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Integration of scRNA-seq and
bulk RNA-seq to reveal the
association and potential
molecular mechanisms of
metabolic reprogramming
regulated by lactylation and
chemotherapy resistance
in ovarian cancer
Fang Ren †, Xiaoao Pang †, Feng Jin, Nannan Luan,
Houhua Guo and Liancheng Zhu*

Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University,
Shenyang, China
Objective:Ovarian cancer (OC) ranks among the foremost causes of mortality in

gynecological malignancies, with chemoresistance being the primary factor

contributing to unfavorable prognosis. This work seeks to clarify the

mechanisms of resistance-related lactylation in OC, intending to offer novel

theoretical foundations and therapy strategies for addressing chemoresistance.

Methods: Through the combined analysis of bulk RNA-seq and single-cell RNA-

seq data, we initially found lactylation genes linked to chemoresistance.

Subsequently, we employed differential expression analysis, survival analysis,

enrichment analysis, and other methodologies to further investigate the roles

and molecular mechanisms of these genes in tumor resistance. Ultimately, we

investigated the differential expression of these genes in resistant and non-

resistant tissues and cells via experimentation.

Results: We found two candidate genes associated with lactylation

chemoresistance, ALDH1A1 and S100A4. Analysis of single-cell data indicated

that tumor cells represent the primary cell subpopulation relevant to resistance

studies. Subpopulation analysis indicated that several tumor cell subtypes were

markedly linked to resistance, with elevated expression levels of ALDH1A1 and

S100A4 in the resistant subpopulation, notably correlating with various

immunological and metabolic pathways. Analysis of metabolic pathways

indicated that oxidative phosphorylation and glycolysis activity was elevated in

the resistant subpopulation, and lactic acid buildup was associated with

chemoresistance. The investigation of the marker gene protein-protein

interaction network in the resistant subgroup elucidated the intricate

interactions among these genes. The expression levels of ALDH1A1 and

S100A4 in the OC tissues of the platinum-resistant cohort were markedly

elevated compared to the sensitive cohort, with a considerable rise in S100A4
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expression observed in resistant OC cells, demonstrating co-localization

with lactylation.

Conclusion: This work elucidates the significant function of lactylation in OC

chemoresistance and identifies ALDH1A1 and S100A4 as possible genes

associated with drug resistance. These findings enhance our comprehension of

the mechanisms behind chemoresistance in OC and offer critical insights for the

formulation of novel therapeutic options.
KEYWORDS
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1 Introduction

Ovarian cancer (OC) is the most fatal gynecologic malignancy,

characterized by the greatest mortality rate, with an annual incidence

of 314,000 cases and 207,000 deaths globally. Approximately 80% of

OC patients receive diagnoses at advanced stages III and IV, with

associated 5-year survival rates of only 27% and 13%, respectively (1).

Epithelial OC constitutes about 85-90% of all instances, with initial

and subsequent treatment resistance markedly influencing

unfavorable outcome. Significant differences in energy metabolism

are present between malignant and normal cells (1, 2).

Malignant cells typically alter their energy metabolism from

oxidative phosphorylation to aerobic glycolysis, leading to increased

glycolytic flux and heightened lactate production. The

accumulation of lactic acid is linked to the promotion of tumor

invasion, the induction of angiogenesis, and the occurrence of

recurrence. Targeting the metabolic characteristics unique to

tumor cells may represent a promising strategy for effective

cancer treatment by disrupting glycolytic processes or altering

lactate metabolism (3, 4).

Research indicates that chemoresistant OC cells demonstrate

heightened lactate production and oxygen consumption, suggesting

a greater accumulation of lactate in chemoresistant tissues and the

formation of conditions favorable for lactylation (5). The

suppression of glucose consumption and lactate production in

OC results in antitumor activity through the inhibition of the

Warburg effect (6, 7). The findings indicate that abnormal

metabolic regulation linked to lactylation plays a role in drug

resistance mechanisms, warranting additional research into the

specific molecular processes involved. Lactylation is recognized as

a prevalent mechanism contributing to drug resistance. The

accumulation of lactate leads to lactic acidosis in tumor cells and

facilitates metabolic reprogramming, thereby enhancing metastasis

and chemoresistance in diverse tumors. Similar mechanisms may

clarify the metabolic and transcriptional regulatory characteristics

observed in chemoresistant OC, addressing existing research gaps

and establishing a foundation for overcoming chemoresistance.
02
This study systematically investigates the mechanisms underlying

platinum resistance in OC through the integration of single cell and

bulk RNA sequencing data. We examined two lactylation-related

genes (LacRGs), ALDH1A1 and S100A4, which may be linked to

drug resistance and lactate metabolism. Our findings indicate a

substantial presence of tumor cells in both resistant and non-

resistant groups, underscoring the necessity of investigating tumor

cells to comprehend drug resistance. The elevated lactate levels in

tumor cells expressing ALDH1A1 and S100A4 from the resistant

group, along with the increased expression of ALDH1A1, suggest that

lactylation is integral to the development of drug resistance, resulting

in a higher accumulation of lactate products in this group. The

findings suggest that metabolic abnormalities associated with lactate

contribute to chemoresistance and offer new theoretical insights for

clinical decision-making.
2 Materials and methods

2.1 Downloading and preprocessing data

Bulk sequence transcriptome data: downloaded GSE26712 (8)

and GSE15372 (9) transcriptome data from the GEO database,

along with clinical information, as presented in Table 1. The GEO

data underwent the following preprocessing steps: Probes

corresponding to the gene were identified, and empty probes were

eliminated. The median value of multiple probes associated with the

same gene was selected as the gene’s expression level, which was

subsequently utilized for differential expression analysis.

