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Comprehensive analysis of
SQOR involvement in ferroptosis
resistance of pancreatic
ductal adenocarcinoma in
hypoxic environments
Quan Lin1†, Shiwei Guan1†, Minghui Peng1†, Kailun Zhang1,
Hewei Zhang1, Taoming Mo2 and Haibo Yu1*

1Department of Hepatobiliary Surgery, Wenzhou Central Hospital, The Dingli Clinical Institute of
Wenzhou Medical University, Wenzhou, Zhejiang, China, 2Department of Pathology, Medical School
of Nantong University, Nantong, Jiangsu, China
Introduction: Pancreatic ductal adenocarcinoma (PDAC) exhibits higher hypoxia

level than most solid tumors, and the presence of intratumoral hypoxia is

associated with a poor prognosis. However, the identification of hypoxia levels

based on pathological images, and the mechanisms regulating ferroptosis

resistance, remain to be elucidated. The objective of this study was to

construct a deep learning model to evaluate the hypoxia characteristics of

PDAC and to explore the role of Sulfide quinone oxidoreductase (SQOR) in

hypoxia-mediated ferroptosis resistance.

Methods: Multi-omics data were integrated to analyze the correlation between

hypoxia score of PDAC, SQOR expression and prognosis, and ferroptosis

resistance level. A deep learning model of Whole Slide Images (WSIs) were

constructed to predict the hypoxia level of patients. In vitro hypoxia cell

models, SQOR knockdown experiments and nude mouse xenograft models

were used to verify the regulatory function of SQOR on ferroptosis.

Results: PDAC exhibited significantly higher hypoxia levels than normal tissues,

correlating with reduced overall survival in patients. In slide level, our deep

learning model can effectively identify PDAC hypoxia levels with good

performance. SQOR was upregulated in tumor tissues and positively

associated with both hypoxia score and ferroptosis resistance. SQOR promotes

the malignant progression of PDAC in hypoxic environment by enhancing the

resistance of tumor cells to ferroptosis. SQOR knockdown resulted in decreased

cell viability, decreased migration ability and increased MDA level under hypoxic

Ersatin induced conditions. Furthermore, SQOR inhibitor in combination with

ferroptosis inducer has the potential to inhibit tumor growth in vivo in a

synergistic manner.
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Discussion: This study has established a hypoxia detection model of PDAC based

on WSIs, providing a new tool for clinical evaluation. The study revealed a new

mechanism of SQOR mediating ferroptosis resistance under hypoxia and

provided a basis for targeted therapy.
KEYWORDS
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1 Introduction

Pancreatic ductal adenocarcinoma (PDAC), an aggressive

malignancy originating from exocrine ductal cells, accounts for over

90% of pancreatic cancers and ranks as the third leading cause of

cancer-related deaths in the United States, with a dismal 5-year survival

rate of 11% (1–3). However, only 15-20% of patients with PDAC can

undergo surgical resection due to its lack of specific clinical

presentation in the early stages, early local invasion, and high

metastatic potential (1, 4). Over 80% of patients present with

unresectable disease at diagnosis, primarily due to vascular invasion

or distant metastases, and are thus limited to palliative care (5). Patients

with locally advanced or metastatic PDAC are typically deemed

incurable and are limited to receiving palliative care. Despite the

emergence of various therapies in recent years, including immune

checkpoint inhibitors, the results in PDAC have been disappointing.

There are still very few long-term survivors of PDAC. Therefore, new

therapeutic strategies are urgently needed to improve patient prognosis.

Hypoxia occurs when intracellular oxygen levels decrease (6).

Studies have shown that hypoxia promotes malignant behavior in

cancer cells, including proliferation, migration, invasion, and

increased resistance to immunotherapy, radiotherapy, and

chemotherapy (7). Furthermore, a hypoxic environment alters the

expression levels of genes that regulate metabolism and other

processes. Hypoxia is the hallmark feature of PDAC, resulting

from the disturbed tumor vasculature and dense fibrous stroma.

The degree of hypoxia in PDAC is significantly higher than that in

most solid tumors and is associated with poor prognosis of patients

with PDAC. With the deepening understanding of the hypoxic

microenvironment of PDAC, hypoxia has gradually become a key

driver of PDAC and is regarded as a potential therapeutic target.

In recent years, with the development of artificial intelligence (AI)

technologies, advances in deep learning in computational pathology

have enabled Whole Slide Images (WSIs) to be used for automated

cancer diagnosis and quantification of morphological phenotypes in

the tumor microenvironment (TME) (8). While the use of WSIs for

specific biologically meaningful studies is still rare and difficult to

interpret due to the fact that deep models are referred to as black-box

models, attempts to interpret the meaning can be of great help in

biological studies. Among them, weakly supervised deep learning

based on multi-instance learning (MIL) provides greater help in
02
reducing pathologist annotations and improving image training at

high resolution. Currently, the identification of hypoxia in PDAC

tissues is mainly determined through laboratory tests or some

hypoxic signs (e.g., lack of vascular manifestations) on imaging (9,

10). And there has not been any study on directly detecting through

pathological H&E staining using deep learning methods.

While AI-driven pathomics provides tools to decode hypoxia-

related features, the molecular mechanisms linking hypoxia to PDAC

progression remain underexplored. Sulfide quinone oxidoreductase

(SQOR), also known as SQRDL or SQR, located in mitochondria, is a

membrane-bound flavoprotein of the glutathione reductase family and

a key enzyme in the oxidative detoxification of sulfides (11). It can use

ubiquinone as an electron acceptor to catalyze the two-electron

oxidation of H2S to produce sulfur and transfer electrons from H2S

to ubiquinone (12, 13). It has been shown that persulfide produced by

SQOR-mediated sulfide oxidation may be an electron acceptor for the

electron transfer chain, promoting mitochondrial ATP production

(14). Increased expression of SQOR in mitochondria increased

tolerance to hypoxia not only in the brain but also in the heart and

liver (11). Recent studies have revealed that SQOR catalyzes the

reduction of ubiquinone to ubiquinol via hydrogen selenide, a

metabolic intermediate of selenium, thereby suppressing lipid

peroxidation and ferroptosis (15).

Ferroptosis is a form of iron-dependent cell death driven by

excessive lipid peroxidation and is associated with the development of

various types of tumors and response to treatment (16, 17). Studies

have shown that RAS-mutated cancer cells are sensitive to ferroptosis

induction and that chemotherapeutic agents and ferroptosis inducers

have synergistic effects in tumor therapy (18–20). KRAS, a member of

the RAS GTPase family, is mutationally activated in over 90% of

PDAC cases (21). In addition, a study in PDAC found that the

combination of ferroptosis inducers and apoptosis inducers

significantly increased the cytotoxicity of gemcitabine (22). There is

now growing evidence of a strong correlation between hypoxia and

ferroptosis. One study observed that the hypoxic TME promotes

resistance to ferroptosis in solid tumors in a hypoxia-inducible factor

1a -dependent manner (23). In addition to HIF, increased activity of

Nrf2, a major regulator of the antioxidant system, during hypoxia

promotes HO-1 expression, thereby preventing ferroptosis (24).

Therefore, the link and drivers between hypoxia and ferroptosis

resistance deserve further exploration.
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Through bioinformatics analysis, deep learning-based

pathomics analysis, and in vitro experiments, this study aims to

characterize hypoxic PDAC in the ecosystem and elucidate the

correlation between SQOR and ferroptosis resistance under

hypoxia, providing new therapeutic directions to improve the

prognosis of PDAC patients with high hypoxia levels.
2 Methods

2.1 Data access

RNA sequencing (RNA-seq) data for tumors and normal tissues

were obtained from the University of Cingifornia Sisha Cruz

(UCSC) Xena database (https://xenabrowser.net/datapages/). We

used The Cancer Genome Atlas (TCGA) data and Genotype-Tissue

Expression (GTEx) data. Survival data for TCGA patients were

downloaded from “PanCanAtlas Publications” (https://

gdc.cancer.gov/about-data/publications/pancanatlas). The

microarray dataset GSE183795, single-cell RNA-seq (scRNA-seq)

dataset GSE155698 and spatial transcriptome (ST) dataset

GSE235315 for pancreatic cancer were obtained from Gene

Expression Omnibus (GEO) database (https://www.ncbi.nlm.

nih.gov/geo/, Figure 1A, Supplementary Table S1). Proteomics

data were obtained from Savage et al., and the data consists of

epithelial-enriched cores, stroma-enriched cores and bulk tissue

from tumor and normal tissues (25).

The clinical data and case specimens of this study were collected

from 24 patients with PDAC confirmed by pathology in Wenzhou

Central Hospital from January 2017 to December 2022, all of the above

were diagnosed through pathology. This study was approved by the

Ethics Committee of Wenzhou Central Hospital (approval number:

202402052106000086527), and the general clinical data of the patients

were recorded (Supplementary Table S2). TNM staging was based on

the TNM staging criteria for pancreatic cancer jointly developed by the

American Joint Committee on Cancer (AJCC) and the International

Union Against Cancer (UICC), both for patients with stage I-III.
2.2 Bulk RNA-seq data processing

Raw HTSeq-counts data obtained from the UCSC Xena

database were utilized for normalization in this study. Initially,

the effective gene lengths were calculated using the GENCODE v36

genome annotation file. Subsequently, the raw counts were

transformed into Transcripts Per Million (TPM) values through a

standardized method. To enhance the data distribution, the results

were further converted to log2(TPM + 0.001). The conversion of

Ensembl IDs to gene symbols was performed using the GENCODE

v36 gene probe annotation file. The expression profile of the SQOR

gene was extracted for subsequent analyses.

