two risk groups and found that risk

scores were negatively correlated with TMB in AML patients

(Figures 6C, D). Additionally, we performed Tumor Immune

Dysfunction and Exclusion (TIDE) analysis (28). The results

indicated that low-risk patients had lower TIDE scores, suggesting

they may have a more favorable immune response (Figure 6E). These

results indicated that low-risk patients might benefit more

from immunotherapy.
3.6 Prediction of drug sensitivity

Chemotherapy and targeted drugs are currently one of the main

means of treatment for AML patients. Therefore, we used the
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oncoPredict package to predict drug resistance for each AML

patients. oncoPredict is a powerful tool that analyzes genetic and

clinical data to provide personalized treatment recommendations,

helping doctors make more precise and effective decisions. We

retrieved GDSC2 expression data and meta information from

GDSC2 database as a training cohort, and conducted ridge

regression analysis to evaluate the IC50 values of anti-tumor

drugs in TCGA-AML. We identified the IC50 values of eight

drugs were significantly correlated with risk scores (Figure 7A).

The boxplot also illustrated that distinct groups had significant

differences in these drugs (Figure 7B). Our analyses suggested that

targeting the DRGs is a potential therapeutic strategy.
3.7 Functional validation of PTPN6 and CSK

To further verify the role of these prognostic genes in AML, we

performed in vitro experiments on PTPN6 and CSK which their

cellular effects in lung cancer are unclear. Through differential

expression and survival analysis, we found that PTPN6 and CSK

were significantly upregulated in AML patients, and both genes

were associated with poor prognosis (Figures 8A, B). The WB

results demonstrated that the expression of PTPN6 and CSK were

significantly downregulated (Figures 8C, D). Knockdown of PTPN6

or CSK significantly decreased cell viability in AML (Figures 8E, F).

We also investigated the role of PTPN6 and CSK in apoptosis using

a flow cytometry detection kit. The siPTPN6 and siCSK group

exhibited a higher level of apoptosis compared to the control group,

indicating that PTPN6 and CSK could have promoted apoptosis of

AML cells (Figures 8G, H).
4 Discussion

Acute myeloid leukemia (AML) is a heterogeneous disease, and

current treatment strategies have limited efficacy, which highlights

the need for developing novel therapeutic approaches. In recent

years, programmed cell death (PCD) has been reported to be

associated with AML progression and therapeutic resistance. The

identification of disulfidptosis provides a new potential therapeutic

approach for antitumor therapy (10, 29). For example, SLC7A11, a

gene central to disulfidptosis, was a potential therapeutic target (30).

However, the involvement and role of disulfidptosis in AML

remains unclear. Therefore, in this study, we aimed to identify

disulfidptosis-related molecular subtypes and construct a gene

signature that could predict AML patient prognosis.

In our study, we identified two disulfidptosis-related subtypes in

AML. The two subtypes showed distinct expression patterns of

DRGs and had different prognoses, with cluster 1 having worse

overall survival (OS) compared to cluster 2. Enrichment analysis

suggested that the P53 and Myc pathway were significantly

activated in cluster1. These two pathways serve as hallmarks of

cancer occurrence and development which promote cancer cell

growth and immune escape (31, 32). This may, at least in part,

explain the poorer prognosis observed in cluster 1 patients.
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Interestingly, we also found that immune-related processes, such as

interferon gamma response, were differentially enriched

between the two subtypes. Additionally, we observed differences

in immune-related processes between the two subtypes,

including the enrichment of interferon gamma response. While
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AML is characterized by severe immune dysfunction (33),

the differential immune-related signatures between subtypes

suggest a potential link between disulfidptosis and immune

regulation in AML. However, further studies are needed to

elucidate the exact mechanisms. Given these findings, targeting
FIGURE 5

The relationship between risk score and TME in scRNA-seq dataset GSE154109. (A) Six cell types were identified from the scRNA data: B cells, CD8 T
cells, exhausted CD8 T cells, erythroid progenitor cells, malignant cells, and monocytes/macrophages. (B) The expression levels of marker genes
across the six cell types shown as a dot plot. (C) The distribution of disulfidptosis risk scores for the six cell types. (D) Heatmap showing cell-cell
interaction (CCI) results within the TME. (E) CCI visualized as a network diagram with paired lines, reflecting the interactions within the TME.
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disulfidptosis in combination with immunotherapeutic strategies

or inhibitors of oncogenic pathways may offer new avenues for

AML treatment. However, this remains speculative and requires

further investigation.

At present, according to cytogenetic characteristics, patients can

be divided into favorable, intermediate and poor clinically (34).