Gene expression matrix data for single cell: the expression

profiles of a single-cell dataset of OC were obtained from the

Mendeley Data database (10) (https://data.mendeley.com/

datasets/rc47y6m9mp/1), focusing on chemoresistant and non-

resistant primary OC tissues. This project analyzed 13 samples,

comprising 4 resistant and 9 non-resistant specimens.

A total of 323 LacRGs were identified based on previous

study (11).
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2.2 Differential and survival analysis for
bulk sequence data

The R package limma (v3.56.2) was employed to analyze

differences in LacRGs in the GSE26712 dataset. The criteria for

differentially expressed genes (DEGs) were established as |

log2FoldChange|>1 and p value < 0.05 (12). Kaplan-Meier

survival analysis was conducted using GSE26712 data to identify

prognostic LacRGs, focusing on genes exhibiting differential

expression between normal and tumor. Secondly, the LacRGs in

the GSE15372 dataset was analyzed to identify DEGs between

chemoresistant and non-resistant groups. The intersection with

prognostic LacRGs was determined to identify the potential

lactylation resistance gene (Lat_Resi gene). Gene set enrichment

analysis (GSEA) was conducted, integrating HALLMARK and

KEGG gene sets.
2.3 Analysis of single-cell sequencing data

Quality control of the single-cell dataset samples was

conducted utilizing the R package Seurat (v4.3.0.1). The

threshold for excluding low-quality cells and low-expressed genes

was established as follows: The feature count per cell ranged from

200 to 8000, while the count of observations per cell varied between

200 and 75000. The percentage of mitochondrial genes in each cell

was below 10%. Secondly, the NormalizeData function was

employed for normalization, while the FindVariableFeatures

function (nfeatures=2000) was utilized to identify hypervariable

genes. Batch correction among samples was conducted using

the R package Harmony (v0.1.1) to mitigate the influence of

batch effects on subsequent analyses. The data were subsequently

scaled, linearly transformed via ScaleData, and subjected to

dimensionality reduction through RunPCA. The elbow plot

was generated using ElbowPlot to assess the dimensionality

reduction of the data. Thirty principal components were chosen

for subsequent analysis, utilizing the FindNeighbors and

FindClusters functions for cell clustering (dims = 1:30, resolution

= 2). Cell annotations from the original dataset authors

and relevant reference (10) were utilized in this analysis to

further differentiate annotated epithelial cells. Additionally,

InferCNV (v1.16.0) was employed to compare the CNV levels of

each epithelial cluster for the identification of tumor cells. The

proportion of each cell subpopulation between the chemoresistant

and non-resistant groups was compared, focusing on cell types that

were up-regulated in the chemoresistant group.
Frontiers in Immunology 03
2.4 Annotations of cell subgroups and
association with prognosis

Initially, utilizing the single-cell data, the tumor cells were

categorized into subgroups (resolution = 0.01), and the heatmap

illustrating marker gene expression within each subgroup was

presented. Marker genes of each tumor cell subset were analyzed

using the criteria of adjusted p<0.05 and |log2FC|>0.25. Functional

enrichment analysis of gene sets and pathway enrichment analysis

were conducted utilizing Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG). Secondly, the

identification of potential chemoresistant subsets involves

differentiating tumor cell subtypes based on the ratio of

chemoresistant to non-chemoresistant cells. The subgroup

representing over 80% of the drug resistance category was

designated as the chemoresistant subgroup, while the subgroup

comprising more than 80% of the non-resistance category was

labeled as the non-resistant subgroup. The remaining groups were

classified as mixed populations. The genes that were up-regulated

and down-regulated in the chemoresistant subgroup compared to

the non-resistant subgroup were analyzed, and an enrichment

analysis of the DEGs between these two subgroups was conducted.

The IC50 values of cisplatin for each tumor cell were

determined using the R package oncoPredict (v1.2), and the

differences in IC50 values between resistant and non-resistant

subgroups were analyzed.

According to the GSE26712 data, the scores of chemoresistant

subgroups were calculated using the GSVA method, and samples

were grouped based on the optimal threshold method. The Kaplan-

Meier survival curve effectively identifies the proportion of

chemoresistant subgroups and indicates poor tumor prognosis.
2.5 Analysis of chemoresistance
mechanisms associated with lactylation
and corresponding
metabolic abnormalities

The ssGSEA enrichment scores for metabolic and immune

pathways were calculated for each subgroup. The specific immune

and metabolic pathways associated with the chemoresistant

subgroup were identified through a comparison with the non-

resistant subgroup. The correlation between the subset of

Lat_Resi genes specific to the resistant subgroup and immune and

metabolic pathways was assessed to identify the regulatory

pathways significantly associated with lactate.
TABLE 1 Data collection.