RNA-seq data from the GTEx and TCGA databases were

integrated to assess hypoxia pathway activity and conduct

differential expression analysis of SQOR across pan-cancer

samples. The data processing workflow included the following
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steps: TPM data for GTEx normal tissues and HTSeq-counts raw

data for TCGA tumor samples were retrieved from the UCSC Xena

platform. Non-disease-related tissues were excluded, and tumor

samples in TCGA were screened based on predefined criteria. The

raw counts of TCGA samples were normalized into TPM values

following the aforementioned procedure. Finally, the GTEx and

TCGA expression matrices were merged to form an integrated

dataset, which was stratified by sample source and tissue type.

Using TPM data from TCGA and microarray data from

GSE183795, the samples were categorized into high hypoxia

scoring groups and low hypoxia scoring groups based on the

optimal cut-off value for hypoxia scoring obtained from survival

analysis. Normalized data were analyzed for differences using the

Wilcoxon rank sum test.
2.3 scRNA-seq data processing

Use the Seurat (version 5.0.0) package to merge all samples into

the original Seurat object (26). The object is filtered according to the

following parameters, removing unqualified cells: 1) doublets; 2) cells

with less than 100 and more than 9,000 expressed genes; 3) cells with

more than 125,000 unique molecular identifiers captured; 4) cells

with more than 25% of mitochondrial genes; 5) cells with more than

50% of ribosomal genes; 6) cells with more than 5% of hemoglobin

genes. Then data was log normalized. Principal component analysis

was then performed. Data sets from different samples were integrated

using the “Harmony” package (27). Cellular profiles were visualized

by uniform manifold approximation and projection (UMAP).

Clusters were determined using the “FindClusters” function

(resolution = 0.2), and identified 21 clusters of cells, which were

annotated by recognized marker genes into 9 categories (epithelial

cells, fibroblasts, mast cells, myeloid cells, dendritic cells, acinar cells,

T&NK cells, B cells, others). After distinguishing myeloid cell

subpopulations based on the marker gene (Supplementary Table

S3) for macrophages and monocytes, macrophages were clustered at

0.1 resolution, identifying 5 clusters of cells that were annotated into

tumor-associated macrophages (TAM) 1-like and TAM2-like cells by

the marker gene (Supplementary Table S3) provided by He et al. (28)

Fibroblasts were clustered at a resolution of 0.8, identifying 14 cell

clusters, which were annotated into three categories of cells, the

antigen-presenting fibroblasts (apCAFs), inflammatory fibroblasts

(iCAFs), and myofibroblasts (myCAFs), using marker genes

(Supplementary Table S3) provided by Elyada et al. and Affo et al.

(29, 30) Epithelial cells were clustered at a resolution of 1, identifying

22 clusters, which were annotated as tumor cells and normal cells

using recognized marker genes (Supplementary Table S3). Based on

MSigDB database (https://www.gsea-msigdb.org/gsea/msigdb), 8

pancreatic cancer characteristic pathways were screened (Stem

Proliferation, TGFß Signaling, Inflammatory Response, EMT,

KRAS Signaling, Apoptosis, Immune Evasion) and extracted the

gene set. The GSVA package was used to score the pathways.

Finally, the difference in pathway activity between tumor and

normal epithelial cells was compared to verify the annotation

results of epithelial cells.
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2.4 Pathway/gene set studies

The pathway/gene set scoring calculation is based on the

“PROGENy” and “irGSEA” packages. The 14 pathway scores for
Frontiers in Immunology 04
JAK-STAT, NFkB, TNFa, Hypoxia, MAPK, EGFR, WNT, p53,

TGFb, Trail, VEGF, Androgen, Estrogen and PI3K were calculated

using the package “PROGENy” (Figure 1A) (31). The scoring of the

ferroptosis resistance gene set was calculated using the “irGSEA”
FIGURE 1

The workflow of our study. (A) TCGA, GTEx and GEO datasets were downloaded for bioinformatics analysis. Hypoxia scores were calculated using
the “progeny” package. (B) Construct a MIL-based hypoxia discrimination model and interpret it at slide level, tile level and cell level. (C) The
relationship between hypoxia, SQOR and ferroptosis was investigated by transcriptomics, pathomics, proteomics, drug sensitivity, clinical data
analysis and in vitro experiments. TCGA, The Cancer Genome Atlas; GTEx, Genotype-Tissue Expression; scRNA-seq, single-cell RNA-seq; MIL, multi-
instance learning; TILs, tumor-infiltrating lymphocytes; ROI, region-of-interest.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1513589
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lin et al. 10.3389/fimmu.2025.1513589
package. Ferroptosis suppression genes were obtained from FerrDb

V2 (http://www.zhounan.org/ferrdb/current/) after literature

screening (Supplementary Table S4). Enrichment analysis of

differential genes was performed using the WikiPathways

enrichment analyses in the “clusterProfiler” package (32).
2.5 Construction of a WSIs-based model
for predicting hypoxia levels

The tumor hypoxia score was calculated based on the RNA-seq

data from TCGA-PAAD. Samples were stratified into high-hypoxia

and low-hypoxia groups according to the threshold associated with

the most significant prognostic value. For each group of samples,

the corresponding H&E-stained pathological WSIs were extracted.

Each slide was then labeled based on the hypoxia status of the

sample, categorizing sections into either the high-hypoxia group or

the low-hypoxia group.

Due to the huge amount of data in WSIs, there is the problem of

difficult labelling and training. So, we used a method which extends

attention-based multiple-instance aggregation to general multi-

class weakly supervised WSIs classification, named clustering-

constrained-attention multiple-instance learning (CLAM) (33).

This method does not need manual region-of-interest (ROI)

extraction, pixel/patch-level labelling, or naive sampling.

The CLAM workflow includes tissue segmentation and patch

extraction: generating patch coordinate files through threshold

segmentation: S(x, y) =  
1   if   I(x, y)   tseg

0   otherwise

8<
: and morphological closing

operation: Sclosed =   S   ∘  B followed by feature extraction: encoding

image patches using pretrained models (ResNet50/UNI) to generate

1024-dimensional feature vectors (fij = Encoder(Pij) during weakly

supervised learning (CLAM Core), generating pseudo-labels via

attention mechanisms: aij = softmax(Wahij +   ba) and clustering

constraints based on the top 8 high-attention features, while

optimizing the model with a combined cross-entropy loss and

SmoothTop1 SVM loss: L =   lLCE + (1 − l)LSmoothTop1SVM finally

producing slide-level predictions and heatmaps.

According to the flow of the framework, we split the slide into

patches of pixel size 256×256 in an equivalent pyramid of 40x

magnification. Since the hue, saturation and lightness of HSV are

more suitable for human color perception characteristics, we

transform the patch from RGB color space to HSV color space

(Figure 1B). According to the principle of multi-instance learning, all

patches after segmentation of a patient are considered as a bag. In

order to reduce the training time as well as to perform the

dimensionality reduction of the data, we use the Transfer Learning

and Convolutional Neural Networks approaches to transform each

patch into vectors of size 1024 respectively using 2 pre-training

models, ResNet50 and UNI (34, 35). The dataset was separated

into training set, validation set and test set in the ratio of 8:1:1

according to the category hierarchy. According to the default settings

of CLAM, model performance was tested in the 10% validation set

after training the model in the training set, and 10-fold Monte Carlo

cross-validation was used. The final model evaluation was performed
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on 10% of the test set. The loss function used smooth top-1 SVM loss

(36). The parameters of the models were updated using the Adam

optimizer, with the learning rate set to 2×10-4, and the weight decay

set to 1×10-5. All models were trained for at least 50 epochs, or up to

200 epochs if the early stopping criterion was not met. The criterion

for Early stopping was to stop this training when there was no loss

reduction in the current 20 epochs. The model was saved when it has

the lowest loss on the test set. In order to explain the relative

importance of different regions in the slides to the final predictions

of the model, we also calculated and saved the un-normalized

attention scores. These attention scores were converted to

percentile scores, scaled to 0 and 1.0 and visualized.
2.6 Immune infiltration studies

To achieve comprehensive characterization of the tumor

immune microenvironment, we integrated transcriptomic

signatures with pathological imaging data, constructing a multi-

scale immune infiltration analysis framework across molecular,

tissue, and cellular levels. This approach fully leverages the

molecular quantification strengths of RNA-seq data and the

spatial resolution capabilities of Whole Slide Images (WSIs).

