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Objective: To build a new prognostic risk assessment model based on immune

cell co-expression networks for predicting overall survival and evaluating the

efficacy of immunotherapy for colon cancer patients.

Methods: The Cancer Genome Atlas (TCGA) database was used to obtain mRNA

expression profiling data, clinical information, and somatic mutation data from

colorectal cancer patients. The degree of tumor immune cell infiltration of the

samples was analyzed using the CIBERSORT algorithm. Co-expression of

immune-related genes was analyzed using weighted correlation network

analysis (WGCNA) and gene modules were identified. Prognosis-related genes

were screened and models were constructed using LASSO-Cox analysis.

The models were validated by survival analysis. The prognostic potential of the

models was quantitatively assessed using Cox regression analysis and the

development of column line plots. Immunotherapy sensitivity analysis was

performed using CIBERSORT and TIMER algorithms. Gene biofunction analysis

was performed using Gene set enrichment analysis (GSEA) and Gene set variation

analysis (GSVA). And the chemotherapeutic response to different drugs

was assessed.

Results: We established a novel prognostic model utilizing the WGCNA method,

which demonstrated robust predictive accuracy for patient survival. The high-risk

subgroup in our model exhibited elevated immune cell infiltration coupled with a

higher tumor mutation burden, but the difference in response to immunotherapy

was not significant compared to the low-risk group. Furthermore, we identified

distinct chemotherapy responses to 39 drugs between these risk subgroups.
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Conclusion: This study revealed a significant correlation between high levels of

immune infiltration and unfavorable prognosis in patients with colon cancer.

Furthermore, an accurate prognostic risk prediction model based on the co-

expression of relevant genes by immune cells was developed, enabling precise

prediction of survival of colon cancer patients. These findings offer valuable

insights for accurate prognostication and comprehensive management of

individuals diagnosed with colon cancer.
KEYWORDS

colorectal cancer, immune-related gene, immune cell infiltration, WGCNA,
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Introduction

Colorectal cancer (CRC) is not only the third most prevalent

cancer worldwide but also ranks second in cancer-related deaths

(1). Despite significant advancements in medical science and

technology that have improved the five-year survival rate, the

prognosis for CRC remains suboptimal. Several factors, including

patient age, lymph node metastasis, tumor size, degree of

differentiation, and clinical staging significantly impact disease

prognosis (2, 3). Traditional TNM staging provides predictive

information for cancer prognosis but fails to anticipate treatment

response due to its limited consideration of the host’s immune

response (4, 5). Hence, identifying new biological markers for

prognosis and treatment prediction is crucial for clinical decisions

and enhancing CRC outcomes. In the view of existing studies,

immune cells not only play an important role in the occurrence and

development of colorectal cancer (6) but also are closely related to

the prognosis of patients (7). Tumor cells adeptly manipulate

immune cell activity to evade immunosurveillance, thereby

facilitating their growth and dissemination (8). Consequently,

investigating immune cells holds paramount significance for

devising innovative immunotherapeutic strategies and appraising

patient prognostic outcomes. CIBERSORT is a computational

algorithm that is widely used for estimating the abundance of

different cell types in a mixed cell population based on gene

expression data. It enables accurate estimation of immune cell

fractions in tumor tissues (9). CIBERSORT can accurately

estimate the relative proportions of various immune cells (such as

T cells, B cells, macrophages, dendritic cells) in colorectal cancer

samples, thereby helping researchers understand the interaction

between the immune system and tumor cells (10). And by analyzing

the infiltration patterns of immune cells identified by CIBERSORT,

researchers can develop potential prognostic biomarkers (11).

Infiltration of various subpopulations of immune cells in the

tumor microenvironment has different effects on patient prognosis.

According to Galon et al., there is a strong association between

increased infiltration of CD8+ T cells, heightened expression of PD-

L1, and improved survival rates. Conversely, lower levels of CD8+ T
02
cells and PD-L1 expression are linked to poorer outcomes (12).

Clinically, the use of immune checkpoint inhibitors in tumor

treatment has been shown to significantly enhance therapeutic

efficacy, despite variations in individual immune responses (13).

