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Growth arrest and DNA damage-inducible 45 (GADD45) proteins are critical

stress sensors rapidly induced in response to genotoxic/physiological stress and

regulate many cellular functions. Even though the primary function of the

proteins is to block the cell cycle, inhibit cell proliferation, promote cell

apoptosis, and repair DNA damage to cope with the damage caused by

internal and external stress on the body, evidence has shown that GADD45

also has the function to modulate innate and adaptive immunity and plays a

broader role in inflammatory and autoimmune diseases. In this review, we focus

on the immunomodulatory role of GADD45 in inflammatory and autoimmune

diseases. First, we describe the regulatory factors that affect the expression of

GADD45. Then, we introduce its immunoregulatory roles on immune cells and

the critical signaling pathways mediated by GADD45. Finally, we discuss its

immunomodulatory effects in various inflammatory and autoimmune diseases.
KEYWORDS

GADD45, immunoregulation, auto-immunoregulation, inflammatory diseases,
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1 Introduction

In mammals, GADD45 is a gene family consisting of GADD45a, GADD45b, and
GADD45g, localized to three distinct chromosomes (chr 1, 19, and 9 for GADD45a,
GADD45b, and GADD45g, respectively) (1). GADD45 proteins are small (18 kD),

evolutionarily conserved that are highly homologous to each other (55–57% overall

identity at the amino acid level), highly acidic (pH ¼ 4.0–4.2), low abundance in normal

cells, and localize in both nucleus and cytoplasm (2–7). The first GADD45 gene was
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identified in Chinese hamster (CHO) cells based on increased

expression after growth cessation signals or treatment with DNA-

damaging agents (8, 9). It was, therefore, given the abbreviation

Growth Arrest and DNA Damage (GADD) as its name. This gene is

renamed as GADD45a. Another gene of the GADD45 family,

GADD45b (designated initially as MyD118), was identified as a

primary response gene transiently induced by IL-6 in myeloid

leukemia cell lines (2). GADD45g was first described in mice as

the ortholog of the human CR6 gene encoding an acute phase

response protein expressed upon interleukin-2 stimulation (10).

The GADD45 gene has been proven to be expressed in various

tissues, including the heart, brain, lungs, kidney, spleen, skeletal

muscle, ovary, and testis (3, 11), as well as in drosophila (12, 13).

Due to the lack of enzyme activity, the physiological function of

GADD45 proteins depends on protein-protein interactions with

their partner proteins, which include proliferating cell nuclear

antigen (PCNA), cell division cycle 2 kinase (cdc2)/cyclinB1,

cyclin-dependent kinase 1(cdk1), cyclin-dependent kinase

inhibitor 1A (p21), and mitogen-activated protein kinase kinase

kinase 4 (MEKK4), p38 mitogen-activated protein kinase (P38

MAPK), and c-Jun N-terminal kinases (JNKs) (5, 14). As sensors

of bodily and environmental damage, GADD45 family proteins

play a critical role in various cellular functions and regulate diverse

cellular effects (15), such as cell cycle arrest (4), DNA demethylation

and repair (16), cell survival (17, 18), maintenance of genomic

stability (19), and apoptosis (20, 21) in response to environmental

and physiological stress, as well as having a role in development and

carcinogenesis (22, 23). GADD45 responds to various immune

signaling pathways induced by cytokines and T-cell receptors

(TCR) and is involved in regulating intrinsic and acquired

immunity (15). Notably, an increasing number of studies have

confirmed the regulatory role of GADD45 in immunity (24–27).

Studies in disease models and clinical trial specimens have

implicated that GADD45 is involved in the pathogenesis of

inflammatory autoimmune diseases (28, 29). In this review, we

will focus on the immunomodulatory role of GADD45 in

inflammatory and autoimmune diseases.

Notably, an increasing number of studies have confirmed the

regulatory role of GADD45 in immunity (24–26). Studies in disease

models and clinical trial specimens have indicated that GADD45 is

involved in the pathogenesis of inflammatory autoimmune diseases

(28, 29). In this review, we focus on the immunomodulatory role of

GADD45 in inflammatory and autoimmune diseases.
2 The inducers of GADD45

GADD45 proteins are typical signaling proteins. They are small

and rap id l y r egu l a t ed a t bo th t r ansc r ip t i ona l and

posttranscriptional levels, playing various roles in mediating stress

signaling and growth regulation. Many factors, such as radiation,

chemicals, inflammatory cytokines, and transcription factors, can

trigger GADD45 expression to produce inflammatory and/or

immunomodulatory effects. Each GADD45 gene has a distinctive

expressional pattern in response to specific stressors.
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2.1 Environmental stresses

2.1.1 Radiation
Both mRNA and protein of GADD45a are induced by ionizing

radiation (IR) in a human myeloid leukemia cell line (ML-1 cells)

and a human colon adenocarcinoma cell line (RKO cells) (30). X-

rays and g irradiation have also been reported to induce GADD45a
(17, 31, 32). All three GADD45 proteins were rapidly induced after

treating RKO cells with UV, displaying somewhat different

expression kinetics (4). In addition, expression of GADD45a and

GADD45b was observed in ML-1 cells (17, 30) and Bone marrow

(BM) cells (21).

2.1.2 Chemical reagents
The expression of GADD45a, b, and g genes in ML-1 cells can

be highly induced by methyl methane sulfonate (MMS) (17).

GADD45a and GADD45b but not GADD45g were induced

rapidly in M1 myeloblastic leukemia cells following treatment

with MMS (3, 4). MMS-induced expressions of GADD45a in

Chinese hamster ovary (CHO) and RKO cells were also reported

(9, 33). In addition to MMS, other chemicals can also induce

GADD45; for example, alkylating agent methyl malonyl sulfonate

can induce GADD45a expression in ML-1 cells (30), and carbon

tetrachloride (CCl4) can induce GADD45b (34).

2.1.3 Other environmental factors
Following serum starvation of the M1myeloblastic leukemia cells

for 48h and stimulation with serum, the level of GADD45a mRNA

was rapidly increased. Also, the levels of GADD45b and GADD45g
mRNAs transiently increased in BALB/c 3T3 cells after serum

stimulation (3, 35). In addition, other environmental factors, such

as H2O2, anisomycin (17), heat shock (36), heavy metals (37, 38),

sodium arsenite (34), Arsenic (39–44), hypoxia (45–47), low pH (48),

hyperosmotic stress (49–52), cisplatin (53–55), ethanol (56), low-

frequency electromagnetic fields (57), peroxynitrite free radicals (58),

cigarette smoke condensate (59, 60), mitomycin C (55), metal

nanoparticles (61) have shown to induce the expression of GADD45.
2.2 Inflammatory factors

Evidence accumulated in recent years indicated that

inflammatory responses can induce GADD45 expression in

hematopoietic and immune cells . Bacterial endotoxin

lipopolysaccharide (LPS) induces GADD45b expression in vivo in

a range of tissues, including the liver, spleen, lung, intestine, kidney,

and heart (34), as well as GADD45g expression in the lung (62).