Dataset ID Data type Platform Sample number Purpose

GSE26712 Bulk GPL96 10/185 (tumor/normal) Differential expression analysis

GSE15372 Bulk GPL570 5/5 (resistance/non-resistance) Differential expression analysis

RC47Y6M9MP.1 Single cell Illumina 4/9 (resistance/non-resistance) Single cell data analysis
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ScMetabolism was employed to quantify the metabolic scores of

each tumor cell subpopulation, facilitating a comparison and

analysis between the resistant and non-resistant subpopulations

to identify significant metabolic pathways. scFEA was employed to

quantify the metabolite abundance within each tumor cell

subpopulation and to ascertain the enrichment of metabolic

pathway products in these subpopulations. The relationship

between metabolic levels and the IC50 of cisplatin was assessed

using Spearman correlation. Cells were categorized into high and

low groups according to the median metabolic pathway levels for

comparative analysis. The correlation between the expression of

drug resistance subgroup markers and the Lat_Resi gene subset was

assessed. Tumor drug resistance subgroup marker genes were

selected based on criteria of adj.p<0.05 and |log2FC|>0.25 for

subsequent protein interaction network analysis, utilizing a high

confidence threshold of 0.7.
2.6 Clinical samples and
immunohistochemistry analysis

Paraffin-embedded tissues from patients diagnosed with

ovarian serous cancer between 2018 and 2021 were collected. All

patients received primary surgery, subsequently followed by

carboplatin-based chemotherapy completion. Table 2 presents the

characteristics of the patients. The patients were categorized into

two groups: the chemoresistant group and the sensitive group,

defined as follows: Drug resistance was observed during

postoperative chemotherapy, as the disease continued to progress.

CA125 levels did not return to the normal range following six

courses of chemotherapy, and relapse occurred within six months
Frontiers in Immunology 04
after the initial treatment. Chemotherapy sensitivity: recurrence or

non-recurrence after a six-month period. Prior to the survey,

participants were briefed on the study’s purpose and provided

informed consent. The Ethics Committee of Shengjing Hospital

approved this study.

IHC was performed in accordance with previous standard

operating procedures (13, 14). IHC with antibodies against

S100A4 (#16105-1-AP, 1:200, ThermoFisher) and ALDH1A1

(#ab195254, 1:100, Abcam) was performed to detect protein

expression levels. Randomly selected images of each region were

taken at 40x magnification. For evaluation of IHC findings, scoring

of immunoreactivity was performed, on the basis of the percentage

of immunopositive cells and the immunointensity, with

multiplication of values of the two parameters, as described

previously (14). Each section was assessed independently by two

investigators who were unaware of the clinical details of the OC

patients. To assess the prognostic significance of S100A4 and

ALDH1A1 expression, scores were categorized into two groups

(high and low) using the median values as the cutoff for

each category.
2.7 Cell culture and establishment of drug-
resistant cell lines

Platinum-sensitive human ovarian papillary serous

adenocarcinoma cell line OV-90 (ATCC#CRL11732) was cultured

in RPMI medium with 10% FBS and 1% penicillin-streptomycin

according to manufacturers’ instructions. Cells were subjected to

treatment with escalating concentrations of cisplatin (DDP, IC0440,

Beijing Solarbio Science and Technology Co.), specifically 10, 20, 40,
TABLE 2 Patients’ characteristics.

Resistant Sensitive Overall P-value

(N=32) (N=40) (N=72)

Age

Mean (SD) 55.4 (8.76) 53.1 (10.1) 54.1 (9.56) 0.299

Median [Min, Max] 56.0 [34.0, 76.0] 52.0 [24.0, 78.0] 52.0 [24.0, 78.0]

FIGO stage

I 2 (6.3%) 7 (17.5%) 9 (12.5%) 0.403

II 3 (9.4%) 6 (15.0%) 9 (12.5%)

III 26 (81.3%) 26 (65.0%) 52 (72.2%)

IV 1 (3.1%) 1 (2.5%) 2 (2.8%)

Grade

G1 1 (3.1%) 0 (0%) 1 (1.4%) 0.106

G2 16 (50.0%) 11 (27.5%) 27 (37.5%)

G3 12 (37.5%) 20 (50.0%) 32 (44.4%)

G4 3 (9.4%) 9 (22.5%) 12 (16.7%)
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80, 100, and 120mM to generate chemoresistant OV-90/DDP cell

lines. Cisplatin at a concentration of 10 mM was introduced when

the cells reached the exponential phase, with subsequent

concentrations administered at the same phase until a final

concentration of 120 mM was achieved. The culture conditions of

the cell lines were preserved in accordance with those of the original

OV-90 cell line during the entire culture period. Cells from each

concentration phase were cultured with platinum drugs for a

minimum of two weeks, with medium changes occurring every

two days. Cisplatin-resistant subclones were generated by

intermittently exposing cells to 2 mM cisplatin while maintaining

a concentration of 100 mM to sustain chemoresistant clones. The

concentration indicates the threshold that cells can endure without

compromising reproductive viability. The resistant cell line OV-90/

DDP was established after 12 months of induction. The cell line

tested negative for mycoplasma contamination.
2.8 Cell survival assays

Cells (1 × 104 cells/well) were plated in 96-well plates and

incubated for 24 hours. The cells were subjected to varying

concentrations of cisplatin (0-120 μM). Following a 72-hour

incubation period, cell viability was assessed using the MTT assay

in accordance with the manufacturer’s instructions (Sigma

Aldrich). Inhibitory concentrations (ICs) were calculated from

three independent experiments, and the IC50 values were

analyzed using GraphPad Prism software (v10.0.3, GraphPad

Software Inc., San Diego, CA, USA).
2.9 Immunofluorescence analysis

OV-90 and OV-90/DDP cells were cultured in cell culture dishes

at a density of 1 × 104 cells/cm², achieving 80% confluence. The cells

underwent fixation with 4% paraformaldehyde for 15 minutes and

were subsequently permeabilized using 0.3% Triton X-100 (Solarbio,

China) at 25°C for 10 minutes. Following a 30-minute blocking with

1% BSA in PBS, the cells were co-stained with primary antibodies:

anti-Pan lactylation polyclonal antibody (PanKla, #PTM-1401, 1:1000,

PTM BIO), anti-S100A4 (#16105-1-AP, 1:1000, ThermoFisher), and

anti-YY1 (#46395S, 1:1000, Cell Signaling) for 1 hour. Cells were

stained with Alexa Fluor 488 AffiniPure (1:50; A8807110; Yeasen) to

label S100A4 and YY1 antibodies, and withAlexa Fluor 555 AffiniPure

goat (1:100; A9825370; Yeasen) for Pan-Kla antibody labeling, at 4 °C

overnight in the dark following thorough washing with PBS. The

nucleus was stained using 4′,6-diamidino-2-phenylindole (DAPI;