Immune cell subtyping based on transcriptomic features was

systematically analyzed using the CIBERSORT algorithm (37). Raw

RNA-seq data underwent standardized processing, including CPM

transformation and log2 normalization. Deconvolution analysis was

then performed using the LM22 immune signature matrix, which

contains gene expression profiles specific to 22 immune cell

subtypes. Batch effects and technical variations were effectively

eliminated through constrained least-squares regression and

quantile normalization strategies. To evaluate the reliability of

deconvolution results, we conducted 1,000 permutation tests to

calculate confidence intervals, ultimately obtaining proportion

scores of immune cell subpopulations in tumor samples.

To establish spatial correlations for molecular features, we

implemented a tumor-infiltrating lymphocyte (TIL) region

identification pipeline based on WSInfer (8). WSIs were first

segmented into 256×256-pixel tiles at 20× magnification, with blank

background regions filtered via thresholding to retain valid tissue

areas. A pre-trained ResNet-50 deep learning model was then

employed to extract pathological features and classify each tile,

identifying TIL-enriched regions while computing confidence scores.

This process generated high-resolution spatial density heatmaps of

TILs. The workflow not only validated CD8+ T cell abundance trends

observed in CIBERSORT-based molecular quantification but also

provided spatial anchors for subsequent cellular-level HoVer-UNet

analysis, enabling cross-scale associations from macroscopic tissue

localization to microscopic cellular phenotypes.

For WSI-identified TIL hotspot regions, we performed cellular-

resolution multi-modal analysis using a knowledge distillation-

optimized HoVer-UNet model. By distilling knowledge from the

high-performance yet computationally intensive HoVerNet model,

HoVer-UNet achieved comparable or superior nuclear segmentation

and classification accuracy while significantly improving inference

speed (38, 39). The core architecture of HoVer-UNet integrates U-
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Net with a Mix Vision Transformer backbone network, enabling

simultaneous capture of local detail features and global contextual

information. To achieve precise multi-class nuclear identification,

HoVer-UNet incorporates multiple decoder output branches for

predicting nuclear semantic segmentation, horizontal/vertical

distance maps, and nuclear subtypes. Selected regions of interest

(ROIs) were analyzed using a HoVer-UNet model pre-trained on the

PanNuke dataset, which distinguishes diverse cell types (40). This

pre-training strategy effectively utilizes prior knowledge from large-

scale datasets to enhance model generalization and classification

accuracy for specific ROIs.

The tiered “molecular-tissue-cellular” analytical framework

progresses from CIBERSORT-derived global immune signatures to

WSInfer-based identification of immune-active hotspots, and finally

to HoVer-UNet-enabled resolution of tumor-immune spatial

heterogeneity at single-cell precision. CIBERSORT provides

comprehensive immune profiling, WSInfer spatially maps immune

activity patterns, and HoVer-UNet deciphers cellular interactions,

collectively overcoming the limitations of single-omics methods in

spatial resolution or molecular depth. This integrative strategy

enables multi-scale exploration of immune microenvironment

dynamics through complementary data modalities.
2.7 Drug sensitivity predicting

The CTRP2 dataset from the “oncoPredict” package was used as

a training set to predict the IC50 of the drugs in the TCGA-PAAD

dataset and the GSE183795 dataset samples (41). The drugs

associated with oxygen species (ROS) (darinaparsin, BRD

−K94991378, BRD−K71935468) and ferroptosis (erastin, 1S,3R

−RSL−3, ML162, ML210) were selected for analysis to compare

the correlation between SQOR and drug IC50.
2.8 H&E staining

Tissue samples were first fixed in formalin, paraffin-embedded

and sectioned continuously. Then the tissue sections were obtained

after dewaxing, rinsing, staining with hematoxylin and 2% eosin,

dehydrating, clearing, and cover-slipping. Sections were then

examined under optical microscope and scanned by Digital

Pathology Slide Scanner (KF-PRO-005, KFBIO, China).
2.9 Immunohistochemistry staining

Tissue samples were formalin-fixed, paraffin-embedded and

sectioned continuously. Target sections were dehydrated,

dewaxing, antigen repaired and sealed. Sections were incubated

with SQOR primary antibody (Abcam Cat# ab272574, RRID:

AB_3095529) overnight at 4°C, and then followed by secondary

antibody incubation at 37 °C. Diaminobenzidine was used to

develop the color and counterstained with hematoxylin. Sections

were then examined under optical microscope and scanned by

Digital Pathology Slide Scanner (KF-PRO-005, KFBIO, China).
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Immunohistochemical scores were assessed independently by 2

pathologists unrelated to the study using a double-blind method.

Negative and weak positive were considered low expression, while

positive and strong positive were considered high expression. We

also used Qupath software for visualization of cell staining (42). It

can somewhat differentiate the cellular regions in IHC-WSIs and

label cells that stain positively for IHC.
2.10 Cell culture

Human PC cell lines (BxPC3 and PANC1) were purchased

from Wuhan Pricella Biotechnology Company Limited (Pricella,

China). The cells were cultured in high glucose Dulbecco’s modified

Eagle medium (DMEM; 11995065, Gibco, USA) containing 10%

fetal bovine serum (FBS; 10099141, Gibco, USA) and 1% double

antibiotics (penicillin-streptomycin mixture; 15140122, Gibco,

USA), and incubated at 37°C with 5% CO2 in a culture box.

Hypoxia incubation was performed at 94% N2, 5% CO2 and 1% O2.
2.11 Transfection

Lentiviral packaged shRNA targeting SQOR for SQOR

knockdown, as well as the control lentiviral empty vector, are

both purchased from Shanghai Genechem Company Limited

(GeneChem, China). Cells were plated and cultured in complete

medium for 24h. The cells were infected with infection enhancer P

by diluting the infection enhancer P at a ratio of complete medium:

infection enhancer P of 24:1 before infection. Then the original

medium of the cells was discarded, and the cells were washed with

PBS. The virus was diluted to a titer of 1x108 TU/mL with complete

culture medium, and the volume of virus to be added was calculated

based on the MOI value. 5 mL of viral fluid was added, followed by

infection for 16 h, then replaced with complete culture medium,

and incubated for another 48 h. Infection efficiency was observed

approximately 72 h after infection.
2.12 Cell proliferation assay

Cell viability was measured using the Cell Counting Kit-8

(CCK-8; Beyotime, China). Cells were inoculated into 96-well

plates and 100 μl of 5000 cells were added to each well.

According to the experimental needs, BxPC3 and PANC1 cells

were treated under hypoxic conditions and stimulated with 5 mM
erastin (HY-15763, MCE, China) and 2 mM sulfasalazine (SAS;

HY-14655, MCE, China), respectively, for 24 h before sample

collection and analysis. PANC1 and SQOR knockdown PANC1

cells were treated under hypoxic conditions and stimulated with 5

mM erastin and 1 mM ferrostatin- (Fer-1) (HY-100579, MCE,

China), respectively, for 24 h before sample collection and

analysis. 10 mL of CCK8 reagent was added to each well,

incubated in a cell culture incubator at 37°C for 1 h in the dark,

and then measured the absorbance at 450 nm with microplate

reader (WD-2102B, LIUYI, China).
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2.13 Transwell migration assay

The migration ability of the cells was assessed using the

Transwell migration assay. The transfected cells were resuspended

with medium containing 1% FBS, and the cell suspension was

diluted to 3×105 cells/mL and plated into Transwell chambers

(3422, Costar, USA). The lower layer was filled with complete

culture medium containing 20% FBS. After 24 h of incubation

under hypoxic conditions, the cells were fixed with 4%

formaldehyde solution for 10 min and then stained with 0.5%

crystal violet solution for 30 min. Observed under a 200×

microscope to count the number of cells in each field of view.
2.14 Malondialdehyde content assay

Malondialdehyde (MDA) Content Assay Kit (BC0025, Solarbio,

China) was used to detect MDA content according to the

manufacturer’s instructions. The cells were broken down using

ultrasonic waves with 1 mL of extraction solution per 5 million

cells, and then centrifuged for 10 min at 4°C. Then 300 mL of MDA

test solution, 100 mL of samples, and 100 mL of reagent III were

added. After mixing and incubating for 60 min in a water bath at 100°

C, the mixture was cooled in the ice bath and centrifuged for 10 min

at room temperature. The supernatants were collected, and the

absorbance of each sample was measured at 532 nm and 600nm.

TheMDA content was calculated based on the protein concentration.
2.15 Western blot analysis

Cell lysate was prepared, and cells were lysed on ice for 30 min,

followed by centrifugation at 4°C for 10 min. The supernatant was

taken to obtain protein samples. Protein quantification was performed

using the BCA protein concentration kit (P0010, Beyotime, China),

and protein concentration was calculated. The protein samples were

mixed and centrifuged, then heat denatured for 10 min, and separated

on SDS-PAGE gels according to the molecular weight of the target

proteins. The separated proteins were transferred to a PVDF

membrane. The membrane was closed with skimmed milk and

incubated with primary antibody and then with secondary antibody.