Furthermore, GADD45b is induced by TNF-a in vivo and wild-

type mouse embryonic fibroblasts (MEFs) (34, 63). GADD45b was

also induced by IL-1 or IL-6 in the murine myelomonocytic cell line

M1 (64) and M1D+ myeloid precursors (2, 65). Acute-phase

inflammatory factors such as granulocyte-macrophage colony-

stimulating factor (GM-CSF), M-CSF, G-CSF, and IL-3 were

shown to induce expression of GADD45a and GADD45b in

bone marrow cells (66). IL-33 and IL-12 synergistically induced
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GADD45b expression in CD8+ cytotoxic T cells (67). Like IL-33 in

CD8+ cytotoxic T cells, IL-18 induced the expression of GADD45b
and GADD45g in CD4+ T helper (Th) cells, and the expression was

dramatically enhanced by co-treatment with IL-12 (24). GADD45g
was also induced by cytokines IL-2 and IL-12 (3, 68, 69). However,

GADD45a was not induced by IL-12, IL-18, and IL-33, but by IL-2

(10). In conclusion, inflammatory antigens and pro-inflammatory

cytokines are critical in inducing GADD45 gene expression in

hematopoietic and immune cells.

In addition to pro-inflammatory cytokines, TCRs have also

been shown to increase the expression of GADD45. Stimulation of

naïve CD4+ T cells with anti-CD3 and CD28 antibodies (triggering

the TCR complex) resulted in upregulating the expression of

GADD45b at an early time point (within 4 hours) (26). In

contrast, the expression of GADD45g in naïve CD4+ T cells

requires prolonged stimulation with anti-CD3 and CD28 (48-96

hours) (68). This may be related to the fact that GADD45g
expression is induced by IL-2 rather than TCR signaling. Early

induction of GADD45b was also observed in thymocytes in vivo

when N15 H-2b and N15TCR transgenic mice were injected with

the vesicular stomatitis virus nucleoprotein-derived octapeptide

N52 ± 59 (VSV8) in the Kb major histocompatibility complex

(MHC) class I molecular background (70).
2.3 Immunosuppressive factors

Interestingly, GADD45b expression was induced not only by

immunostimulatory signals but also by immunosuppressive

cytokine transforming growth factor beta (TGF-b) (71).

GADD45b has been reported to be induced by TGF-b in mouse

bone marrow mononuclear cell line M1, the lymphocyte line EL-4,

and the mink lung epithelial cell line MvlLu (3, 72). TGF-b induces

GADD45b expression in a Smad-dependent manner in pancreatic

carcinoma cells (73–75). However, it is unknown whether

GADD45b is required in vivo for the immunosuppressive

function of TGF-b on immune cells.
2.4 Transcription factors

Nuclear factor kappa-light-chain-enhancer of activated B cells

(NF-kB) is a family of inducible transcription factors that regulates

multiple aspects of innate and adaptive immune functions and is a

pivotal mediator of inflammatory responses (76). Several inhibitors

of the NF-kB signaling pathway, including dexamethasone,

cereblon E3 ligase modulator thalidomide, and proteasome

inhibitor bortezomib, showed inhibitory effects on LPS-induced

GADD45 expression (34). The p65 (RelA) has been reported to

activate the transcriptional expression of GADD45b by binding to

three kB elements on the gene’s promoter region (77). Recent

studies have disclosed a novel role for the NF-kB p50 subunit in

elevating GADD45a protein levels following arsenite exposure, and

its mechanism is that arsenite induces the formation of IKKb/p50
complex, which in turn inhibits GADD45a ubiquitination and

leads to protein accumulation (78). Interestingly, in the cells with
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suppressed NF-kB gene, ROS-dependent GADD45a mRNA

stabilization was observed under TNFa or arsenic stimulation

(79); however, another study showed that the GADD45 mRNA

expression was dramatically increased in the embryonic fibroblast

cells with Ikkb-/-, a kinase phosphorylates IkBa (80), these

contradictory results imply that the regulation of GADD45 by

NF-kB is complex.

In addition to direct regulation, NF-kB indirectly

transcriptional regulates GADD45 through other transcription

factors. NF-kB activation down-regulates the expression of

GADD45a partially via the mediation of c-Myc (81–83). Egr-1

has also been shown to mediate between NF-kB signaling and

GADD45 expres s ion (84) . The use of a Chromat in

Immunoprecipitation (ChIP) assay indicated a direct interaction

of Egr-1 with the promoter regions of GADD45a and GADD45b
(84); a significant increase of RelA (p65)-containing NF-kB
dimmers was found at kB site of Egr-1 promoter at the early

stage after ultraviolet radiation b (UVB) exposure, and subsequent

dramatically increased the expression of GADD45a and GADD45b
in the epidermal cells (84). The transcription of GADD45a is also

induced by the tumor suppressor p53 (85–87) and the Breast

Cancer Gene (BRCA) (88–92).

Although the transcriptional regulation of GADD45g is poorly
understood compared to its counterparts GADD45a and

GADD45b, a study showed that the GADD45g promoter was the

binding target of C/EBP family proteins (93). In addition, promoter

mapping analysis identified that C/EBPb and NF-kB/c-Rel elements

were located at conserved positions of the GADD45g promoter (93).

Table 1 summarizes various factors involved in inducing

GADD45 expression, which include environmental stimuli, pro-

inflammatory and immunosuppressive factors, and transcripts.
3 Cellular sources and regulation

3.1 Myeloid Cells

Myeloid Cells are important for the innate immune system

(non-specific immunity) and are immune effector cells formed

during the long-term germ-line evolution of organisms. Myeloid

Cells include granulocytes, monocytes, macrophages, dendritic cells

(DCs), and a subgroup of leukocytes. They circulate through the

blood and lymphatic system and are rapidly recruited to tissue

damage and infection sites via various chemokine receptors. Within

the tissues, they are activated to enhance phagocytosis, secrete

various inflammatory cytokines, and play critical roles in

protective immunity. Myeloid cells can also be found in tissues

under steady-state conditions, where they maintain immune

homeostasis and aid in tissue repair (98–100).

The GADD45 protein is essential for differentiating myeloid

cells into granulocytes and macrophages. In vitro, bone marrow

cells of GADD45a-/- and GADD45b-/- mice exhibited impaired

myeloid differentiation and increased apoptosis under acute

stimulation with various cytokines and inflammation (66).