The identification of optimal immune-related inhibitors remains a

formidable challenge. Thorsson et al. underscore the utility of

immune-related gene expression data across diverse cancer types

for classifying and prognosticating cancer patients (13). These

studies offer novel avenues for immunotherapeutic exploration.

Despite affirming the critical role of immune-related gene

expression levels in predicting colorectal cancer patient prognosis,

a deficiency exists in comprehensive research applications assessing

patient survival and immune therapy responses based on these

immune cell-related genes. Therefore, it is necessary to conduct

additional research in order to confirm and validate the role of co-

expressed genes related to immune cells in evaluating the prognosis

of colorectal cancer. This will help in developing more accurate

personalized treatment approaches. WGCNA is a systematic

approach utilized for analyzing complex biological data with

multiple dimensions. This method not only simplifies the

detection of possible associations in gene co-expression but also

offers valuable perspectives for uncovering potential biological

indicators. In the field of colorectal cancer investigation, WGCNA

demonstrates significant advantages in predicting tumor

invasiveness and patient survival. Lv et al. employ WGCNA and

the least absolute shrinkage and selection operator (LASSO)

algorithm to discover three genetic patterns linked to cancer-

associated fibroblasts that may be potential CRC prognostic

biomarkers (14). Cheng et al. identify three gene prognosis

prediction models based on the result of WGCNA from the

TCGA cohort which were developed to estimate the survival rates

of bladder cancer patients (15). Indeed, these studies contribute

significantly by providing valuable insights into investigating

immune-related genes in CRC. These insights help detect the

invasiveness of tumors and assess prognosis, thereby offering

promising avenues for further research.

Our study employed the CIBERSORT algorithm to annotate the

transcriptome sequencing results obtained from TCGA’s CRC
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samples. This enabled us to identify distinct subgroups of infiltrated

immune cells within the tumor, thus enhancing our understanding

of its immunological characteristics. The WGCNA algorithm was

employed to cluster and select genes expressing differentially in

these immune cells, resulting in the identification of a feature gene

set associated with differential immune cell characteristics. COX

analysis was then applied to filter prognostically relevant target

genes from this feature gene set. Subsequently, a prognosis risk

assessment model was established by combining the lasso algorithm

with CRC patient prognosis information. Through testing with

external datasets, our study verified that the model has good

prognostic assessment efficacy. In addition, the study investigated

the relationship between the risk score of the model, tumor

mutation burden, and infiltration of immune cells. Enrichment

analysis was performed to investigate potential biological functions.

Finally, by comparing the IC50 of patients with different risks, this

study deciphers the differences in sensitivity of patients with

different immune characteristics to different drugs
Materials and methods

Study objects

We acquired mRNA expression profiling data, along with

clinical information and somatic mutation data, from the TCGA

database (https://portal.gdc.cancer.gov/) for individuals diagnosed

with colorectal cancer. The dataset encompassed 473 patients with

CRC and included 41 samples representing normal tissue. Sample

data for the test set were generated by selecting a dataset containing

at least 30 colorectal cancer samples from the GEO database, and

the dataset ID GSE17536 was ultimately selected, containing a total

of 177 samples. Analysis of somatic mutation data and visualization

of the results were achieved with the Maftools R software package.
Examination of the infiltration of
immune cells

We employed the CIBERSORT bioinformatics algorithm for

assessing the cellular makeup of complex tissues using standardized

gene expression profiles. This allowed us to assess 22 immune cells

that infiltrate tumors in our samples. We employed the Immune

Plot R package to visualize this infiltration, while barplots were used

to display the degree of immune cell infiltration in colon cancer

patients. Corheatmap was utilized for processing and visualizing

correlations between these immune infiltrating cells, and heatmaps

were generated to demonstrate the infiltration levels of different

immune cells between normal samples and colon cancer patients.
Immune cell-associated co-expression
network analysis