SQOR antibody was purchased from Proteintech Group (17256-1-AP,

Proteintech, USA). GAPDH was used as a reference gene.
2.16 Real-time quantitative reverse
transcription polymerase chain reaction
assay

RNA was extracted using TRIzol (15596-018, Invitrogen, USA)

and reverse transcription was performed with RT SuperMix for

qPCR (K1074, APExBIO, USA). SQOR and GAPDH were then

quantified using 2X SYBR Green qPCR Master Mix (K1070,

APExBIO, USA). The PCR cycling conditions were as follows:

pre-denaturation (hold; 1 cycle): 95°C for 2 min; 40 cycles of
Frontiers in Immunology 07
denaturation (95°C for 15 s), annealing (60°C for 30 s) and

extension (60°C for 30 s), followed by 1 cycle of 95°C for 15 s,

60°C for 1 min and 95°C for 15 s.

SQOR:F 5 ′-AAGGTTTTTGCTGCGCCAAC-3 ′ ;R 5 ′-
ATAATGGTTCCTGGCCGCAT-3′.

GAPDH:F 5 ′ -CTCGCTTCGGCAGCACA-3 ′ ; R 5 ′ -
AACGCTTCACGAATTTGCGT-3′.
2.17 Animal studies

The design and implementation of this experiment was reviewed

and approved by the Laboratory Animal Ethics Committee of

Wenzhou Medical University (Approval number: wydw2024-0136).

4–5-week-old male Balb/c.nude mice were provided by SPF (Beijing)

biotechnology Co., Ltd. The mice were 5 mice per group and were

randomly and equally divided into 4 groups. Mice were

subcutaneously inoculated with PANC1 cells suspended in saline.

The cell density was 2x106 cells/100mL. One week later when the

tumor volume reached approximately 50 mm3, the drugs were

administered with DMSO control, Erastin, HTS07545 (HY-144439,

MCE, China), and Erastin plus HTS07545. The long (a) and short (b)

axes of the tumor were measured every 3 days (tumor volume = 1/

2*a*b2). Tumor growth curves were plotted based on tumor volume.

Animals were executed on reaching the humane endpoint or

experimental terminative indicator, and then tumors were stripped

and weighed on an analytical balance. The weighed tumors were

immersed in 10% formaldehyde for the preparation of tissue sections

and pathological analysis.
2.18 Statistical analysis

Statistical analyses were performed using R (version 4.2.2)

(https://www.r-project.org/). The Wilcoxon rank sum test was

used to compare differences between the two groups. The

Kruskal-Wallis test was used to compare differences between the

three groups. For experimental assessments, such as RT-qPCR assay

and cell proliferative capacity assay, Student’s t-test was used to

calculate statistical significance. The McNemar test was used for the

paired four-table test. The Kaplan-Meier (KM) method was used to

construct survival curves to assess prognosis. The survival

distribution of the sample was tested by Log-rank test. Cox

regression analysis was used to assess the effect of specific factors

on patient prognosis. Spearman correlation analysis was used for

correlation analysis. P < 0.05 was considered statistically significant.
3 Results

3.1 Hypoxia as an oncogenic driver in
malignant tumors

Hypoxia has now been shown to be present in most solid

tumors and is considered a hallmark of cancer (43). The highly
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malignant nature of pancreatic cancer is largely attributed to the

hypoxic TME (10). We first downloaded the GTEX dataset and

selected the corresponding 28 TCGA primary tumor datasets by

organ origin for hypoxia scoring calculation. The results showed

that in most tumor tissues (e.g. pancreatic, liver, kidney, colon, and

stomach cancers) hypoxia scoring was significantly higher than that

in normal tissues (p<0.05, Figure 2A). However, in bladder cancer

and melanoma, hypoxia scoring was higher in normal tissue than in

tumor tissue. The results of the pan-cancer analysis tentatively

confirmed the high hypoxia levels in various types of tumors.

Moreover, it is worth noting that in PDAC, the hypoxia score of

tumor tissues was much higher than that of normal tissues (0.271 ±

0.438 vs. -1.85 ± 1.63, P<0.0001, Figure 2A). Meanwhile, PDAC

patients with high hypoxia levels had a worse prognosis (p < 0.05,

Figures 2B, C). However, this is not limited to PDAC alone. We

further used univariate Cox analysis to evaluate the prognostic

impact of hypoxia in tumor patients. We found that hypoxia was a

prognostic risk factor in a variety of tumors including pancreatic

cancer (kidney chromophobe, lung adenocarcinoma, lower grade

glioma, etc.) (p < 0.05, Figure 2D). This suggests that hypoxia is a

common characteristic of malignant tumors and a potential factor

driving carcinogenesis.

We used single-cell data from pancreatic cancer for analysis,

identifying eight known cell types including epithelial cells, myeloid

cells, fibroblasts, acinar cells, dendritic cells, mast cells, B cells, T

and NK cells (Supplementary Figure S1). To assess the level of

hypoxia in the TME of PDAC, we scored hypoxia in all cell types

(Figure 2E). The results showed higher levels of hypoxia scoring in

three cell types: myeloid cells, fibroblasts, and epithelial cells. This

implies that these cell types may play an important role in helping

PDAC construct a suitable survival hypoxic TME. Therefore, three

cell types, myeloid cells, fibroblasts, and epithelial cells, were

selected for further analysis. We identified and extracted

macrophages from myeloid cells and broadly categorized them

into two macrophage subpopulations, TAM1-like and TAM2-like,

based on the classical TAM-related marker gene (Supplementary

Figure S2A). TAMs are the main component of immune cells in the

TME, and different subtypes of TAMs have different functions (44).

M1 macrophages exert anti-tumor capabilities. M2 macrophages

are the main manifestation phenotype of TAMs and promote the

occurrence and development of tumors. We found that the TAM2-

like subpopulation had significantly higher hypoxia scoring than the

TAM1-like subpopulation (P<0.05, Figure 2F). This is similar to

previous findings that hypoxia promotes macrophage polarization

in the TME in a direction that favors tumor progression, exhibiting

high hypoxia levels (45). We then further analyzed the scoring of

hypoxia in fibroblasts. The apCAFs, iCAFs, and myCAFs

subpopulations were first identified (Supplementary Figure S2B)

and scored for hypoxia. The results showed that there was a

difference in hypoxia scoring among the three subpopulations

(P<0.05, Figure 2G), with the iCAFs subpopulation exhibiting the

highest hypoxia scoring among the three subpopulations. This

suggests that hypoxia-related pathways are overactivated in

iCAFs. Previous studies have also identified that iCAFs are

mainly enriched in the hypoxic regions of PDAC tumors and
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participate in the malignant progression of PDAC (46). Finally,

we extracted the epithelial cells and classified them simply by

classical marker gene into tumor cells and normal cells

(Supplementary Figure S2C), and verified them by tumor-specific

pathway score (Supplementary Figure S2D). It can be seen that in

tumor cells, the hypoxia score showed a difference compared with

normal cells (P<0.05, Figures 2H, I). It indicates that hypoxia in

various cells may be involved in the construction of the

immunosuppressive tumor ecosystem and promote the malignant

progression of PDAC cells.
3.2 MIL-based hypoxia discrimination
model construction and model
interpretation

The importance of WSIs has been largely ignored in previous

studies of PDAC patient characteristics, in part because the huge

resolution of WSIs presents unique computational and

methodological challenges (33). In recent years, with the

development of AI technology, advances in deep learning for

computational pathology have enabled WSIs to be used for

automated cancer diagnosis and quantification of morphological

phenotypes in the TME. Therefore, in order to determine whether

WSIs can provide assistance in differentiating patients’ hypoxia

levels and further help clinicians to judge the prognosis of PDAC

patients according to WSIs, we performed patients’ hypoxia level

detection based on the CLAM framework proposed by Lu et al. (33)

The results showed that the hypoxia detection model we

constructed could effectively identify the hypoxia level of patients,

with an AUROC of 0.829, an AUPRC of 0.876, and an accuracy of

0.7647 (Figures 3A–C). We also compared recently published UNI

models that showed excellent performance in pre-training of

pathology images but did not show better performance in our

task due to our small sample size and the large risk of overfitting

(Supplementary Figure S3). We further applied this model to our

clinical PDAC samples, and the results showed that patients who

were considered by the model to have high hypoxia levels had a

significantly poorer prognosis (Figure 3O), which indicated that the

model could effectively identify the hypoxia levels of tissues and had

a better prospect for clinical application and promotion.