Interestingly, GADD45a-/- and GADD45b-/- granulocyte/

macrophage progenitors regained their proliferative capacity after
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TABLE 1 The induction of GADD45 family proteins under various stress conditions.

Stresses/Inducers GADD45a GADD45b GADD45g

Exogenous Stimulation

ionizing radiation (17, 30–32). – –

UV Radiation (4, 8, 17, 21, 30) (4, 17, 21, 30) (4)

Hypoxia (45–47)

Serum Starvation (3) (3, 35) (3)

Heat Shock – – (36)

Methyl Methane sulfonate (3, 4, 9, 17, 33, 94) (3, 4, 17, 94) (17, 94)

methyl malonyl sulfonate (30) – –

Ccl4 – (34) –

H2O2 (17) (17) –

Anisomycin (17) (17) –

Heavy metals (37, 38) – –

Arsenic AS(III) (39–43) – –

Sodium arsenite – (34) –

Low pH (48) – –

Hyperosmotic stress (49–52) (50, 51) (50)

Cisplatin (53–55) – –

Ethanol (56) – –

Low-frequency
electromagnetic fields

(57) – –

peroxynitrite free radicals (58) – –

cigarette smoke condensate (59, 60) – –

Mitomycin C (55) – –

Physiological Inducers

TNFa – (34, 63) –

GM-CSF/M-CSF/G-CSF/IL-3 (66) (66) –

IL33 plus IL-12 – (67) –

IL-18 plus IL-12 – (24) (24)

Anti CD3 plus CD28 – (26, 68, 70) (68)

IL-12 – (68)

IL-1 – (2, 65)

IL-2 – – (3, 10, 69)

IL-6 (3) (2, 3, 64) (3)

LPS (2, 34) (62)

Immunosuppressive Factors TGF-b (3, 72–75)

Transcription Factors

BRCA1/2 (88–91) – –

P53 (85–87) (95) –

NF-kB (78, 79) (77) (96)

C/EBP (97) – (93)

c-Myc (82) – –

Egr-1 (84) (84) –
F
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replanting in methylcellulose supplemented with IL-3; in vivo,

GADD45a-/- and GADD45b-/- mice also displayed reduced

recovery of the bone marrow myeloid after 5-fluorouracil-induced

myeloablation, furthermore, GADD45a-/- and GADD45b-/- mice

also exhibited impaired bone marrow cell responses to

inflammatory stress induced by intraperitoneal administration of

sodium caseinate (66). Notably, GADD45a and GADD45b
deficiency led to higher proliferative capacity of immature

myeloid cells. Thus, GADD45 proteins may promote the

differentiation of myeloid cells and inhibit the proliferation of

these terminally differentiated cells. However, GADD45g is not

required for myeloid differentiation (69).

In a mouse model of experimental sepsis, reduced recruitment

of myeloid cells into the peritoneal cavity upon LPS injection was

observed in GADD45a-/- and GADD45b-/- mice by diminishing

p38 kinas and JNK activity (101). Bone marrow-derived

macrophages and granulocytes from GADD45a-/- or GADD45b-/-

mice exhibited lower migration efficiency in response to

inflammatory stimuli such as LPS, N-formyl-methionine-leucine-

phenylalanine, and IL-8. GADD45a and GADD45b also affect

other myeloid innate immune functions, including reactive
Frontiers in Immunology 05
oxygen species production, phagocytosis, and adhesion (101).

These data indicate that GADD45 proteins are crucial in myeloid

cell differentiation, proliferation, and function (Figure 1).
3.2 Antigen-presenting cells

Antigen-presenting cells (APCs), also known as accessory cells,

can ingest, process, and present antigen information to lymphocytes

during the immune response. The main APCs include dendritic cells

(DC), macrophages, and B lymphocytes (102, 103). Dendritic cells

have the broadest range of antigen presentation and are necessary for

activating naive T cells. Dendritic cells capture antigens from the

environment and present them via MHC to T cells, initiating MHC-

class I-restricted cytotoxic T-lymphocytes (CTL) responses and

MHC-class II-restricted CD4+ Th responses. Dendritic cells also

play a role in peripheral tolerance, which helps prevent auto-

immune disease (104, 105). Bone marrow-derived dendritic cells

from GADD45a-deficient mice exhibited less activation of the

classical MKK3/6-p38 mitogen-activated protein kinase (MAPK)

cascade, lowered level Th1 cytokine IL-12 and IFN-g production, as
FIGURE 1

GADD45 influences the differentiation and function of immune cell. (A) GADD45a and GADD45b promote the differentiation of myeloid cells and inhibit
the proliferation of these terminally differentiated cells. GADD45a and GADD45b promote recruitment, migration, reactive oxygen species production,
phagocytosis, and adhesion of Bone marrow-derived macrophages and granulocytes. (B) Expression of STAg-induced GADD45a and LPS-induced
GADD45b in DC cells both promotes differentiation to Th1 cells. (C) TCR-induced GADD45b expression in NKT cells inhibits their own apoptosis. (D)
Stimulation of T cell receptor (TCR) increases the levels of GADD45b and GADD45g in CD4+T cells, which drive inflammatory signaling for Th1
differentiation and IFN-g expression. However, GADD45a is a negative regulator of T cell proliferation during TCR stimulation. Further studies are needed
to confirm whether GADD45b can induce T cell anergy. (E) In B cells, GADD45b was induced by CD40, this induction inhibited Fas-mediated apoptosis.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1513069
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ma et al. 10.3389/fimmu.2025.1513069
well as decreased expression of the co-stimulatory molecule CD40

upon stimulation with soluble antigens from toxoplasma gondii

(STAg) (106). In addition, GADD45b-deficient dendritic cells

produced less IFN-g and IL-12 upon stimulation with LPS (26).

Therefore, the activation of canonical MAPK signaling by GADD45

proteins is crucial for generating a Th1 response via the activation of

dendritic cells (Figure 1).
3.3 Natural killer T cells

Natural killer T (NKT) cells are a unique subset of lymphocytes

that link the innate and adaptive immune system, possessing

characteristics of NK cells and memory T cells. They constitute

approximately 1% of all peripheral blood T cells (107, 108). Unlike

most conventional T cells, NKT cells do not recognize peptide

antigens bound to MHC class I or MHC class II molecules. Instead,

these cells directly recognize glycolipids (such as a-
galactosylceramide), including exogenous and endogenous lipid

antigens presented by MHC-like CD1d molecules in antigen-

presenting cells (109). Upon activation, NKT cells can produce

many cytokines and chemokines that play an immunoregulatory

role in autoimmune diseases and antimicrobial immunity (110, 111).