The analysis of co-expression patterns among immune-related

genes in the samples was conducted using the WGCNA R package.
Frontiers in Immunology 03
The assessment of average connectivity was conducted using scale-

free topological complementary models and various soft threshold

powers. The WGCNA algorithm was utilized to identify gene

modules that are co-expressed. Modules exhibiting stronger

correlations were selected for further analysis by identifying genes

with the most significant associations.
Risk scoring model construction

We integrated RNA-seq data from colon cancer patients to

analyze the expression of immune-related genes and their

correlation with clinical outcomes. By conducting one-way Cox

regression analysis, we identified immune-related genes that were

associated with patient prognosis. We initially selected potential

prognostic markers based on significant differences in gene

expression (P<0.05). To further refine our selection process, we

employed LASSO regression with penalty parameter estimation

using 10-fold cross-validation and multifactorial Cox regression

analysis. This approach allowed us to develop a precise risk model

specifically focused on immune genes, enabling accurate prediction

of patient outcomes. Finally, we calculated each patient’s risk score

by considering the gene expression levels determined through

multivariate Cox regression analysis, following the equation: risk

score =∑(coef*gene expression), “coef” refers to the correlation

coefficient of the corresponding gene.
Validation analysis of the prediction model

After constructing the model, we utilized the TCGA and GEO

databases to define the training set and validation set, respectively,

for model validation. To assess the disparities in survival rates

among these cohorts, we conducted a log-rank test for survival

analysis and generated Kaplan-Meier curves accordingly. In order

to further validate the model, we employed the riskPlot R package to

generate risk heatmaps, patient risk score curves, and patient

survival bubble plots. These visualization techniques allowed us to

explore gene expression patterns in patients at different risks and to

observe actual differences in patient survival. Independent

prognostic analyses were achieved by univariate and multivariate

Cox regression analyses, while the predictive accuracy of our

constructed models was compared at different survival periods

using joint ROC analyses. Additionally, we evaluated how our

model’s accuracy compared with other clinical indicators.

Furthermore, we assessed the correlation between prognosis-

related genes involved in our constructed model by conducting

Survival analyses using the geneSurvival R package followed by

obtaining Kaplan-Meier curves through Log-rank test.
Creation of a nomogram utilizing a risk
score system

We developed a predictive nomogram for estimating the overall

survival (OS) of patients at 1, 3, and 5 years using the Survival and
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RMS R software packages. The nomogram integrated various

scoring factors including gender, age, stage, risk score, and other

variables identified as independent risk factors through Cox

regression analysis. By collectively assessing these scoring factors,

we quantitatively evaluate the prognostic potential of our immune-

related genetic risk scoring model for practical clinical application.

In addition, we evaluated the dependability of the column plots

through the calibration of calibration curves.
Clinical relevance analysis

Differences in clinicopathologic characteristics between high-

risk and low-risk groups were assessed using the chi-square test.

The analysis was conducted utilizing pheatmap and ggpubr R

software packages, with the results visualized through heat maps.

Clinical characteristics considered included age (≤65 years vs >65

years), gender (male vs female), tumor grade (G1, G2, and

unknown), T status (T1-T4), N status (N0-N2), and M status

(M0, M1, and unknown). Furthermore, stratified analyses were

performed to compare variations in tumor grading between the

high-risk and low-risk groups.
Somatic mutation analysis and tumor
microenvironment analysis

In this study, the VarScan2 pipeline was utilized to compute the

tumor mutation burden (TMB) for each specimen, for which the

VarScan2 annotation file obtained from the TCGA database was

used. The relationship between TMB and risk scores was evaluated

using Spearman correlation analysis, which measures rank

correlation. To visually represent genes with elevated mutation

frequencies, we employed the maftools R software package to

generate a waterfall plot showcasing the top 20 genes. To depict

the disparities and correlations of TMB between the two risk

groups, we utilized box plots and scatter plots created via R

software. Kaplan-Meier plots were generated to display patient

survival based on their levels of high or low TMB, as well as

stratified analyses comparing patients’ TMB against their respective

risk scores. In order to quantify stroma and immune cell content

within the tumor microenvironment for each colon cancer patient,

we applied the ‘ESTIMATE’ algorithm. Revealed in the violin plots

were variations in the stromal, immune cell, and tumor purity

scores between the high- and low-risk groups.
Immunotherapy sensitivity analysis

The relationship between the genes involved in constructing

models and immune cells was evaluated using CIBERSORT and

TIMER algorithms, with the results presented as scatter plots.