To better interpret the constructed hypoxia discrimination

model, we used heatmap to visualize the attentional weight scores

in the last layer of the model. Both in the TCGA dataset and in our

clinical samples, the high weight regions of the model in samples

predicted to have high hypoxia levels were broadly focused on the

tumor stroma. In contrast, in samples predicted to have low hypoxia

levels, the model’s areas of attention were predominantly lymphoid

tissue and tumor stroma (Figures 3E–N). This suggests that hypoxia

levels in tumor tissue can be observed in clinical WSIs, which

provides some basis for subsequent patient prognosis identification

based on interpretable pathology. Due to the different regions in the

identification of high and low hypoxia levels in the models, and the

TME analysis based on TCGA transcriptome data, it was also

suggested that the hypoxia level in tumor tissue was negatively
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FIGURE 2

Hypoxia level in TME and prognosis. (A) Differences in the distribution of hypoxia in normal and tumor tissues in the bulk dataset at the pan-cancer level
(Wilcoxon rank sum test). (B) KM survival analysis of hypoxia for the TCGA-PAAD dataset (Log-rank test). (C) KM survival analysis of hypoxia for the
GSE183795 dataset (Log-rank test). (D) Univariate Cox analysis of hypoxia in pan-cancer. (E) Hypoxia scoring of eight cell types at the single-cell level
(Wilcoxon rank sum test). (F) Hypoxia scoring of TAM1-like and TAM2-like subpopulations (Wilcoxon rank sum test). (G) Hypoxia scoring of apCAFs, iCAFs
and myCAFs subpopulations (Wilcoxon rank sum test). (H) Differences in the distribution of hypoxia in normal and tumor cells in pancreatic epithelial
cells at single-cell level (Wilcoxon rank sum test). (I) UMAP plot of hypoxia scoring in pancreatic normal and tumor epithelial cells. ns, P≥ 0.05; *, P<0.05;
***, P<0.001; ****, P<0.0001. TCGA, The Cancer Genome Atlas; KM, Kaplan-Meier; UMAP, uniform manifold approximation and projection; KICH, Kidney
Chromophobe; THCA, Thyroid carcinoma; PRAD, Prostate adenocarcinoma; CESC, Cervical squamous cell carcinoma and endocervical adenocarcinoma;
LGG, Brain Lower Grade Glioma; ACC, Adrenocortical carcinoma; LIHC, Liver hepatocellular carcinoma; MESO, Mesothelioma; KIRP, Kidney renal papillary
cell carcinoma; SARC, Sarcoma; PAAD, Pancreatic adenocarcinoma; BRCA, Breast invasive carcinoma; LUAD, Lung adenocarcinoma; COAD, Colon
adenocarcinoma; UVM, Uveal Melanoma; GBM, Glioblastoma multiforme; BLCA, Bladder Urothelial Carcinoma; STAD, Stomach adenocarcinoma; OV,
Ovarian serous cystadenocarcinoma; TGCT, Testicular Germ Cell Tumors; UCS, Uterine Carcinosarcoma; HNSC, Head and Neck squamous cell carcinoma;
CHOL, Cholangiocarcinoma; THYM, Thymoma; UCEC, Uterine Corpus Endometrial Carcinoma; LAML, Acute Myeloid Leukemia; PCPG, Pheochromocytoma
and Paraganglioma; ESCA, Esophageal carcinoma; KIRC, Kidney renal clear cell carcinoma; SKCM, Skin Cutaneous Melanoma; LUSC, Lung squamous cell
carcinoma; READ, Rectum adenocarcinoma; DLBC, Lymphoid Neoplasm Diffuse Large B-cell Lymphoma; TAM, tumor-associated macrophages; apCAFs,
antigen-presenting fibroblasts; iCAFs, inflammatory fibroblasts; myCAFs, myofibroblasts.
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FIGURE 3

MIL-based WSIs hypoxia differentiation model construction. (A) The AUROC for the hypoxia detection model is 0.829. (B) The AUPRC is 0.876. (C) Confusion
matrix in the test set. (D) Comparison of the ratio of tiles testing positive for TILs to full tiles in the two groups of high and low hypoxia (Wilcoxon rank sum
test). (E) Original pathological images of TCGA-2L-AAQM sample and magnified views of high-weight regions. (F) Model interpretation heatmap for the
TCGA-2L-AAQM sample. (G) Spatial distribution of TILs in the TCGA-2L-AAQM sample (yellow: TIL-positive regions). (H) Original pathological images of
TCGA-US-A77J sample and magnified views of high-weight regions. (I) Model interpretation heatmap for the TCGA-US-A77J sample. (J) Spatial distribution
of TILs in the TCGA-US-A77J sample (yellow: TIL-positive regions). (K) Original pathological image of a clinical sample classified as hypoxia-high by the
model. (L) Model identification as low hypoxia by heatmap interpretation of clinical samples. (M) Original pathological image of a clinical sample classified as
hypoxia-low by the model. (N) Model identification as low hypoxia by heatmap interpretation of clinical samples. (O) Analysis of KM survival in high and low
hypoxia groups in a clinical sample. MIL, multi-instance learning; WSIs, Whole Slide Images; TCGA, The Cancer Genome Atlas; TILs, tumor-infiltrating
lymphocytes; AUROC, the area under the curve of the receiver operating characteristic; AUPRC, the area under the curve of the precision-recall; ROI,
region-of-interest; KM, Kaplan-Meier.
Frontiers in Immunology frontiersin.org10

https://doi.org/10.3389/fimmu.2025.1513589
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lin et al. 10.3389/fimmu.2025.1513589
correlated with the level of CD8+ T cell infiltration in the TME in

various tumors, including PDAC (Supplementary Figure S4).

Therefore, we further explored the correlation between hypoxia

levels and lymphocytes in WSIs. We used the “WSInfer” framework

to identify the TILs region in WSIs (8). The results also showed that

the proportion of TILs was lower in samples with high hypoxia

scores than in samples with low hypoxia (Figures 3E–J). However,

when comparing the overall ratios of the two groups, no statistically

significant difference was shown, despite the high hypoxia group

having a higher overall ratio than the low hypoxia group

(Figure 3D). In part, this may be due to the fact that quantity-

based TILs comparisons do not reflect cell status and cell type in

TILs (47, 48). We also used the HoVer-UNet framework to identify

cell types at high weight regions in patients with low hypoxia, which

further suggests that the model did observe some differences in the

level of immune infiltration in tissues with high and low levels of

hypoxia. This indicates that the hypoxia-related features in WSIs

are effectively identified by the model. However, in general, hypoxia

plays an important role in the construction of the tumor

immunosuppressive microenvironment, which can be directly

reflected in WSIs, and the combined with a deep learning method

has the potential to characterize or quantify hypoxia levels at the

clinical level.
3.3 SQOR may be involved in the
progression of PDAC in a hypoxic
microenvironment

In view of our findings suggesting that hypoxia is associated

with the malignant progression of PDAC, we further analyzed the

potential factors that may be involved in hypoxia-promoted

carcinogenesis in PDAC (Figure 1C). The hypoxia score threshold

with the best prognostic ability divided TCGA-PAAD patients into

high hypoxia score group and low hypoxia score group for

differential analysis. The results showed that a large number of

genes changed between the two groups. Among them, SQOR

showed significant differences between groups (Figure 4A). To

further characterize the significance of SQOR, we used RT-qPCR

in vitro experiments to detect the level of SQOR expression in

PDAC cells under hypoxic conditions, and as we guessed, SQOR

expression was up-regulated in BxPC3 and PANC1 cells cultured

under hypoxic environment compared with normal culture

conditions (P<0.01, Figure 4H). This implies that SQOR may

promote the survival of pancreatic cancer cells in the harsh

hypoxic microenvironment.

Analysis of SQOR expression levels in normal and tumor tissues

of the pancreas revealed that SQOR was upregulated in tumor

tissues and was significantly different from normal tissues (p<0.05,

Figure 4B). The same results were obtained at the single cell level in

pancreatic normal and tumor cells (Figures 4C, D). Meanwhile, KM

survival curves suggested that patients with high SQOR expression

had a worse prognosis (p < 0.05, Figures 4E, F). And further

subgroup analyses of patients suggested that the prognosis of high

hypoxia scoring and high SQOR expression subgroup was
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significantly lower than that of low hypoxia scoring and low

SQOR expression subgroup (p<0.01, Supplementary Figures S5A,

B, Supplementary Table S5). Multivariate cox analysis showed that

SQOR was an independent risk factor for prognosis in PDAC

(p<0.05, Supplementary Table S6). The effect of SQOR in pan-

cancer on the prognosis of tumor patients was further explored, and

the results showed that SQOR was a prognostic risk factor in PDAC,

liver hepatocellular carcinoma, brain lower grade glioma, lung

adenocarcinoma, and uveal melanoma (UVM) (Figure 4G).

Proteomic analysis revealed that SQOR was up-regulated in

tumor epithelial-enriched cores and bulk tissues, but did not

differ in tumor stroma-enriched cores (Supplementary Figure

S5C). IHC results in clinical patients similarly showed

significantly higher staining intensity of SQOR in tumor tissues

compared to normal tissues (P<0.05, Figures 4I–K). Combined with

bulk and single-cell transcriptomics, proteomics, and clinical IHC

data, SQOR is up-regulated in tumors, and its high expression

strongly predicts poor prognosis of patients. This suggests that

SQOR under hypoxic conditions plays a crucial role in driving the

malignant progression of PDAC.
3.4 Spatial transcriptomics and pathomics
suggest co-localization of hypoxia and
SQOR expression

Based on our multi-omics study, a strong correlation between

hypoxia and SQOR was suggested and confirmed by our in vitro

experiment. We further investigated whether hypoxia and SQOR

expression are linked in tissue space. We used the dataset from

GSE235315 for further studies. By visualizing the spatial

distribution of hypoxia score and SQOR at the single-cell level,

we found that regions with high hypoxia score were accompanied

by high expression of SQOR (Figures 5A, B, Supplementary Figure

S6). This suggests that there is a spatial level co-localization of the

hypoxia pathway with SQOR expression. It also suggests that there

is heterogeneity in hypoxia at the spatial level and that this

heterogeneity is accompanied by altered SQOR expression. We

also observed our clinical WSIs. Given that the high-attention

regions in our hypoxia-expressing explanatory clinicopathological

heatmap were mainly focused on the stromal region of the tumor,

but the weight of stromal attention varied among different regions.