Interestingly, compared with conventional T cells, NKT cells aremore

resistant to TCR-induced apoptosis, mainly due to the preferential

expression of anti‐apoptotic genes, such as GADD45b (112)

(Figure 1). However, so far, there are no reports on how GADD45b
regulates the survival of NKT cells. Thus, the importance of the

GADD45 protein in NKT cell biology requires further investigation.
3.4 T cells

For adaptive immunity, most of the work on GADD45 proteins

has concentrated on T cells. GADD45b is vital for Th1 responses; in

CD4+ T cells, GADD45b expression rapidly increased following T cell

receptor (TCR) activation and inflammatory stimulation (24, 26).

T cells transfected with GADD45b-retrovirus promote IFN-g secretion
after IL-12 and IL-18 stimulation, thereby driving Th1 differentiation

(24). GADD45b-deficient CD4+ T cells showed impaired responses to

TCR signal or inflammatory cytokines stimulation, suppressed the

activation of extracellular regulated protein kinases (ERK), p38, and

JNK activity, and reduced cytokine production (26). These effects can

be compensated by GADD45 proteins (17) and enhanced by a

dominant-negative version of MEKK4 (24). In addition, GADD45b,
GADD45g, and MEKK4 comprise a pathway that enhances IFN-g
production and Th1-mediated immunity responses (113). On the

contrary, another study reported that GADD45b deficient Th1 cells

increased the proliferation of the cells in response to TCR or

inflammatory signals (28). Thus, GADD45b and GADD45g serve as
molecular “double-edged swords” and play a key role in Th1-type

immune response; this role is important for producing Th1 cells

during the initiation phase of the immune response; however, it is also

used in the later phase to shut down the immune response. The

absence of such a regulatory mechanism would seriously affect the

initiation and termination of the immune response.
Frontiers in Immunology 06
GADD45g was also strongly induced during T cell activation,

and the expression level is higher in Th1 cells than in TH2 cells (68).

Under TCR-stimulation conditions, GADD45g-/- Th1 cells exhibit

reduced p38 and JNK MAPK activity, less IFNg production, and

deficient activation-induced cell death (AICD) (68). Moreover, the

lack of GADD45g in mice reduced contact hypersensitivity of Th1

cells, indicating that the cell responses were also impaired in vivo

(68). Therefore, GADD45g mediates the function of Th1 cells by

activating the p38 and JNK pathways (Figure 1).

In contrast to GADD45b/g, GADD45a is a negative regulator of

T-cell proliferation (Figure 1). Compared to wild-type cells,

GADD45a-/- T cells have a lower activation threshold and

proliferate to a greater extent following primary T cell receptor

activation (114). Another study showed that resting T cells from

GADD45a-/- mice had spontaneously increased p38 activity

without MAPK kinase activation, and the p38 activity was

explicitly inhibited in vitro by recombinant GADD45a (115).

T cell anergy is a tolerance mechanism in which the lymphocyte

is intrinsically functionally inactivated after encountering an

antigen but remains alive for prolonged periods in a hypo-

responsive state (116, 117). T cell anergy can be mediated by the

nuclear factor of activated T cells (NFAT) as well as early growth

response 2 (Egr2) and Egr3 (118). GADD45b was identified as a

gene induced during T cell anergy by DNA microarray analysis

(119). Deltex1 (DTX1) was a transcription target of the NFAT that

participated in T cell anergy (120). Importantly, DTX1 also

regulated the expression of GADD45b. However, further studies

are needed to demonstrate the role of GADD45b in T cell anergy.
3.5 B cells

B cells, also known as B lymphocytes, are a type of white blood

cell of the lymphocyte subtype, which function in the humoral

immunity component of the adaptive immune system (121, 122). It

has been reported that in B cells, GADD45b was induced by CD40,

a TNF receptor superfamily member providing costimulatory

signals to B cells. And this induction inhibited CD95/Fas-

mediated (i.e., extrinsic) apoptosis. In addition, GADD45b
impaired the Fas-induced apoptotic cascade at mitochondria but

did not impede the ‘intrinsic’ pathway of apoptosis (123). These

results suggest that GADD45 is an anti-apoptotic protein in B cells,

which can protect B cells from AICD (Figure 1). However, the exact

mechanism of the effect of GADD45b on apoptosis is still unclear.
4 The main regulative mechanism
of GADD45

4.1 P38 mitogen‐activated protein
kinase pathway

MAPK cascade is a crucial immune-responsive signaling pathway

in eukaryotic cells. They are located downstream of membrane

sensors/receptors and coordinate with cellular responses to convert

extracellular stimuli (antigens/pathogens) into intracellular
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responses, which enhances the body’s immunity and ability to resist

infections, thus enabling the body to adapt and survive in an ever‐

changing environment (124). The MAPK family includes the

extracellular signal-regulated kinases ERK1, ERK2, and ERK5, the

c-jun NH2-terminal kinases JNK 1, JNK 2, and JNK 3, the four p38

enzymes, p38a, p38b, p38g, and p38d, and big MAP kinase 1 (125).

p38MAPKs are described as stress-activated protein kinases (SAPKs)

because they are frequently activated by a wide range of

environmental stresses and cytokines to induce inflammation.

Thus, they play a critical role in the host defense system (126).

An increasing number of studies have shown that all of the

GADD45 proteins can activate the p38 MAPK pathway in T cells,

thereby affecting the production of IFN-g and other pro-

inflammatory-related mediators (24, 26, 68, 113, 127–129)

(Figure 2). Compared with CD4+ T cells from MEKK4+/+ mice,

CD4+ T cells fromMEKK4-/- mice showed a decrease in p38 activity

and IFN-g production after TCR or IL-12 and IL-18 stimulation

(113). Overexpression of GADD45b or GADD45g promotes IFN-g
secretion in MEKK4+/+ T cells but not in MEKK4-/- cells or cells

treated with a p38 inhibitor (113). Thus, GADD45b and GADD45g
increase p38 activity by regulating MEKK4, which leads to

increased IFN-g production (Figure 2). In contrast, Yang, J et al.

reported that GADD45b binds to MEKK4 and activates the p38

MAPK pathway in CD4+ T cells, which was required for cytokine-

induced IFN-g transcription but not for TCR-induced IFN-g
transcription; inhibition of the p38 MAPK pathway selectively

inhibited cytokine-induced IFN-g production, but not TCR-

induced IFN-g production, further confirming this point (24).