Multiple software algorithms, such as XCELL, TIMER,

QUANTISEQ, MCPCOUNTER, EPIC, CIBERSORT-ABS, and

CIBERSORT were utilized to predict associations between
Frontiers in Immunology 04
different immune cells and risk scores. These results were then

visualized and analyzed through bubble plots. The potential

association between the genes utilized in constructing the model

and 45 immune checkpoint-related genes was visually represented

using a heat map, aiming to investigate their correlation with the

therapeutic efficacy of immune checkpoint blockade (ICB). To

illustrate the variation in response to immunotherapy between

groups at high risk and low risk, a violin plot was employed.
Bifunctional analysis and chemotherapy
response analysis

The enrichment analysis of genes in various pathways was

conducted using GSEA to identify potential regulatory substrates.

Furthermore, GSVA analysis was performed to validate the model

by assessing the correlation between different functions or pathways

and model genes. The pRRophetic R software package was utilized

to determine the semi-inhibitory concentration (IC50) of various

chemotherapy drugs. A total of 39 drugs were screened from the

Genomics of Drug Sensitivity in Cancer (GDSC) dataset, and a

comparison was made between the IC50 values of the two groups to

assess differences in drug sensitivity. The findings are presented

using boxplots, with statistical significance set at P<0.05 for

detecting variations between the two groups.
Result

Immune cell infiltration analysis

We collected data on immune cell infiltration analysis from the

TCGA database, including 514 colon cancer patients (Figure 1A).

Samples were visually depicted using stacked histograms to

showcase the extent of infiltration by immune cells. The

relationships among the 22 immune-cell infiltrations were

visualized in a correlation heat map (Figure 1B). A visual

representation of the infiltration patterns of 22 immune cells

(Figure 1C) revealed increased levels of activated mast cells,

neutrophils, resting natural killer cells, M0 macrophages, M1

macrophages, and activated CD4 memory T cells in tumor

samples. Conversely, normal samples exhibited decreased levels of

resting dendritic cells, resting mast cells, M2 macrophages, and

eosinophils compared to the tumor samples.
Construction of weighted gene co-
expression networks to analyze co-
expression model

The WGCNA method was employed to establish co-

expression networks for clustering immune cell-related genes.

Figure 1D demonstrates the sample division and unsupervised

class clustering analysis. We constructed the network for different

soft threshold powers and drew the connectivity distribution
frontiersin.org
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diagram. In order to make the fitting degree reach 0.8 or above

(Figure 1E) while maintaining high network connectivity

(Figure 1F), we finally selected 18 as the appropriate power

value. By calculating the co-expression correlation network

based on gene expression levels, distinct clusters represented by

unique colors were assigned to these genes. We found that

immune cell-related genes were mainly clustered in the grey

and turquoise modules (Figure 1G), indicating that these two
Frontiers in Immunology 05
modules had the highest correlation, so we selected the grey and

turquoise modules for further analysis.
Construction of prognostic models

After quantifying gene expression levels within their respective

modules for each sample, we integrated this data with survival
FIGURE 1

Immune infiltration analysis versus WGCNA analysis (A) A bar chart illustrating the distribution of 22 immune cell types obtained from analyzing
immune cell infiltration in 514 samples of bowel cancer. The visualization showcases the varying levels of immune cell infiltration observed in each
sample. (B) Heatmap displaying the correlation among 22 different types of immune cell infiltration. (C) Heatmap illustrating variations in the
infiltration levels of 22 immune cell types. The horizontal axis represents increasing risk from left to right. (D) Dendrogram for gene clustering
analysis (E) Scale-free topological complementary model analysis suitable for various soft-threshold powers (F) Analysis of average connectivity for
different soft-threshold powers (G) Gene dendrogram and clustering module colors.
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information. Furthermore, we merged the gene expression and survival

data from TCGA and GEO databases to screen out the genes associated

with prognosis. Initial identification of prognostically relevant genes was

conducted through single-factor analysis (Figure 2A), yielding a total of

103 candidate genes. Subsequently, LASSO regression was performed to

further screen the above candidate genes, and the lambda value with the

smallest partial likelihood deviation was selected to determine the

appropriate number of variables (Figures 2B, C). Twenty-eight genes

were screened out by LASSO regression for Cox model construction.