This suggests that the hypoxia model also paid attention to the

structural differences in the stroma (Figure 5C). Previous studies

have shown that the high hypoxia in PDAC tissues is partly due to

the lack of vascularity of the tumor tissue and the high stromal

levels (49). Meanwhile, clinical SQOR IHC results of WSIs

corresponding to HE pathology showed that SQOR was strongly

positive in stromal wrapped ductal malignant epithelial cells with

high attention weight (Figure 5D). Interestingly, we observed

weaker SQOR staining in ductal malignant cells encapsulated by

stroma at relatively low weight regions than in the former

(Figures 5E, F). This further suggests a spatial co-localization of

hypoxia and SQOR expression.
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FIGURE 4

SQOR may be involved in PDAC progression in a hypoxic microenvironment. (A) Differences in the distribution of SQOR between low and high
hypoxic tissues in the TCGA-PAAD dataset (Wilcoxon rank sum test). (B) Differences in the distribution of SQOR in normal and tumor tissues in the
bulk dataset at the pan-cancer level (Wilcoxon rank sum test). (C) Differences in the distribution of SQOR in pancreatic normal epithelial and tumor
cells at the single-cell level (Wilcoxon rank sum test). (D) UMAP plot of SQOR in normal and tumor epithelial cells of the pancreas. (E) KM survival
analysis of SQOR for the TCGA-PAAD dataset (Log-rank test). (F) KM survival analysis of SQOR for the GSE183795 dataset (Log-rank test). (G)
Univariate Cox analysis of SQOR in pan-cancer. (H) RT-qPCR results of SQOR of BxPC3 and PANC1 cells under normal and hypoxia conditions
(Student’s t-test). (I) Counting results of SQOR IHC staining of tumor samples and normal samples from clinical samples (McNemar test). (J) SQOR
IHC staining results of normal pancreatic ductal tissue. (K) SQOR IHC staining results of PDAC (red: SQOR IHC-positive cells, blue: SQOR IHC-
negative cells). ns, P≥ 0.05; *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001. PDAC, Pancreatic ductal adenocarcinomas; TCGA, The Cancer
Genome Atlas; KM, Kaplan-Meier; IHC, immunohistochemistry; RT-qPCR, Real-time quantitative reverse transcription polymerase chain reaction
assay; KICH, Kidney Chromophobe; THCA, Thyroid carcinoma; PRAD, Prostate adenocarcinoma; CESC, Cervical squamous cell carcinoma and
endocervical adenocarcinoma; LGG, Brain Lower Grade Glioma; ACC, Adrenocortical carcinoma; LIHC, Liver hepatocellular carcinoma; MESO,
Mesothelioma; KIRP, Kidney renal papillary cell carcinoma; SARC, Sarcoma; PAAD, Pancreatic adenocarcinoma; BRCA, Breast invasive carcinoma;
LUAD, Lung adenocarcinoma; COAD, Colon adenocarcinoma; UVM, Uveal Melanoma; GBM, Glioblastoma multiforme; BLCA, Bladder Urothelial
Carcinoma; STAD, Stomach adenocarcinoma; OV, Ovarian serous cystadenocarcinoma; TGCT, Testicular Germ Cell Tumors; UCS, Uterine
Carcinosarcoma; HNSC, Head and Neck squamous cell carcinoma; CHOL, Cholangiocarcinoma; THYM, Thymoma; UCEC, Uterine Corpus
Endometrial Carcinoma; LAML, Acute Myeloid Leukemia; PCPG, Pheochromocytoma and Paraganglioma; ESCA, Esophageal carcinoma; KIRC,
Kidney renal clear cell carcinoma; SKCM, Skin Cutaneous Melanoma; LUSC, Lung squamous cell carcinoma; READ, Rectum adenocarcinoma; DLBC,
Lymphoid Neoplasm Diffuse Large B-cell Lymphoma.
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3.5 Hypoxia induces ferroptosis resistance
in PDAC

Various previous studies have shown that solid tumors can be

resistant to ferroptosis in the hypoxic microenvironment, but the
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regulatory mechanism is still unclear (23). Based on the above

results of high hypoxia level in PDAC, we further used single-cell

data to evaluate the ferroptosis resistance level in PDAC epithelial

cells, and the data analysis showed that the ferroptosis resistance

score of tumor cells was much higher than that of normal cells
FIGURE 5

Spatial co-localization of hypoxia and SQOR expression. (A) Spatial localization of SQOR and hypoxia in GSM749817 samples. (B) Spatial localization
of SQOR and hypoxia in GSM749811 samples. (C) Heatmap of clinical samples. (D) Original pathological images of clinical samples. (E) SQOR IHC
staining results of high attention weighted regions (red: SQOR IHC-positive cells, blue: SQOR IHC-negative cells). (F) SQOR IHC staining results of
low attention weighted regions (red: SQOR IHC-positive cells, blue: SQOR IHC-negative cells). IHC, immunohistochemistry.
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(P<0.05, Figure 6A). At the same time, WP pathway enrichment

analysis of tumor cells and normal epithelial cells showed that

tumor cells had changes in VEGF signaling pathway, focal

adhesion, proteasome degradation, TGFb signaling pathway, and

ferroptosis pathway (Figure 6C). Meanwhile, the single-cell level

analysis of PDAC showed a positive correlation between hypoxia

and ferroptosis resistance (R=0.2, P<0.001, Figure 6B). As

previously reported, the link between hypoxia and ferroptosis

resistance is also likely to exist in a variety of tumors (23).

Pan-cancer analysis at the bulk level found a positive correlation

between hypoxia and ferroptosis resistance in a variety of tumors,

such as PDAC, breast cancer, prostate cancer, and lung squamous

cell carcinoma (P<0.05, Figure 6D). Therefore, it is speculated that

PDAC can promote tumor survival by inhibiting ferroptosis under

harsh hypoxic environment. To confirm our hypothesis, in vitro

exper iments were per formed to s imulate the tumor

microenvironment of PDAC cells with high hypoxia and high

ferroptosis pathway activation. CCK8 assay was used to detect the

anti-ferroptosis ability of PDAC cells under hypoxic environment

with Erastin and SAS inducers. BxPC3 and PANC1 cells cultured

under hypoxia were more resistant to ferroptosis inducers than

those cultured under normal culture conditions (P<0.05, Figure 6E).

This result confirms the strong resistance of tumor cells to

ferroptosis under hypoxic conditions.
3.6 High SQOR expression promotes
ferroptosis resistance of PDAC cells in
hypoxic microenvironment

In the bulk level pan-cancer analysis, the correlation analysis

results between SQOR and 15 pathways/gene sets showed that 10

tumors (such as PDAC, kidney renal papillary cell carcinoma,

prostate adenocarcinoma, uterine corpus endometrial carcinoma,

UVM, etc.) were positively correlated with both hypoxia and

ferroptosis resistance (Figure 7A). In the PDAC single-cell data,

the correlation analysis results between SQOR and 15 pathway/gene

set scores also showed that SQOR expression in malignant

pancreatic ductal cells was positively correlated with hypoxia and

ferroptosis resistance (Supplementary Figure S7A). Proteomic

analyses also revealed a high positive correlation between SQOR

and the negative regulator of ferroptosis, STAT3 (R=0.64, p=0.013)

and LCN2 (R=0.73, p=0.0029), in epithelial tissue (Supplementary

Figure S7B). Moreover, the IC50 values of tumor drugs in several

datasets were calculated using the CTRP database, which showed

that tumors with high SQOR expression were more resistant to

ferroptosis inducers (erastin, 1S,3R-RSL-3, ML162, ML210) and

ROS inducers (darinaparsin, BRD-K94991378, BRD K71935468)

(Figure 7B). Combined with the previous bioinformatics analyses of

transcriptomics and proteomics and the experimental results, it was

suggested that SQOR could help PDAC tolerate the hypoxic

microenvironment while making the tumor cells more resistant to

ferroptosis (Figure 8F).

To verify this conjecture, we established stable SQOR

knockdown PDAC cell lines (PANC1 and BxPC3) and verified by
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WB and RT-qPCR (Figures 7C–F). We used erastin to induce

ferroptosis in pancreatic cancer cells under hypoxic conditions.

After hypoxia treatment, SQOR knockdown cells showed reduced

cell viability, decreased cell migration ability, and increased MDA

content compared with control cells, and all the above could be

reversed in the presence of Fer-1 (Figures 7G–L). The experimental

results showed that under hypoxic conditions, SQOR could

promote the resistance of PDAC cells to ferroptosis, and reduce

the decreased cell viability, invasion, and oxidative damage caused

by ferroptosis.