As mentioned above, GADD45b and GADD45g activated p38

MAPK through the classical kinase cascade, which is crucial for T-
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cell differentiation into Th1 cells. However, GADD45a has distinct

roles in regulating p38 MAPK activity in T cells. TCR signaling can

activate p38 through an alternative pathway unrelated to the

classical MAPK cascade (Figure 2). In the alternative pathway,

TCR activates the tyrosine kinase ZAP70, which phosphorylates

p38 on Tyr323 and subsequently auto-phosphorylates its residues

Thr180 and Tyr182, leading a full activation of p38 (130). Genetic

replacement of Y323F impaired full activation of p38 and IFN-g
synthesis in Th1 cells, suggesting that the alternative pathway is

required for proinflammatory Th cell functions (131). Furthermore,

the alternative p38 pathway up-regulated the transcription factors

NFATc1 and interferon regulatory factor 4 (IRF4) at the molecular

level, which was required for proliferation and cytokine production

in T cells (132, 133). Interestingly, GADD45a has been reported to

have an inhibitory effect on the alternative p38 activation pathway

in T cells, as evidenced by the spontaneous phosphorylation of 38

Tyr323 in GADD45a-/- mouse T cells in the absence of MAPKK

activity; the mechanism by which GADD45a restrains p38 activity

is by blocking its Tyr323 phosphorylation and directly inhibiting

Tyr323-phosphorylated p38 activity, and further study showed that

the inhibition of p38 Tyr323 phosphorylation by GADD45a was

through suppression of Zap70 rather than MKK6 (115). The results

indicate that GADD45a may restrain T cell p38 activation by

regulating the TCR signaling pathway (Figure 2). However, the

opposite effects of the GADD45 family proteins on the activity of

p38 were found between GADD45b/GADD45g and GADD45a,
unlike the inhibitory effect of GADD45a on p38, GADD45b/
GADD45g can significantly enhance the kinase’s activity,

indicating the complexity of immune regulation by GADD45

family proteins in T cells (28, 115).
FIGURE 2

GADD45 modulated signaling pathways. GADD45 proteins mediate activation of the classical p38 MAPK pathways. GADD45a inhibits the TCR-
mediated alternative p38 activation pathway. Stressor or inflammation cytokines induced GADD45a positively modulated PI3K/Akt signaling pathway.
GADD45a and GADD45g promote the JNK MAPK signal pathway, while GADD45b negatively modulates the activation of the JNK signal pathway by
downregulating the activity of MKK7.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1513069
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ma et al. 10.3389/fimmu.2025.1513069
4.2 c-Jun N-terminal kinases mitogen‐
activated protein kinase pathway

Like p38 MAPKs, JNK MAPKs can be activated by

environmental and genotoxic stresses. They have critical roles in

inflammation and tissue homeostasis, as they control cell

proliferation, differentiation, survival, and the migration of

specific cell types (134, 135).

Induction of GADD45a in placental explanted by stressors or

inflammatory cytokines can activate the JNKMAPK pathway (127).

GADD45g - / - mice lacked AICD and lower contacted

hypersensitivity, and Th1 cells from GADD45g-/- mice have

significantly diminished ability to activate JNK MAPK in

response to TCR signaling and dramatically reduce the

production of IFN-g; these effects were consistent with

impairment of the JNK MAPK pathway (68). When GADD45g
was blocked in Th1 cells, LPS failed to activate JNK and, therefore, is

unable to upregulate the expression of pro-inflammatory cytokines,

whereas, in GADD45g over-expressing Th1 cells, LPS enhanced

JNK activation and increased the production of pro-inflammatory

cytokines (136). In addition, the JNK inhibitor had a more

inhibitory effect on LPS-induced TNFa production in GADD45g
over-expressing cells than in GADD45g knocked-down cells,

suggesting that GADD45g may act upstream of JNK to mediate

TNFa synthesis (136). In contrast, GADD45b had an opposite

effect on JNK, and forced expression of GADD45b in human

fibroblast-like synoviocyte (FLS) blocks TNF-induced MKK7

activation, implying that GADD45b attenuates JNK pathway

signaling. Moreover, in a KB/xN serum-induced arthritis model,

GADD45b-/- mice exhibited a significant increase in JNK

phosphorylation and a worsening of arthritic symptoms (137).

These data suggest that GADD45a and GADD45g promote the

JNK-MAPK signaling pathway, while GADD45b inhibits JNK-

MAPK activity by impairing MKK7 activity (Figure 2).
4.3 PI3K/AKT1 pathway

The PI3K/Akt pathway is an intracellular signaling

transduction pathway that promotes metabolism, proliferation,

cell survival, growth, and angiogenesis in response to extracellular

signals (138–141). The regulatory mechanisms and biological

functions of the PI3K/Akt signaling pathway are essential in

many human diseases, including ischemic brain injury,

neurodegenerative diseases, tumors, and inflammatory diseases

(142–146).

In a mouse model of acute lung injury, GADD45a-/- mouse

showed severe dysregulation of B-cell receptor signaling compared

to wild-type mice; Western blot analysis of lung homogenates

confirmed a ∼50% reduction in Akt protein levels in

GADD45a-/- mice, accompanied by a marked increase in Akt

ubiquitination, suggesting that GADD45a is involved in PI3K/

Akt signaling regulation. Electrical resistance measurements across

human lung endothelial cell monolayers with either reduced
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GADD45a or Akt expression (siRNAs) revealed a significant

enhancement of LPS-induced human lung endothelial barrier

dysfunction that was attenuated by overexpression of a

constitutively active Akt1 transgene (146). In murine models of

radiation- and bleomycin-induced lung injury, GADD45a-/- mice

had decreased levels of total and phosphorylated Akt in the lung

compared to wild-type mice, whereas increased Radiation-Induced

Lung Injury (RILI)susceptibility was observed in both Akt+/- mice

and mice treated with an Akt inhibitor from 1 week before to

irradiation. Furthermore, overexpression of a constitutively active

Akt1 transgene reversed RILI-susceptibility in GADD45a-/- mice

(147). Thus, it suggests that GADD45amay be located upstream of

the PI3K/Akt signaling pathway and positively modulate this

signaling pathway (Figure 2).
5 GADD45 and autoimmune disease

GADD45 is induced by different stimuli and expressed in

different cells, exhibiting distinct biological functions and effects

in various inflammatory and autoimmune diseases.
5.1 Rheumatoid arthritis

Rheumatoid arthritis (RA) is one of the most common chronic

autoimmune diseases characterized by progressive articular

damage, functional loss, and comorbidity (148). Recently, studies

showed that GADD45 may play an attenuated or aggravated role in

autoimmune diseases such as RA. It was found that the levels of

GADD45b mRNA and protein in RA patients were significantly

lower than in healthy controls (29), especially in synovial fibroblasts

of RA patients (137). Overexpression of GADD45b in human FLS

impaired TNF-induced JNK signaling activation, activator protein 1

(AP-1) activity, and reduced MMP expression (137). The above

results were corroborated by the fact that joints of GADD45b-/-

mice in K/BxN serum-induced arthritis exhibited a dramatic

i n c r e a s e i n JNK ac t i v i t y , up r e gu l a t i on o f ma t r i x

metalloproteinases 3 and 13, aggravation of joint inflammation,

and higher clinical scores (137) (Figure 3). Du Fang et al. found that

compared with healthy controls, Th1 cells in the synovial fluid (SF)