Boster Biological Technology, Wuhan, China). Fluorescence signals

were detected via fluorescence microscopy (Olympus; Tokyo, Japan).
2.10 Western blot analysis

Total protein was isolated from cells utilizing RIPA buffer (10×; Cell

Signaling Technology) and quantified with a BCA assay kit (Beyotime,
Frontiers in Immunology 05
China). Proteins were separated using 10% SDS-PAGE and subsequently

transferred to PVDF membranes (Thermo Fisher Scientific).

Membranes were blocked using 5% skim milk and incubated

overnight at 4 °C with primary antibodies targeting PanKla (#PTM-

1401, 1:1000, PTMBIO), S100A4 (#16105-1-AP, 1:1000, ThermoFisher),

and b-actin (#4967, 1:5000, Cell Signal). The membranes were

subsequently washed three times and incubated with HRP-conjugated

secondary antibody (Beyotime, China) for a duration of 2 hours. Blots

were visualized using an enhanced chemiluminescence substrate kit.
2.11 Statistics analysis

Statistical analyses were performed utilizing R software (version

4.4.0) and RStudio (version 2024.04.1 + 748) on a Mac computer.

Visualizations were generated utilizing ggplot2 version 3.4.3 and

GraphPad Prism version 10.0.3. All cell experiments were

conducted in triplicate. The data are expressed as means ± SD

and analyzed using an unpaired two-tailed Student’s t-test. Overall

survival (OS) was defined as the interval from onset to death or the

date of the latest follow-up assessment, and was assessed using

Kaplan-Meier methods, with statistical comparisons performed via

the log-rank test. A P-value less than 0.05 was deemed indicative of

a statistically significant difference.
3 Results

3.1 Bulk RNA-Sequencing Analysis of
lactylation-related resistance genes in OC

Initially, the disparities between the tumor and normal group

were examined using the GSE26712 dataset in conjunction with the

LacRGs. Applying the criteria of threshold, a total of 44 DEGs were

identified, comprising 33 up- and 11 down-regulated genes

(Figures 1A, B, Supplementary Table 1). Additionally, 25

prognostic LacRGs were identified through KM survival analysis

(Supplementary Table 2).

Secondly, the analysis of differences between the resistance and the

non-resistance group was conducted using the GSE15372 data in

conjunction with the LacRGs. 14 DEGs were identified, comprising 7

up- and 7 down-regulated genes (Figures 1C, D, Supplementary

Table 3). Two Lat_Resi genes were identified through the

intersection with prognostic LacRGs (Figure 1E), specifically

ALDH1A1 and S100A4 (Figure 1F, Supplementary Table 4).

Single gene enrichment analysis was conducted using genes

ALDH1A1 and S100A4 in conjunction with HALLMARK and

KEGG gene sets. S100A4 enriched 31 and 46 items from the

HALLMARK and KEGG databases, including Oxidative

phosphorylation, glycolysis, and some important tumorigenesis

pathways, such as: Myc Targets V1, Mtorc1 Signaling, DNA

repair, cell cycle, etc. ALDH1A1 was associated with 27

HALLMARK items and 15 KEGG items, including metabolisms

of fatty acids, propanoate, amino sugars, and nucleotide sugars,

along with some tumorigenesis pathways such as Epithelial
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FIGURE 1

The exploration of potential lactylation-related chemotherapy-resistant genes in OC. (A, B) Volcano plot (A) and gene heatmap (B) of d DEGs for
GSE26712 dataset; (C, D) Volcano plot (C) and gene heatmap (D) of DEGs for GSE15372 dataset; (E) The DEGs between the resistance and non-
resistance group were intersected with the prognostic LacRGs; (F) Kaplan Meier survival plot of ALDH1A1 and S100A4 in GSE26712 dataset; (G)
Enrichment HALLMARK and KEGG pathway analysis for S100A4 and ALDH1A1.
TABLE 3 Association of S100A4 and ALDH1A1 expression with clinical features of ovarian serous carcinoma.

Factor

S100A4 expression ALDH1A1 expression

High
(score>6)

Low
(score ≤ 6)

High
(score>4)

Low
(score ≤ 4)

n (%) n (%) P-value n (%) n (%) P-value

Age

≤52 years 13 (41.9%) 24 (58.5%) 0.247 10 (43.5%) 27 (55.1%) 0.505

>52 years 18 (58.1%) 17 (41.5%) 13 (56.5%) 22 (44.9%)

Research group

Resistant 20 (64.5%) 12 (29.3%) 0.00613 15 (65.2%) 17 (34.7%) 0.0296

Sensitive 11 (35.5%) 29 (70.7%) 8 (34.8%) 32 (65.3%)

FIGO stage

I 0 (0%) 9 (22.0%) 0.0312 0 (0%) 9 (18.4%) 0.169

(Continued)
F
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mesenchymal transition (EMT), E2f targets, Kras signaling, etc

(Figure 1G, Supplementary Table 5).
3.2 scRNA-Sequencing Analysis of cell
subgroups with chemotherapy
response distribution