Next, we further investigated whether the SQOR inhibitor

HTS07545 and the ferroptosis inducer erastin have synergistic

ferroptosis-inducing effects in vivo. In terms of bulk specimens,

the tumor volume of PDAC transplant in DMSO group was larger

than that in erastin group, HTS07545 group, and erastin plus

HTS07545 combined treatment group in mice (Figure 8A). The

most significant decrease in tumor volume was observed in the

combination treatment group (Figure 8B). Observation of tumor

weights revealed that both HTS07545 and erastin groups showed a

decrease in tumor weights in mice after treatment, with the most

pronounced decrease in tumor weights in the erastin plus

HTS07545 combination group, which had an inhibitory effect on

tumor growth (Figure 8C). The body weight of the mice in each

group was also monitored during the treatment period, and there

was no significant weight loss in each group, suggesting fewer side

effects (Figure 8D). H&E staining showed that the morphology of

tumor cells in the DMSO group was normal, while the HTS07545

group and erastin group showed varying degrees of nuclear necrosis

and tumor histocytological changes. Among them, the necrotic area

of the erastin plus HTS07545 combined treatment group was the

largest (Figure 8E). The results demonstrated that SQOR inhibitor

HTS07545 and ferroptosis inducer erastin synergistically inhibit

tumor growth in vivo with minimal side effects, which holds

promise for clinical translation.
4 Discussion

PDAC is a highly malignant and lethal tumor (50). For the

majority of patients with advanced PDAC, existing therapies, such

as immunotherapy, chemotherapy, and radiotherapy, provide only

limited clinical benefits (51). Therefore, new therapeutic options are

urgently needed to improve the prognosis of patients with PDAC.

Hypoxia is common in most solid tumors and its presence has been

shown to increase the likelihood of cancer progression and spread

(6). However, unlike other tumors, PDAC contains large numbers

of stromal cells and abundant extracellular matrix (ECM), but lacks

blood vessels, resulting in persistent and severe hypoxia within the

tumor (49). The biology of hypoxic cancer cells is shaped by the

interplay between pervasive oxygen tension, hypoxia-induced

signaling pathways, interacting genetic mutations, and cellular

damage caused by reactive oxygen species (ROS) (6).

Furthermore, our bioinformatics analyses have identified a high

hypoxia signature in a variety of solid tumors, and it is particularly

evident that high hypoxia levels in PDAC are accompanied by a
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FIGURE 6

Ferroptosis resistance in PDAC cells under hypoxic conditions. (A) UMAP plot of ferroptosis resistance scoring in pancreatic normal and tumor
epithelial cells. (B) Correlation analysis of hypoxia and ferroptosis resistance at the single-cell level (Spearman correlation). (C) Differential gene
wikipathway enrichment analysis of tumor and normal epithelial cells at the single-cell level. (D) Correlation analysis of hypoxia and ferroptosis
resistance in the bulk dataset at the pan-cancer level (Spearman correlation). (E) Cell viability assay of BxPC3 and PANC1 cells under hypoxic and
normal conditions plus erastin or SAS (Student’s t-test). ***, P<0.001. PDAC, Pancreatic ductal adenocarcinomas; UMAP, uniform manifold
approximation and projection; KICH, Kidney Chromophobe; THCA, Thyroid carcinoma; PRAD, Prostate adenocarcinoma; CESC, Cervical squamous
cell carcinoma and endocervical adenocarcinoma; LGG, Brain Lower Grade Glioma; ACC, Adrenocortical carcinoma; LIHC, Liver hepatocellular
carcinoma; MESO, Mesothelioma; KIRP, Kidney renal papillary cell carcinoma; SARC, Sarcoma; PAAD, Pancreatic adenocarcinoma; BRCA, Breast
invasive carcinoma; LUAD, Lung adenocarcinoma; COAD, Colon adenocarcinoma; UVM, Uveal Melanoma; GBM, Glioblastoma multiforme; BLCA,
Bladder Urothelial Carcinoma; STAD, Stomach adenocarcinoma; OV, Ovarian serous cystadenocarcinoma; TGCT, Testicular Germ Cell Tumors; UCS,
Uterine Carcinosarcoma; HNSC, Head and Neck squamous cell carcinoma; CHOL, Cholangiocarcinoma; THYM, Thymoma; UCEC, Uterine Corpus
Endometrial Carcinoma; LAML, Acute Myeloid Leukemia; PCPG, Pheochromocytoma and Paraganglioma; ESCA, Esophageal carcinoma; KIRC,
Kidney renal clear cell carcinoma; SKCM, Skin Cutaneous Melanoma; LUSC, Lung squamous cell carcinoma; READ, Rectum adenocarcinoma; DLBC,
Lymphoid Neoplasm Diffuse Large B-cell Lymphoma.
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FIGURE 7

High SQOR expression promotes ferroptosis resistance of PDAC cells in hypoxic microenvironments. (A) Correlation analysis of SQOR with multiple
pathways/genes set scores including hypoxia and ferroptosis resistance in the bulk dataset at the pan-cancer level (Spearman correlation). (B) IC50
correlation analysis of SQOR with ROS inducers (darinaparsin, BRD-K94991378, BRD-K71935468) and ferroptosis inducers (erastin, 1S,3R-RSL-3, ML162,
ML210) (Spearman correlation). (C) The SQOR knockdown PANC1 cell line was validated by western blot (Student’s t-test). (D) SQOR knockdown PANC1
cell line validated by RT-qPCR (Student’s t-test). (E) The SQOR knockdown BxPC3 cell line was validated by western blot (Student’s t-test). (F) SQOR
knockdown BxPC3 cell line validated by RT-qPCR (Student’s t-test). (G) Cell viability assay of SQOR knockdown and non-knockdown PANC1 cells in
control, plus erastin and plus erastin+Fer-1 groups (Student’s t-test). (H) Cell viability assay of SQOR knockdown and non-knockdown BxPC3 cells in
control, plus erastin and plus erastin+Fer-1 groups (Student’s t-test). (I) Cell migration capacity assay of SQOR knockdown and non-knockdown PANC1
cells in control, plus erastin and plus erastin+Fer-1 groups (Student’s t-test). (J) Cell migration capacity assay of SQOR knockdown and non-knockdown
BxPC3 cells in control, plus erastin and plus erastin+Fer-1 groups (Student’s t-test). (K) MDA levels were assayed in SQOR knockdown and non-
knockdown PANC1 cells in control, plus erastin and plus erastin+Fer-1 groups (Student’s t-test). (L) MDA levels were assayed in SQOR knockdown and
non-knockdown BxPC3 cells in control, plus erastin and plus erastin+Fer-1 groups (Student’s t-test). ns, P≥ 0.05; *, P<0.05; **, P<0.01; ***, P<0.001.
PDAC, Pancreatic ductal adenocarcinomas; ROS, oxygen species; RT-qPCR, Real-time quantitative reverse transcription polymerase chain reaction
assay; MDA, Malondialdehyde.
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poor prognosis in patients. Thus, it is important to further

investigate the characteristics and potential mechanisms of

hypoxia in PDAC.

Our analysis of hypoxia levels in eight cell types at the single-cell

level showed that myeloid cells, fibroblasts, and epithelial cells had

the highest hypoxia scores. Similar to previous studies, the hypoxia

score of the M1-like TAMs subpopulation was significantly higher

than that of the M2-like TAMs subpopulation in macrophages.

TAMs exhibit distinct functions depending on their subtypes.

Specifically, M1-like TAMs primarily exert anti-tumor activity,

whereas M2-like TAMs represent the predominant macrophage

phenotype in PDAC, characterized by immunosuppressive and pro-

tumorigenic properties (44, 52). Furthermore, studies have shown

that TAM enrichment levels are higher in hypoxic regions of solid

tumors and that hypoxia may be a key driver of macrophage

recruitment and polarization in the TME, inducing macrophage

phenotype that favor to tumor growth (53). CAFs are broadly

defined as fibroblasts located in or near the tumor mass. The large

number of CAFs in PDAC tissues constructs a favorable

environment for tumor development (54). There is a large

heterogeneity of CAFs, and the CAFs that are associated with the

promotion of tumor progression are iCAFs. It was found that

hypoxia in the TME of PDAC enhances the iCAFs phenotype

and promotes tumor growth (46, 55). Our hypoxia scoring of CAFs

also showed similar results: the iCAFs subpopulation had a higher

hypoxia score than the myCAFs subpopulation. In the epithelial cell

subpopulation, the hypoxia score of tumor cells was also much
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higher than normal. Under hypoxic conditions, PDAC achieves

metabolic reprogramming through the induction of transcription

factors and other methods. This process is accompanied by

increased proliferation and invasive capacity of cancer cells (56).

Results based on single-cell analysis showed a high hypoxic state in

a variety of cells associated with tumor progression. Collectively,

these findings position hypoxia as a master regulator of cellular

crosstalk in the PDAC microenvironment, driving both stromal

remodeling and epithelial malignancy (57).