After multivariate Cox analysis, based on statistical significance

(P<0.05), 14 immune cell-related genes significantly related to

prognosis were finally selected to construct the risk scoring model.

These selected genetic markers were utilized in developing our

prognostic model which incorporates a specific formula for

calculating individual patient risk scores: risk scores =

(-0.426543178479338 * CDC25C expression) + (0.634483816982898*

FKBP4 expression) + (0.550493338785946* DUSP14 expression) +

(0.715265330715893* SLC19A1 expression) + (-0.588620522569632*

MRPS18C expression) + (-1.03092755031287* NOP14 expression) +

(0.567308117913096* CCNB3 expression) + (0.584860382870649*

B3GNT4 expression) + (-0.471854560256281* ORC1 expression) +

(-) 0.592801435620474*PSMD12 expression)+(0.587951048173452*
Frontiers in Immunology 06
SYCE2 expression)+(0.882739106800858*ISY1 expression)

+(1.5180472208259* CIAO1 expression)+(-0.749492751586061*

MAPKAPK3 expression)
Validation of the prognostic model

By survival analysis, we found that all 14 genes used in the

model construction had a significant correlation with the prognosis

of patients (P< 0.05). By analyzing the survival curves of these genes,

we observed that patients with lower expression levels of B3GNT4,

CCNB3, FKBP4, DUSP14, SLC19A1, SYCE2, ISY1, CIAO1 and

other genes had longer OS than those with higher expression levels.

On the contrary, patients with high expression of CDC25C,

MRPS18C, NOP14, ORC1, PSMD12 and MAPKAPK3 had a

better prognosis than those with low expression. (Figure 3)

We utilized the TCGA database as our training dataset for

constructing the prognostic model. Following that, patients from

both the TCGA and GEO databases were categorized into two

groups based on their risk scores relative to the median value.

Individuals with a risk score surpassing the median were classified

as belonging to the high-risk group, while those below it were
FIGURE 2

Screening of genes involved in constructing prognostic models (A) Forest plot illustrating the results of one-way analysis for 103 genes associated
with prognosis. (B) K-fold cross-validation for parameter tuning in the LASSO model. The horizontal coordinate is Log(l),and the vertical coordinate
is the biased likelihood deviation (C) Spectrum of coefficients obtained through the LASSO method. Horizontal coordinates are Log Lambda values
and vertical coordinates are gene coefficients.
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assigned to the low-risk group. Survival analyses were then

conducted, and Figures 4A, E illustrates the obtained results. The

survival curves exhibited a gradual decline in patient survival rates

over time for both datasets. Importantly, statistical analysis revealed

significant disparities in patient survival between the high-risk and

low-risk groups within both TCGA (P<0.001) and GEO (P<0.05)

datasets. These findings provide compelling evidence supporting

our model’s ability to effectively discriminate between patients at

different levels of risk.

Next, we generated risk curves (Figures 4B, F). The risk score

plot was ranked according to the risk level of the patients, and the

median was used as the dividing line to classify the patients into

high and low-risk groups. An increasing trend in mortality with

increasing risk was evident (Figures 4C, G), aligning with our

expectations. Furthermore, through the visualization of a risk

heatmap (Figures 4D, H), we observed elevated expression levels

of genes such as CDC25C, MRPS18C, NOP14, ORC1, PSMD12,

and MAPKAPK3 in low-risk patients - indicating their association

with lower risks. Conversely, high-risk patients exhibited

heightened expression levels of genes including FKBP4, DUSP14,

SLC19A1, CCNB3, B3GNT4, SYCE2, ISY1, CIAO1 along with

other genes - signifying their involvement in higher risks.