Initially, single cell data quality control was performed

(Supplementary Figure 1A), and batch effects were mitigated using

the Harmony package (Supplementary Figure 1B). Consequently, a

total of 57,680 cells and 26,729 genes were included in the subsequent

analysis. The top 30 principal component scores (PCS) were selected

for further analysis (Supplementary Figure 1C), resulting in the

identification of 21 clusters through clustering (Supplementary

Figure 1D). Subsequently, cell type annotation, in conjunction with
Frontiers in Immunology 07
literature marker genes and the identification of tumor cells through

additional clustering of epithelial cells and CNV (Supplementary

Figure 1E), yielded nine distinct cell types, comprising 572 B cells,

1462 endothelial cells, and 572 B cells. In the study, the following cell

counts were recorded: 7245 macrophage/monocyte, 1132 NK cells,

950 dendritic cells, 6186 fibroblasts, 31782 tumor cells, 2089 other

stromal cells, and 6043 T cells. The t-SNE analysis illustrates the

distribution of various cell types (Figure 2A), the differentiation of

cells between resistant and non-resistant groups (Figure 2B), and the

expression distribution of marker genes for each cell type

(Figure 2C). We examined the proportions of cells in both the

drug resistance group and the non-drug resistance group

(Figure 2D). The analysis revealed a high proportion of tumor cells

in both groups; however, the drug resistance group exhibited a

higher proportion of fibroblasts, macrophages/monocytes, and

endothelial cells.
FIGURE 2

Cell annotation and different cell type distribution. (A) Cell type distribution for the scRNA sequence data; (B) Cell distribution between non-resistant
and resistant groups; (C) Bubble plot of marker gene expression for each cell type; (D) Proportion of different cell types between resistant and non-
resistant groups.
TABLE 3 Continued

Factor

S100A4 expression ALDH1A1 expression

High
(score>6)

Low
(score ≤ 6)

High
(score>4)

Low
(score ≤ 4)

n (%) n (%) P-value n (%) n (%) P-value

FIGO stage

II 3 (9.7%) 6 (14.6%) 3 (13.0%) 6 (12.2%)

III 27 (87.1%) 25 (61.0%) 19 (82.6%) 33 (67.3%)

IV 1 (3.2%) 1 (2.4%) 1 (4.3%) 1 (2.0%)

Grade

G1-G2 27 (87.1%) 33 (80.5%) 0.67 19 (82.6%) 41 (83.7%) 1

G3-G4 4 (12.9%) 8 (19.5%) 4 (17.4%) 8 (16.3%)
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3.3 Identification of resistance subgroup in
tumor cells

The tumor cells were classified into six distinct clusters

(Figure 3A). The expression levels of selected marker genes in

each sub-cluster are presented (Figure 3B, Supplementary Table 6),

along with the cell proportions between the resistant and non-

resistant groups (Figure 3C). Based on the distribution of various

clusters across the two groups, clusters 0, 2, and 5 were identified as

non-resistant subsets, while clusters 1, 3, and 4 were classified as

resistant subsets. DEGs between the 2250 resistant subgroups and

non-resistant subgroups were identified (Supplementary Table 7).

The IC50 values of chemotherapy drugs in each tumor cell were

analyzed, revealing a significant difference in the IC50 value of

cisplatin between the resistant and non-resistant subgroups

(P<0.05). Specifically, the IC50 value in the resistant group was

higher than that in the non-resistant subgroup (Figure 3D). The

score of chemoresistant subgroups derived from GSE26712 data, in

conjunction with marker genes of these subgroups, was utilized and
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categorized based on the optimal threshold value. The prognostic

Kaplan-Meier survival curve indicates that resistant subgroups are

associated with a poor prognosis in tumors (Figure 3E).

GO and KEGG enrichment analyses, in conjunction with marker

genes from various clusters, revealed that 841, 1323, 1530, 1392, and

1623 entries were enriched for GO across tumor subgroups 0, 1, 2, 3,

4, and 5, respectively. The regulation of peptidase activity and the

NADH dehydrogenase complex assembly are included. In KEGG,

tumor subgroup 0 cluster, 1 cluster, 2 cluster, 3 cluster, 4 cluster, and

5 cluster were enriched with 58, 43, 82, 82, and 93 entries,

respectively. Incorporating the NOD−like receptor signaling

pathway, glycolysis/gluconeogenesis, and sphingolipid metabolism

(Supplementary Figure 2, Supplementary Table 8).

In conjunction with the DEGs identified between the resistant

and non-resistant subgroups, GO and KEGG enrichment analyses

revealed 2165 enriched GO entries and 106 enriched KEGG entries,

respectively, incorporating response to oxygen/hypoxia, carbon

metabolism, proteoglycans in cancer, and the p53 signaling

pathway (Figures 3F, G, Supplementary Table 9).
FIGURE 3

Identification of resistant subgroup in tumor cells and functional characteristics. (A) Distribution of tumor cell clusters; (B) Expression of selected
marker genes in each subcluster; (C) Distribution of clusters between the resistant and non-resistant groups; (D) Distribution of IC50 values of
cisplatin in resistant and non-resistant subgroup; (E) KM survival curves for the resistant subgroup; F.G. GO (F) and KEGG (G) enrichment analysis
results for DGEs between resistance and non-resistance subgroup.
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3.4 Clarification of the mechanism
underlying lactylation-mediated resistance
in resistant subsets

Analysis of the expression levels of ALDH1A1 and S100A4 in

each tumor cell subset revealed that the chemoresistant tumor cell

subset exhibited elevated levels (Figure 4A). The expression patterns

of ALDH1A1 and S100A4 aligned with the overall transcriptome

data, showing elevated levels in the chemoresistant group

(Figure 4B). Specifically, ALDH1A1 exhibited reduced expression

in the tumor group, whereas S100A4 levels were increased in the

tumor group (Figure 4C).