In recent years, with the advancement of AI research and the

enhancement of computer hardware capabilities, it has become

possible to utilize WSIs, which contain abundant tissue information

and pathological characteristics, for research purposes. The

inherent tissue heterogeneity captured in WSIs provides a rich

resource for tumor biology investigation, however, the manual

annotation of morphologically critical regions remains labor-

intensive and subjective. To address this, as a high-throughput

deep learning framework, a CLAM-based method has

demonstrated capabilities comparable to those of pathologists in

tasks such as tumor diagnosis, tumor subtype differentiation, and

patient prognosis determination, thus demonstrating their utility as

scalable tools for WSIs interpretation (33, 58). However, there are

fewer studies on certain characteristics of tumors at the slide level.

Therefore, we used this framework to distinguish between high and

low levels of hypoxia at the slide level, achieving good performance.

This suggests that the level of tumor hypoxia can be directly

reflected in the clinical WSIs, despite the difficult-to-explain
FIGURE 8

SQOR inhibitor and ferroptosis inducer have synergistic ferroptosis induction in vivo. (A) Tumor images in mice. (B) Tumor growth curves in mice.
(C) Analysis of tumor weights in mice. (D) Body weight change curves in mice. (E) H&E staining of pathological sections of mice tumors. (F)
Mechanistic diagram of the promotion of ferroptosis resistance by SQOR in PDAC cells under hypoxia. ns, P≥ 0.05; **, P<0.01; ***, P<0.001. PDAC,
Pancreatic ductal adenocarcinomas.
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nature of the deep learning model as a black-box model. However,

to delineate biologically interpretable patterns from the model for

subsequent studies, we performed model attention weight

visualization. The model primarily focuses mostly on the stromal

region of the tumor, as well as on the region of lymphocyte

infiltration in the WSIs, but it does not pay enough attention to

the epithelial region of the tumor. Previous studies have shown that

the stroma of pancreatic cancer is the key stroma for disease

progression (59). In addition, the histology of PDAC is

characterized by massive connective tissue hyperplasia, with the

resulting fibrotic reaction caused by excess fibroblasts and tumor-

induced ECM deposition (60, 61). The dense ECM induces

angiogenesis, hypoxia, and impairs anti-tumor immunity (62).

This suggests that the model we constructed observes this feature

in PDAC and evaluates hypoxia levels at the slide level based on

these features in WSIs. This is further reflected in the prognostic

observations of our clinical cohort. Intriguingly, while our slide-

level analysis did not reveal statistically significant differences in

total TILs abundance between hypoxia subgroups, we observed an

inverse correlation between hypoxia levels and TIL density across

multiple specimen sections. This apparent discrepancy may arise

from the inability of WSI-based TIL quantification to differentiate

lymphocyte subtypes or functional states. For instance, exhausted T

cells tend to be enriched in tumors with impaired anti-tumor

immunity (47). However, the model’s attention heat map

similarly suggested a connection between hypoxia levels and

lymphatic infiltration. This association was also demonstrated in

the putative RNA-seq-based levels of immune cell infiltration.

Based on the widespread presence of hypoxia in PDAC cells and

bioinformatics analysis, SQOR was further identified as one of the

key factors in the malignant progression of tumor cells in a hypoxic

TME. Comparative analysis of TCGA-PAAD cohorts revealed

differential SQOR expression between high- and low-hypoxia

score subgroups. Bulk RNA sequencing and single-cell

transcriptomics analyses consistently demonstrated significant

SQOR upregulation in tumor and normal pancreatic tissues/cells.

This transcriptional pattern was corroborated at the protein level

through IHC staining and proteomic profiling, confirming SQOR

overexpression in PDAC specimens. Meanwhile, we also found that

SQOR was an independent risk factor for the prognosis of PDAC

patients. This reveals the potential of SQOR as a biomarker for

PDAC. To fully utilize the WSIs information from H&E and IHC

staining of our clinical cohort, we noted that the intensity of SQOR

staining was significantly higher in tumor cells surrounding the

region of high interest in the model compared to tumor cells in the

region of relatively low interest. This feature was also evident in the

spatial transcriptome data of pancreatic cancer. This suggests a

spatial co-localization as well as a strong correlation between SQOR

and hypoxia. To verify the guess, further in vitro experiments

confirmed the upregulation of SQOR expression in PDAC cells

cultured under hypoxic environment compared to normal

conditions. SQOR is located in mitochondria and can reduce

ubiquinone via the electron transport chain (63, 64). Meanwhile,

ROS are generated by various enzymatic and non-enzymatic

processes in the cell and are important mediators of cellular
Frontiers in Immunology 18
signaling (64). The production of ROS in mitochondria has been

shown to be involved in hypoxia signaling. Mitochondria are a

major source of cellular ROS. Increased mitochondrial proton

conductance leads to the conversion of ubiquinone to ubiquinol,

reducing ROS production due to oxidative stress and other factors

(65). Kleiner et al. demonstrated that silencing of SQOR in wild-

type HeLa cells leads to an increase in ROS (66). Thus, PDAC cells

survival and proliferation under hypoxic conditions may result

from increased SQOR expression through accelerated

ubiquinone/ubiquinol cycling in the mitochondria. Lee et al. have

indicated that intracellular SQOR under physiological conditions

reduces ROS in the cell by regulating ubiquinone/ubiquinol cycling

(67). Although further experimental confirmation of this

mechanism in PDAC is still needed, we found that total

ubiquinone/ubiquinol content in the PANC1 cell line was

increased compared to normal pancreatic epithelial cell levels

using metabolomics data from Yang et al., suggesting that there is

an elevated ubiquinone/ubiquinol cycle level in PDAC

(Supplementary Figure S8) (68).

As our above studies have shown that high levels of hypoxia and

SQOR are present in tumor cells and differential analysis indicates

alterations in the ferroptosis pathway in tumor cells. This suggests

that SQOR under hypoxic conditions may affect cancer progression

by modulating the ferroptosis pathway. Ferroptosis, an iron-

dependent regulated cell death mechanism driven by lipid

peroxidation, demonstrating significant potential in cancer

therapy (18). In addition, cellular iron is critical for maintaining

multiple metabolic pathways. Iron accumulation is one of the key

signals initiating membrane oxidative damage during ferroptosis

(69). Excess iron promotes subsequent lipid peroxidation through

two mechanisms: the production of ROS and the activation of iron-

containing enzymes. Tumor cell growth is significantly dependent

on the trace element iron compared to non-malignant cells.

Inhibition of ferroptosis promotes tumor invasion and metastasis.

Bioinformatics analysis indicated a positive correlation between

SQOR and both hypoxia and ferroptosis resistance in PDAC.

Meanwhile, by simulating the hypoxic environment of PDAC

cells and the ecological microenvironment with a high activation

level of ferroptosis pathway, our in vitro experiments demonstrated

the existence of ferroptosis resistance under hypoxic

microenvironment in PDAC and this phenotype reversible by the

ferroptosis inhibitor fer-1. However, the underlying mechanisms of

hypoxia and ferroptosis resistance in the TME need to be further

explored. It has been found that hypoxia can prevent ferroptosis by

increasing the transcription of SLC7A11 and HO-1 and reducing

ROS (70, 71). Our study extends the theory that hypoxia protects

PDAC cells from ferroptosis by upregulating SQOR expression.

This study provides a new insight into the mechanism of ferroptosis

resistance of PDAC under hypoxia.
5 Conclusions

In conclusion, in this study, we first determined that hypoxia

plays an important role in the progression of malignant tumors. As
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PDAC exhibits a higher level of hypoxia and a worse prognosis than

most tumors, we further analyzed the potential factors involved in

hypoxia-promoting carcinogenesis in PDAC. We found that SQOR

was highly expressed in PDAC and was associated with poor

prognosis. We then explored the relationship between hypoxia

and ferroptosis and found a positive correlation between hypoxia

and ferroptosis resistance in several tumors, including PDAC. In

vitro experiments demonstrated that SQOR promotes ferroptosis

resistance in PDAC cells under hypoxic conditions. In vivo

experiments demonstrated that both the SQOR inhibitor

HTS07545 and the ferroptosis inducer erastin could inhibit

tumors and both have synergistic inhibitory effects on tumor

growth with fewer side effects. Therefore, we suggest that the

hypoxic microenvironment in PDAC is a major factor

contributing to ferroptosis resistance, and SQOR is an important

gene for this process. There are also limitations to our study. Firstly,

there was a deficiency in the number of cells studied at our single-

cell level, and the hypoxia, SQOR and ferroptosis resistance

properties of PDAC were not observed in a wider dataset. Second,

the hypoxic properties of PDAC were not observed in more types of

TME cells. Third, due to limited public resources for matching

pathological sections of pancreatic cancer samples to transcriptome

data, the dataset size is small, especially for validation and test

samples. Fourth, we did not perform external validation of the

model in our clinical cohort, although our clinical cohort has

demonstrated the prognostic significance of the constructed

model. Overall, we analyzed the important role of hypoxia in

PDAC from multiple dimensions (bioinformatics, computer

vision, in vitro experiments and in vivo experiments). We

discovered that hypoxia can be identified as a phenomenon in

clinicopathological slides, while simultaneously revealing a novel

mechanism of hypoxia-mediated ferroptosis resistance.

Furthermore, this study underscores the potential of SQOR as

both a biomarker and a therapeutic target in PDAC, thus

warranting further in-depth investigation.
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