of RA patients had higher levels of GADD45b and lower apoptotic

rate; more importantly, GADD45b RNAi can reverse the resistance

of Th1 cells to apoptosis, confirming the anti-apoptotic effect of

GADD45b in Th1 cells (149) (Figure 3). Furthermore, GADD45b
deficiency mice in collagen-induced arthritis (CIA) showed

significantly lower arthritis severity and joint destruction, elevated

IL-10 expression, decreased IL-17 production, and increased Treg

cells compared with WT mice (150) (Figure 3). However, K/BxN

serum-induced arthritis and experimental autoimmune

encephalomyelitis (EAE) were alleviated by GADD45b, suggesting
that GADD45b plays a complex role in regulating adaptive

immunity and can enhance or suppress inflammation according

to different disease models.
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5.2 Multiple sclerosis

Multiple sclerosis (MS) is a common immune-mediated

disorder affecting the central nervous system (151). While the

cause is unclear, the underlying mechanism is thought to be

either destruction by the immune system or failure of the myelin-

producing cells (152). EAE is a murine model of human MS, mainly

caused by the infiltration of autoimmune Th1 cells into neuronal

tissues such as the brain and spinal cord. GADD45b (28) and

GADD45g (28, 68) were shown to inhibit the proliferation and

activation of Th1 cells in response to TCR signaling in vitro. More

importantly, in GADD45b-deficient mice, CD4+ T cells rapidly

proliferated and infiltrated the nervous system in EAE induced by

myelin oligodendrocyte glycoprotein (MOG) peptide. Compared

with wild-type mice, mice lacking GADD45b exhibited more

aggravated and prolonged clinical EAE signs and symptoms in

response to myelin immunization; mice with double deficiency of

GADD45b and GADD45g spontaneously developed Systemic lupus

erythematosus (SLE) and autoimmune lymphoproliferative

syndrome (ALS); the EAE symptoms became even more

pronounced when GADD45b deficient naïve or CD4+ T cells

were transferred into immunodeficient (Rag1-/-) mice; at the late
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time points, the mice exhibited more severe signs of inflammation,

such as high levels of IFN-g in CD4+ Th cells, marked leukocyte

infiltration, and activation of microglia cells (28) (Figure 3). In

addition, compared with GADD45+/+ Th1 cells, GADD45-/- Th1

cells showed more vital proliferation ability and were more resistant

to the induction of apoptosis (28). Thus, GADD45b and GADD45g
are required for AICD and inhibiting proliferation and activation of

Th1 cells in response to TCRs and cytokines stimulation in EAE

(28, 68). These findings suggest that regulation of T cells by

GADD45b and GADD45g are critical for maintaining

autoimmune homeostasis in the diseases.
5.3 Systemic lupus erythematosus

Systemic lupus erythematosus (SLE) is an autoimmune disease

in which the immune system mistakenly attacks healthy cells and

tissues throughout the body (153). As mentioned earlier,

GADD45a negatively regulated the proliferation of CD4+T cells.

Importantly, GADD45a-/- mice spontaneously developed an

autoimmune disease similar to human SLE, characterized by high

titers of anti-dsDNA, anti-ssDNA, and anti-histone autoantibodies.
FIGURE 3

GADD45 is involved in the pathology of inflammatory disease. (A) GADD45b inhibited K/BxN serum-induced arthritis by impairing TNF-induced JNK
signaling activation and reducing MMP expression. (B) GADD45b exacerbated CIA by increasing Th1 cell infiltration in joints, reducing the number of Treg
cells, decreasing IL-10 expression, and elevating IL-17 production. (C) GADD45b inhibits MS by limiting the proliferation of Th1 cells and the production
of IFN-g. (D) GADD45 protein limited the development of SLE by inhibiting the proliferation of Th1 cells. (E) GADD45a may promote the occurrence of
psoriasis by inhibiting UCHL1 expression through upregulation of UCHL1 methylation, which in turn promotes the production of inflammatory factors.
(F) GADD45b suppresses PD by downregulating the expression of DFosB and c-Fos. (G) GADD45a contributes to the development of preeclampsia with
upregulation of sFlt-1 secretion in endothelial cells. (H) GADD45g exacerbates the progression of nephritis by increasing the expression of chemokine
ligands and fibrosis-related factors. (I) GADD45a restrains inflammatory lung injury by activating the PI3K/AKT.
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At nine months of age, GADD45a-/- mice exhibited signs of severe

autoimmune glomerulonephritis and hematological disorders

accompanied by reduced numbers of leukocytes and lymphocytes

in peripheral blood (114) (Figure 3). Mice with a combined

GADD45b and GADD45g deficiency also spontaneously

developed SLE (28) (Figure 3). Furthermore, two single

nucleotide polymorphisms (SNPs) of GADD45 have been

identified as associated with autoimmune diseases, namely, the

GADD45a 589GG+GC is linked with rheumatoid factor (RF),

and the GADD45b -712CT genotypes are related to anti-RNP

antibodies in SLE patients (29). Thus, GADD45 gene members

might play negative regulatory roles in the pathogenesis of SLE.
5.4 Psoriasis

Psoriasis is a chronic, long-lasting, noncontagious autoimmune

disease characterized by raised areas of skin with chronic,

symmetrical, erythematous, scaling papules and plaque (154, 155).