Enrichment scores for metabolic and immune pathways in each

tumor cell were calculated, revealing that the OXIDATIVE_

PHOSPHORYLATION and TNFA_SIGNALING_VIA_NFKB

pathways exhibited greater enrichment in the resistant subgroup

(Figure 4C). Linoleic acid metabolism, Phosphonate and phosphinate

metabolism, Oxidative phosphorylation and other metabolic pathways

exhibited greater enrichment in the resistant subgroup (Figure 4D).
Frontiers in Immunology 09
The correlation analysis of ALDH1A1 with the up-regulated

immune and metabolic pathways in the resistant subset indicated a

significant association with HALLMARK_MITOTIC_SPINDLE

and HALLMARK_MYC_TARGETS_V2. Additionally, ALDH1A1

demonstrated a significant correlation with histidine metabolism

and the pentose phosphate pathway (Figure 5). S100A4 exhibited a

notable association with HALLMARK_ANGIOGENESIS and

Mannose type O−glycan biosynthesis. Additionally, a significant

correlation was identified between nitrogen metabolism and

riboflavin metabolism, along with a relationship between taurine

and hypotaurine metabolism (Figure 5).
3.5 Lactylation-related metabolic
abnormalities mediate chemoresistance

A comparative analysis was conducted using ScMetabolism to quantify

the scores of metabolic pathways in various tumor cell subgroups,

specifically between resistant and non-resistant subgroups. Metabolic
FIGURE 4

Distribution of expression for tumor and metabolism-related pathways in resistant and non-resistant subgroups. (A) ALDH1A1 and S100A4 expression
distribution in resistant and non-resistant subgroups in scRNA sequence. (B, C) ALDH1A1 and S100A4 expression distribution in resistant and non-
resistant subgroups (B), as well as tumor and normal subgroups (C) in bulk RNA sequence. (D, E) Panels D and E present a heatmap illustrating the
enriched Hallmark tumor pathway (D) and the score differences in the KEGG metabolic pathway (E) between resistant and non-resistant subsets.
(**p<0.01, ****p<0.0001).
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pathways including Glycolysis/Gluconeogenesis, the Citrate cycle (TCA

cycle), Phenylalanine metabolism, and the Pentose phosphate pathway

exhibited higher scores in resistant subgroups. Conversely, pathways

such as fatty acid biosynthesis and sphingolipid metabolism

demonstrated elevated scores in non-resistant subgroups (Figure 6A,

Supplementary Figure 3).

Following the quantification of metabolic pathway levels in each

tumor cell, the cells were categorized into groups based on high and low

metabolic pathway levels. The correlation results (P<0.01, | Correlation |

>0.3) demonstrate a negative correlation between the levels of various

metabolic pathways (Glycolysis/Gluconeogenesis, PyruvateMetabolism,
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Purine Metabolism, Oxidative Phosphorylation, Cysteine and

Methyline Metabolism) and the IC50 of cisplatin (Figures 6B, C).

scFEA analysis revealed a higher enrichment of lactate in the

resistant subgroup products (Figure 6D);

Correlation analysis was performed between the marker genes

of chemoresistant subgroups and ALDH1A1 and S100A4

(Supplementary Table 10). The top five genes exhibiting

significant positive correlations are presented in Figure 6E.

Analysis of the protein-protein interaction network was

conducted on the marker genes of resistant subgroups (Figure 6F,

Supplementary Table 11), comprising 140 nodes and 144 edges.
FIGURE 5

The relationship between ALDH1A1, S100A4 and enhanced immune and metabolic pathways in the resistant subgroup.
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3.6 Increased S100A4 and ALDH1A1 are
associated with chemoresistance in OC

Previous research indicates that abnormal levels of S100A4 and

ALDH1A1 correlate with chemotherapy response and survival

outcomes in OC patients (15, 16). We examined the expression

levels of S100A4 and ALDH1A1 in chemoresistant and

chemosensitive OC tissues using IHC (Table 3, Figure 7). The levels
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of S100A4 and ALDH1A1 were significantly elevated in tissues from

resistant patients compared to sensitive OC tissues (Figures 7A, B, D,

E). The S100A4 score was notably higher in advanced clinical stages,

while similar associations were not found for the ALDH1A1 score

(Table 3). Kaplan-Meier curves indicated that OC patients exhibiting

elevated S100A4 and ALDH1A1 scores experienced reduced overall

survival compared to those with lower scores, with the trend for

S100A4 being more pronounced (Figures 7C, F).
FIGURE 6

Metabolic abnormalities associated with lactylation in resistant and non-resistant subgroups. (A) The heatmap illustrated the variation in metabolic
pathway scores between resistant and non-resistant tumor cell subgroup. (B) Correlation of various metabolic pathways with IC50 values; (C)
Correlation between high and low levels of various metabolic pathways and IC50; (D) Left panel: Distribution of lactate products. Right panel:
Heatmap illustrating the differences in metabolite scores between resistant and non-resistant of tumor cell subgroup. (E) Correlation between Top5
marker genes and the expression of ALDH1A1 and S100A4. (F) Protein-protein interaction network of marker genes associated with drug
resistance subgroups.
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3.7 High expression validation of S100A4
and lactylation in cisplatin resistance

The Gepia online database revealed a significant difference in

the expression of ALDH1A1 and S100A4 between ovarian normal

tissues and cancer (Figure 8A). The increased expression of S100A4

in tumors necessitates further cytological experiments on

this protein.