However, these cytogenetic methods cannot effectively evaluate

patients with normal karyotype (approximately 50% of AML

cases) (35, 36). New molecular markers are still urgently needed

to improve the prediction and classification system of AML

treatment risk. We used the univariate Cox regression analysis to

identify genes associated with clinical outcomes and constructed a

6-gene signature using LASSO Cox algorithm. This 6-gene

signature included HLA-DRB5, CCDC124, PTPN6, HLA-DMA,

CSK, and ISG15, and was found to be an independent prognostic

factor for OS in AML patients. HLA-DRB5 and HLA-DMA were

the HLA class II molecules whose primary function were to present

endogenous and exogenous antigens to T cells. HLA-DR and HLA-

DM expression were significantly upregulated in AML patients

compared with normal controls (37). A study found that HLA-DR
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was correlated with FAB subtype and could have served as a

prognostic marker in AML (38). CCDC124 is a protein

containing a coiled-coil helical domain and has been found to be

upregulated in various types of tumors (39). Currently, there are no

reports regarding the expression or functional role of CCDC124 in

AML. PTPN6 (also named SHP1) was a protein tyrosine

phosphatase (PTP). qPCR and WB experiment targeting the

protein tyrosine phosphatase (PTP) family showed that PTPN6

were highly expressed in both AML patients and cell lines (40, 41).

In addition, a risk signature study of AML patients showed that

PTPN6 was a risk factor in AML (42). CSK belong to C-terminal Src

kinase. In hematological malignancies, the activation of c-Src could

promote cell proliferation (43). In addition, the protein expression

of CSK was significantly upregulated in of extracellular vesicles in

AML cell lines (44). ISG15 is a ubiquitin-like protein that regulates

multiple cellular processes in AML, such as cell cycle control and

transcription (45). Blocking ISG15 binding to substrates impairs

AML cell differentiation (46). Given these, our 6-gene model

involved several cellular processes and was closely related to

prognosis in AML.
FIGURE 6

Somatic mutation profile in the two risk subgroups. (A, B) Counting the frequencies of top 20 mutated gene in the high-risk subgroup (A) and low-
risk subgroup (B). (C) The high-risk subgroup had a lower tumor mutational burden (TMB) compared to the low-risk subgroup. (D) A scatter plot
showing that risk scores in AML patients were negatively associated with TMB (Spearman correlation, R = -0.23). (E) Comparison of TIDE scores
between the high-risk subgroup and low-risk subgroup.
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In the tumor microenvironment of AML, there is a very

complex crosstalk between tumor, stromal, and immune cells.

This complex interplay contributes to progression, immune

evasion, and drug resistance (47, 48). This intricate network of

interactions within the bone marrow niche presents significant

therapeutic challenges. The niche’s heterogeneous composition,

dynamic adaptability, and protective role for leukemic stem cells

(LSCs) make it a difficult target for conventional therapies.
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Disrupting this protective microenvironment without affecting

normal hematopoiesis is a key therapeutic goal. Our analyses,

including scRNA and bulk RNAseq of immune infiltration,

suggest that disulfidptosis may have an immunoregulatory

function, particularly affecting monocytes/macrophages, with a

strong association observed between malignant cells and these

immune cells. As discussed by Patel et al. (49), niche-directed

therapies, such as optimizing stem cell competition for niche
FIGURE 7

Comparison of anti-tumor drug susceptibility for personalized medicine. (A) Correlation plot for the top 8 drugs significantly associated with the risk
score in AML. (B) The boxplot showed the difference between the two risk subtypes.
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occupancy, offer a potential strategy to overcome these challenges.

Therefore, future research should investigate the specific impact of

disulfidptosis on immune-related functions and cell-cell

interactions in AML, with a focus on exploring potential
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therapeutic strategies that target this complex crosstalk within the

bone marrow microenvironment.

Based on scRNA analysis and bulk RNAseq analysis of immune

infiltration, disulfidptosis had a potential immune regulatory
FIGURE 8

In vitro validation of the functions for PTPN6 and CSK. (A) PTPN6 was upregulated in AML patients and correlated with worse prognosis. (B) CSK was
upregulated in AML patients and correlated with worse prognosis. (C, D) Western blot showing knockdown efficacy of PTPN6 (C) and CSK (D) in
OCI-AML-2 cell line. (E, F) CCK8 assay was used to measure cell proliferation after PTPN6 (E) and CSK (F) knockdown. (G, H) Flow cytometry results
showed that the proportion of apoptotic cells was higher in siPTPN6 (G) and siCSK groups (H).
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function on the immune microenvironment, especially monocytes.

In particular, cellular communication analysis revealed that

malignant had the most prominent association with monocytes/

macrophages. In future work, we need to explore the impact of

disulfidptosis on immune-related functions and cell-cell

interactions in AML.

There are also some shortages in this research. First, as a

retrospective analysis, a prospective validation study is needed to

confirm our findings. Second, the biological mechanisms

underlying the two disulfidptosis-related subtypes and the 6-gene

signature need to be further explored. Third, the limited sample size

of our study may limit the generalizability of our findings.

In conclusion, our study identified two disulfidptosis-related

subtypes in AML and constructed a 6-gene signature that could

predict AML patient prognosis independently. Our findings

increased the understanding of the AML heterogeneity and might

facilitate personalized medical strategies for AML patients.
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