GADD45a was upregulated in peripheral CD4+ T cells of psoriasis

patients, especially the infiltrating T cells in the dermis of damaged

skin, but the level of GADD45a was lower in the epidermal cells;

GADD45b also exhibited a similar expression pattern to GADD45a
in the patients with psoriasis; in addition, the expression of

GADD45a positively correlated with IFN-g and TNF-a in the

affected skin of psoriasis patients, a positive correlation was also

observed between GADD45b and TNF-a (156). Thus, increased

expression of GADD45a and GADD45b in psoriatic leukocytes

may be related to the pro-inflammatory environment in the skin

(114, 137, 156) (Figure 3). DNA demethylation is a process in which

a methyl group is removed from DNA; it generally results in the

activation of gene expression by altering the interaction of the cell’s

transcription machinery with DNA. GADD45a has been shown to

participate in DNA demethylation of the promoter of Ubiquitin C-

terminal hydrolase L1(UCHL1); as a deubiquitinase, UCHL1 is

involved in the controls keratinocyte proliferation and

inflammation in psoriasis; hypermethylated UCHL1 promoter

was found in the psoriatic lesioned skin and associated with a

lower level of GADD45a protein, indicating that the demethylation

of UCHL1promoter by GADD45a increases the expression of

UCHL1 protein in psoriatic damaged skin (156). Moreover, the

silencing of GADD45a in skin squamous cells increased

inflammatory cytokines such as IL-1, IL-6, and TNF a (157)

(Figure 3). Thus, GADD45a downregulates immune response

and inhibits keratinocyte proliferation by increasing UCHL1

demethylation, thereby controlling the progression of psoriasis.
5.5 Parkinson’s disease

Parkinson’s disease (PD) is a progressive neurodegenerative

disease that affects peripheral organs as well as the central nervous

system, and neuroinflammation plays a critical role in its

pathological process. Growing evidence suggests that both innate

and adaptive immune systems are involved in the pathogenesis of
Frontiers in Immunology 10
PD (158–161). Previous studies showed that in a 6-

hydroxydopamine (6-OHDA) induced Parkinson’s mouse model,

GADD45b expression was lower in the dorsal striatum (162).

Interestingly, after administration of dopamine precursor 3,4-

dihydroxyphenyl-L-alanine (L-DOPA), the expression of

GADD45b in the dorsal striatum of 6-OHDA-induced PD mice

was dramatically higher than that of the control group mice; the

level of GADD45b was positively correlated with the dose of L-

DOPA. More importantly, compared with wild-type mice, mice

lacking GADD45b exhibited more persistent abnormal involuntary

movements (AIMs) after repeated administration of L-DOPA. In

contrast, injecting AAV-GADD45b into the dorsal striatum of

GADD45b-/- mice significantly decreased AIM scores. In the

diseased striatum, compared to GADD45b+/+ mice, mice lacking

GADD45b had significantly increased expression of DFosB (a

transcription factor that is a critical mediator in maladaptive

neuroplasticity in PD) and c-Fos (immediate early gene, a mark

of acute neuronal activity) (162, 163) (Figure 3). These data indicate

that the increased expression of GADD45b induced by repeated

administration of L-DOPA may be beneficial in reducing the

symptoms of PD.
5.6 Preeclampsia

Preeclampsia is a disorder of pregnancy characterized by the

onset of high blood pressure and often with a large amount of

protein in the urine (164). Excessive and progressive activation of

the immune system, along with an increase in proinflammatory

cytokines and antiangiogenic factors in the fetal placental units and

maternal vascular endothelium, are associated with the

pathogenesis of preeclampsia (165–167). Compared with

pregnant women with non-preeclampsia, patients with

preeclampsia have elevated levels of GADD45a mRNA and

protein in placental tissue (128). In addition, endothelial cells and

trophoblast cells in patients with preeclampsia exhibited a high level

of p38 protein, which is a downstream effector of GADD45a;
furthermore, GADD45a and sFlt-1 (a circulating factor that plays

a key role in the pathophysiological-related symptoms of

preeclampsia) were found to be co-expressed in preeclamptic

placental endothelial cells (128) (Figure 3). In vitro, placental

explant culture showed that hypoxia, angiotensin II, and

inflammatory cytokines can induce the expression of GADD45a,
which activated p38 and JNK and increased sFlt-1 secretion (127).

RNAi-mediated knockdown of GADD45a abolished p38 activity

and significantly reduced sFlt-1 levels in placental explant culture

medium (127, 128). These observations indicate that GADD45a
signaling may serve as a hub linking placental stresses and the

pathogenesis of preeclampsia. However, Yonghui Yu et al. found

that knocking out GADD45a in mouse embryonic fibroblasts

(MEFs) increased the activity of the JNK/p38 pathway, and

overexpression of HA-GADD45a in GADD45a-/- MEFs reduced

the pathway activity (168). The dual effect of GADD45a on the

JNK/p38 pathway may be due to different cells and diseases; further

studies are needed to elucidate this phenomenon.
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5.7 Nephritis

Nephritis is inflammation of the kidneys, which may involve the

glomeruli, tubules, or interstitial tissue surrounding the glomeruli

and tubules. GADD45g expression is increased in rat kidneys with

ureteral obstruction and renal biopsy tissue obtained from patients

with chronic glomerulonephritis (129). Adenovirus-mediated

expression of GADD45g in cultured renal tubular cells activated

p38 and significantly upregulates chemokine ligands and fibrosis-

related factors; silencing the expression of GADD45g significantly
blunted the inflammatory and fibrotic mediators and monocyte

infiltration in the kidneys of rats with ureteral obstruction (129)

(Figure 3). Compared with patients with negative GADD45g
mRNA in urine, patients with positive GADD45g mRNA in urine

had 3-4 fold faster deterioration of renal function and significantly

reduced renal survival rate (169). Furthermore, GADD45g
promoted apoptosis of glomerular mesangial cells (170, 171) and

renal tubular cells (172, 173). These results suggest that GADD45g
may enhance the production of factors promoting the pathogenesis

of kidney disease, which suggests that this protein may have the

potential to become a new therapeutic target for nephritic disease.
5.8 Inflammatory lung injury

Inflammatory lung injury is a common and severe morbid

inflammatory syndrome characterized by the onset of extensive

lung inflammation, which can be induced by pathogenic microbial

infection, trauma, pneumonia, and drugs (174). GADD45a
expression was increased in ventilator-induced lung injury (VILI)

models (175). In lipopolysaccharide (LPS)-, ventilator- and

radiation-induced lung injury models, total cells, protein,

albumin, and cytokines in bronchoalveolar lavage fluid were

significantly higher in GADD45a-/- mice than in wild-type mice,

indicating that GADD45a plays a crucial role in reducing lung

injury (146, 147). Furthermore, after two weeks of treatment with

bleomycin (0.25 U/kg IT), the pulmonary fibrosis in GADD45a-/-

mice was significantly higher than in wild-type mice (147).

Compared with wild-type mice, GADD45a-/- mouse lungs

showed reduced considerably total Akt protein and its

phosphorylation levels and exhibited more severe radiation-

induced lung injury (RILI), whereas overexpression of Akt1

attenuated RILI (146, 147). These findings suggest that

GADD45a may reduce susceptibility to acute lung injury factors

by upregulating the PI3K/AKT signaling pathway (Figure 3). Thus,

it may have the possibility to serve as a new therapeutic target for

inflammatory lung injury in a clinical setting.
5.9 Graves’ disease

Graves’ disease (GD) is a thyroid-specific autoimmune disorder

primarily due to reduced tolerance to thyrotropin receptors (176, 177).