The cell viability across different DDP concentrations was

evaluated, and the IC50 for drug resistance was established. OV-90/

DDP cells demonstrated a DDP IC50 value of 98.32mM, surpassing

the IC50 of sensitive cells OV-90, which was 19.94mM (Figure 8B).

We analyzed the expression levels of Pan-Kla in two groups using the

immunofluorescence method. The results indicated that resistant

cells exhibited a more intense Pan-Kla signal compared to non-

resistant cells (Figure 8C). Immunoconfocal microscopy

demonstrated that S100A4 protein and Pan-Kla signals exhibited

overlap in resistant OC OV-90/DDP cells, indicating co-localization

of S100A4 and lactylation, the positive control of YY1 confirmed the

aforementioned conclusion (Figure 8D). Western blot analysis was

conducted to assess the expression levels of Pan-Kla and S100A4

protein in the two cell groups. Both the expression levels of Pan-Kla

and S100A4 were significantly increased in resistant cells (all

p<0.01, Figure 8E).
4 Discussion

The tumor microenvironment (TME) significantly influences the

initiation and persistence of tumor drug resistance via mechanisms
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such as hypoxia, extracellular acidity, and the secretion of soluble

factors like lactate (17, 18). The Warburg effect is a distinctive

metabolic characteristic of cancer (19), characterized by the

preference of cancer cells for anaerobic glucose metabolism over

aerobic processes, resulting in significant lactate accumulation. Lactic

acid, a byproduct of glycolysis, functions as a signaling molecule in

several critical biological processes, including innate immunity (20),

cell cycle regulation (21), energy support for tumor cells (22), and

inhibition of immune cell cytotoxicity (23), etc. The elevated

glycolytic metabolism observed in tumors correlates with resistance

to treatment (18, 24). Research consistently investigates the role of

lactate in tumor drug resistance. Prior studies indicate that lactate

facilitates chemoresistance. In OC, MICU1 enhances lactate

production, promotes tumor growth, induces cisplatin resistance,

and decreases patient survival (25). In non-small cell lung cancer

(NSCLC), lactate is identified as a critical factor in resistance to

tyrosine kinase inhibitor (TKI) therapies (26). In colorectal cancer,

B7-H3 increases glucose consumption and promotes hexokinase 2

(HK2) expression, leading to lactate production and enhanced

resistance to platinum and 5-Fu (27).

In 2019, Professor Zhao Yingming’s team discovered that lactate

induces lactylation on lysine residues as a post-translational

modification (PTM) to regulate biological processes (28),

functioning as an epigenetic modification that influences gene

transcription (29). Lactylation of proteins represents a novel PTM

that plays a significant role in the function of lactic acid. This discovery

not only expands the scope of PTM research but also offers new

avenues for investigating the role of lactate in areas such as oncology,

inflammation, immunity, and targeted therapies (24). Currently,

several writers and erasers of lactylation have been identified (28,
FIGURE 7

S100A4 and ALDH1A1 are elevated in chemoresistant OC tissues. (A, D) Heatmaps showing the relationship between low and high expression levels
of S100A4 (A) and ALDH1A1 (D) with survival, research group, FIGO stage, and grade in patients with serous OC (n = 72). (B, E) The comparison of
IHC staining score for S100A4 (B) and ALDH1A1 (E) between resistant and sensitive groups. (C, F) The Kaplan-Meier survival analysis of overall
survival for S100A4 (C) and ALDH1A1 (F) was stratified by the median IHC staining score. (*p<0.05, **p<0.01).
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30). Although the precise mechanisms by which lactylation regulates

biological activity remain unclear, it has been demonstrated to occur

in various cell types and to play a crucial role in cellular processes (31).

Recent studies have indicated that lactylation may promote tumor
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progression and contribute to drug resistance (32). The study revealed

that OC cells from the resistant group exhibited elevated lactate levels,

with lactate being enriched in the resistant subpopulation, consistent

with findings in other tumor types.
FIGURE 8

Expression levels of S100A4 and lactylation in OC cells. (A) Bioinformatics analysis of ALDH1A1 and S100A4 expression in OC, utilizing GEPIA, which
includes 426 tumor samples and 88 normal ovarian tissues. (B) The inhibition ratio of each OC cell in the presence of DDP was assessed using the
MTT assay. (C) Immunofluorescence staining was employed to assess the expression levels of Pan-Kla in sensitive and resistant OC cells. (D)
Immunofluorescent staining of Pan-Kla (red), S100A4 (green), and their co-localization (yellow) in resistant cells, the positive control YY1 (green) also
showed co-localization. (E) Western Blot analysis revealed significant differences in the expression of protein S100A4 and Pan-Kla between sensitive
and resistant OC cells (*p<0.05, **p<0.01, ***p<0.001).
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Research on lactylation in OC remains limited, with few studies

indicating that a lactylation-related gene model derived from the

TCGA OC cohort can effectively predict prognosis and is associated

with tumor classification and immunity (33). High expression of

PanKla in the cytoplasm correlates with platinum-resistant

recurrence, while protein lactylation may facilitate the migration of

OC cells (34). Additionally, lactate promotes macrophage M2

polarization, enhances the proliferation and migration of OC cells,

and contributes to tumorigenesis by activating CCL18 expression

through H3K18 lactylation in macrophages (35). This study presents

a systematic assessment of the mechanisms by which lactylation-

related genes contribute to platinum resistance in OC, utilizing an

integration of single-cell sequencing and bulk RNA-seq results for the

first time. The findings indicate that lactate is more abundant in the

resistant subpopulation products, suggesting that dysregulated

lactylation-related metabolism may contribute to chemotherapy

resistance in OC. The elevated lactylation levels of ALDH1A1 and

S100A4 in tumor cell subgroups from the resistant group indicate that

the lactylation of these genes is significant in the development of drug

resistance. IHC and cytological experiments corroborated these

findings, offering a significant reference for elucidating the

lactylation-mediated drug resistance mechanism in OC.

Aldehyde dehydrogenase 1 family member A1 (ALDH1A1), as

a key enzyme for retinoic acid biosynthesis and redox balance, is a

biomarker of cancer stem-like cells (CSCs) (36). It can induce

tumorigenesis by maintaining cancer stem cell properties, altering

metabolism, and promoting DNA repair (37), and facilitating

immune escape of tumor cells, for instance, through the ZBTB7B-

glycolytic pathway (38). ALDH1A1 can also enhance the resistance

of tumor cells to cisplatin and PARP inhibitors (39, 40). Currently,

ALDH1A1-targeted therapy is extensively applied in cancer

treatment (37, 41). In this study, we observed that ALDH1A1 was

highly expressed in resistant tissues of OC and was correlated with

the unfavorable prognosis of patients through tumorigenesis

pathways such as EMT, Kras signaling, etc, which was similar to

the previous research results (16). Moreover, single-cell data

analysis indicated that the lactylation level was higher in the

subgroups of resistant cells, suggesting that lactylation

strengthened the ability of ALDH1A1 to promote drug resistance

in OC. Further research is highly anticipated.

Multiple studies have shown the overexpression of S100A4 in

tumor cells. Intracellular S100A4 facilitates proliferation,

epithelial-mesenchymal transition (EMT), enhances the

stemness of cancer cells, and promotes tumor metastasis (42,

43). It is also correlated with the adverse survival of tumor patients

and serves as an excellent therapeutic target for tumors (44).

S100A4 simultaneously promotes the differentiation of tumor-

associated macrophages (TAMs) by enriching various cytokines,

thereby shaping a TME that supports the survival of cancer cells

(45). S100A4 regulates immunosuppressive T cells and myeloid

cells in glioblastoma, the deletion of S100A4 in non-tumor cells is

sufficient to reprogram the immune landscape and significantly

enhance survival rates, indicating its potential as a target for

immunotherapy (46). However, there are limited reports
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concerning its efficacy in drug resistance. Available reports

suggest that S100A4 may enhance the resistance of pancreatic

cancer cells to gemcitabine by suppressing apoptosis (47, 48),

increase the resistance of colon cancer cells to MTX via the Wnt/

b-catenin pathway (49), and its elevated expression correlates with

docetaxel resistance in advanced prostate cancer (50), tamoxifen

resistance in breast cancer (51), cisplatin resistance in laryngeal

carcinoma (52), and drug resistance in leukemia (52). S100A4 may

facilitate the enhanced recruitment of neutrophils, contributing to

VEGF resistance in gliomas (53). In bulky stage (IB-IIA) cervical

cancer, elevated S100A4 in stromal cells enhances chemotherapy

sensitivity (54). The research indicates that S100A4 may play a

role in regulating EMT or cancer stem cell properties in OC,

thereby facilitating tumor progression via the miR-296/S100A4

(55) and S100A4/NMIIA/p53 (15) pathways. Limited research

exists on the molecular mechanisms of S100A4 in OC

chemoresistance. Only two studies have investigated this issue,

indicating that elevated S100A4 expression in cancer cells may

activate the NF-kB signaling pathway, inhibit p53 expression, and

contribute to cisplatin resistance (56); Lung fibroblasts can

stimulate the secretion of S100A4 in resistant OC cells via the

IGF1R-a6 integrin-S100A4 pathway, resulting in its activation

and enhancing the metastasis and colonization of late resistant

cells (57). The findings of our study indicate that elevated levels of

S100A4 in OC correlate with unfavorable prognosis and advanced

stages, consistent with prior research (15, 55). S100A4 exhibits

elevated expression in resistant tissues and cells, and it exists in a

lactylation form, potentially enhancing its resistance properties.

S100A4 may perform tumorigenesis roles through cancer

pathways, such as glycolysis, Myc, Mtorc1 Signaling, DNA

repair, etc. This offers a novel approach to investigating the

platinum resistance mechanism of S100A4 in OC at the

molecular level. Our study identified a correlation between

ALDH1A1 and S100A4 with up-regulated immune and

metabolic pathways in the resistant subgroup, alongside the

enrichment of certain tumor and glucose metabolism-related

pathways. Genes and interaction networks strongly correlated

with ALDH1A1 and S100A4 were identified in the resistant

subgroup. The findings offer substantial support for further

investigation into the molecular mechanisms by which these two

proteins facilitate platinum resistance via lactylation. The

molecular mechanisms by which elevated lactate levels in the

TME enhance ALDH1A1 or S100A4 lactylation to facilitate

resistance in OC cells require further investigation. This

includes identifying specific lactylation sites, discovering

interacting proteins, and exploring underlying mechanisms. This

research aims to enhance efforts to address OC resistance and

improve the efficacy of targeted therapy.

In summary, this study systematically evaluated the

mechanisms by which genes involved in lactylation promote

platinum resistance in epithelial OC through the integration of

single-cell sequencing and bulk RNA sequencing results. Further

investigation into the mechanisms by which ALDH1A1 and

S100A4 enhance platinum resistance in OC via lactylation is
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anticipated to provide significant insights into the resistance

mechanisms of this disease.
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