It is the most common cause of hyperthyroidism (178). The mRNA

levels of Gadd45a and b were elevated in patients with active Graves’

disease compared to normal controls. The mRNA levels of these two
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GADD45 isoforms were even higher in Graves’ disease patients with

normal thyroid function than in controls (179). These results suggest

that GADD45 is involved in regulating Graves’ disease, but its effects

on GADD45 and the exact regulatory mechanism of the disease

require further study.
6 Conclusion

The GADD45 family genes are widely expressed in body tissue

and cells and play important roles in various autoimmune diseases.

The GADD45a is increased in preeclampsia and VILI, aggravating

preeclampsia but attenuating acute lung injury. The levels of

GADD45a and GADD45b are lower in psoriatic lesion skin but

higher in Grave’s disease, suggesting they may be involved in

regulating the pathogenesis of these two diseases. GADD45a-/-

mice spontaneously developed an autoimmune disease similar to

human SLE. Mice with a combined GADD45b and GADD45g
deficiency also spontaneously developed SLE, indicating a potential

inhibiting role for GADD45 in SLE. Mice deficient in GADD45b
show more severe and prolonged clinical signs and symptoms of

EAE in response to myelin immunoreactivity. The levels of

GADD45b in RA patients’ synovial tissues and synovial fibroblasts

were significantly reduced. The regulation of RA by GADD45b is

somewhat complex. The research showed that GADD45b attenuated
K/BxN serum-induced arthritis but exacerbated CIA-induced

arthritis. GADD45b has also been implicated in the pathogenesis

of Parkinson’s disease. GADD45g has been shown to be related to

GADD45g nephritis, in which abnormally expressed GADD45g
protein leads to end-stage kidney disease and links to IgA

nephropathy and mesangioproliferative glomerulonephritis. The

accumulated data indicate that the GADD45 family protein deeply

participates in autoimmune disease regulation and may have the

potential to act as a therapeutic target and diagnostic marker for a

number of autoimmune diseases.

Each of the GADD45 family proteins possesses distinct

expression patterns under various stress conditions (Table 1).

They target the same and/or different signaling pathways

(Figure 2), thus resulting in they have overlapping but unique

functions in autoimmune diseases (Figures 1, 3). A growing body of

in vitro and in vivo data has provided a solid foundation to support

the regulatory role of GADD45 in autoimmune diseases. However,

there are still some scientific questions that need to be addressed.

GADD45b has been observed to have opposing effects on K/BxN

serum- and CIA-induced arthritis in mice. Why does the same

isoform of GADD45b have different roles in the same autoimmune

disease? Obviously, further studies are required to elucidate the

exact molecular mechanism behind this effect. Studies have shown

that the effects of different GADD45 family proteins in different

autoimmune diseases are different. Obviously, it is necessary to

clarify the roles of different GADD45 family subtypes in various

diseases and even the same disease and reveal their

immunoregulatory network of GADD45 isoforms in diseases. In

light of this, future research effects should focus on analyzing

signaling pathways regulated by each isoform of the GADD45

family in different diseases, thereby establishing the relationship
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between gene subtypes and diseases. This will help to provide a

precise prevention and treatment strategy for autoimmune diseases

caused by GADD45 abnormalities and help researchers identify

new therapeutic targets and biomarkers.
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Glossary

Ads Autoimmune diseases
Frontiers in Immunol
GADD45 Growth arrest and DNA damage-inducible 45
APCs antigen present cells
ML-1 myeloid leukemia cell line
PKO colon adenocarcinoma cell line
BM Bone marrow
CHO Chinese hamster ovary
MMS methyl methane sulfonate
LPS lipopolysaccharide
GM-CSF granulocyte–macrophage colony-stimulating factor
TGF-b transforming growth factor beta
EL-4 mouse T-cell lymphoma cell line
CCL64 Mink cell line Mv 1 Lu
DCs dendritic cells
STAg Toxoplasma gondii
MHC major histocompatibility complex
CD28 cluster of differentiation 28
flCTLA4 full-length Cytotoxic T-lymphocyte antigen 4 mRNA
sCTLA4 soluble Cytotoxic T-lymphocyte antigen 4
liCTLA4 ligand-independent Cytotoxic T-lymphocyte antigen 4
NF-AT nuclear factor of activated T cells
cAMP Cyclic adenosine monophosphate
TGN trans-Golgi network
GTPases guanosine triphosphatases
ARF-1 adenosine diphosphate ribosylation factor-1
PLD phospholipase D
CAP-1 clathrin adaptor protein-1
CAP-2 clathrin adaptor protein-2
IL-2 interleukin 2
TCR T cell antigen receptor
Bcl-xL apoptosis regulator Bcl-X
LAT linker for activation of T cells
NF-kB transcription factors nuclear factor B
Treg regulatory T cell
DCs dendritic cells
GRB2 growth factor receptor bound protein
SOS Son-of-Sevenless
ogy 17
SYP tyrosine phosphatase synaptophysin
CXCR4 C-X-C chemokine receptor type 4
PIP3 Phosphatidylinositol (3,4,5)-trisphosphates
PH pleckstrin homology
PDK1 PH domain kinase 1
mTORC2 rapamycin complex 2
PP2A serine/threonine phosphatase PP2A
SHP2 tyrosine phosphatase SHP2
BAD BL2 associated agonist of cell death
cdCTLA 4 cytoplasmic domain of CTLA4
Tfr follicular regulatory T
Tfh follicular helper T
GC germinal center
RA Rheumatoid Arthritis
RF rheumatic factor
ACPA anti-citrullinated protein antibodies

Treg, regulatory T cell
Tcon conventional T
IDO indoleamine 2,3-dioxygenase
SLE Lupus Erythematosus
MS Multiple sclerosis
CNS central nervous system
IFN-g interferon-g
AP cell-Penetrating Peptide (AP)-conjugated
ctCTLA4 CTLA4, cytoplasmic domain
T1D type1 Diabetes
NOD non-obese diabetes
CRP C-reactive protein
AITD autoimmune thyroid disease
HT Hashimoto’s thyroiditis
EHT experimental Hashimoto’s thyroiditis
MG myasthenia gravis
NMJ neuromuscular junction
AChR acetylcholine receptor
MuSK Muscle-Specific Kinase
AChR anti-acetylcholine receptor
CTLA4Ig CTLA4 immunoglobulin
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