After conducting autonomous prognostic analyses, our

predictive model was found to be an independent prognostic

factor irrespective of other clinical indicators. Both uniCox and

multiCox regression analyses demonstrated a significant correlation

with P<0.001 (Tables 1, 2; Figures 4I, J). Furthermore, we performed

ROC analysis to validate the accuracy of the model (Figure 4K),

which yielded an AUC value of 0.784 at one year, 0.820 at three

years, and 0.837 at five years (AUC>0.5 indicates good accuracy).
Frontiers in Immunology 07
The combined ROC curves also indicated that the accuracy of our

model is higher than that predicted by other clinical indicators, such

as age, gender, staging (Figure 4L).

Weproceeded togeneratea columnchart (Figure4M)byassigning

scores to various patient indicators, such as gender, age, stage, and risk

score. These scores were then aggregated to obtain a composite score.

By analyzing this chart, we could accurately determine the patient’s

survival rate at different time intervals. For instance, if a patient had a

composite score of 408, their survival rates would be 0.914 for over one

year, 0.75 for over three years, and 0.674 for over five years. This

column chart enabled us to make more precise predictions regarding

the patient’s likelihood of survival. To further enhance prediction

accuracy,we alsomadeadjustments to themodel depicted inFigure4N

where the yearly survival rate was set at 0.674.

Importance of the risk score model in
clinical practice

We performed an analysis of the clinical characteristics of both

high-risk and low-risk groups, as depicted in Figure 4O. The findings

reveal a significant discrepancy in T, M, N staging between these two

groups (P<0.001). Additionally, Figure 4P showcases a noticeable

differentiation in patient grading within the high-risk and low-

risk classifications.

Assessment of the correlation between risk
scores and immune infiltration

We used CIBERSORT and TIMER to investigate the association

between genes involved in model construction and immune cells.
FIGURE 3

Survival analysis of prognostic genes (A-N) Survival plots derived from gene survival analyses of the 14 genes involved in model construction. The
observation time is represented by the horizontal coordinate, while the survival rate is depicted on the vertical axis.
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As shown in Figure 5A, the expression levels of CDC25C and

MRPS18C were positively correlated with common lymphoid

progenitor cells and CD4+Th2 cells (P<0.05). Moreover, MREG

expression exhibited a positive correlation with hematopoietic stem
Frontiers in Immunology 08
cells (P<0.05), ORC1 expression was positively correlated with CD4

+Th2 cells (P<0.05), PSMD12 was also positively correlated with

the expression of common lymphoid progenitor cells, CD4+T

memory cells and CD4+Th2 cells (P<0.05). Additionally,
TABLE 1 Results of the univariate cox regression analysis of the risk model.

ID HR HR.95L HR.95H P value

Age 1.02900163052518 1.01010337097291 1.04825346202302 0.00250369255642274

Gender 0.88667738970721 0.58600123968243 1.34162991505626 0.569231274302908

Stage 2.07733748988069 1.63511289033448 2.63916398211566 2.15039821891628e-09

riskScore 1.03542649394191 1.02489415710796 1.04606706645894 2.49320557708183e-11
FIGURE 4

(A,E) Survival analyses were conducted on patients from the TCGA database and the GEO database, where they were categorized into high-risk and
low-risk groups based on their risk scores. The Kaplan Meier survival curves depict the observation time on the horizontal axis and the
corresponding survival rate on the vertical axis. (B,F) Risk curves. Low-risk patients are represented by green dots, while high-risk patients are
indicated by red dots in terms of their risk scores. (C,G) Survival status graphs that have ranked patients in order of risk. The horizontal coordinate
indicates the number of patients with increasing risk values from left to right; the vertical coordinate indicates the survival time of the patients.
(D, H) Risk assessment is facilitated by a risk heat map, where the 14 genes are categorized as either high-risk or low-risk. The risk level increases
progressively from left to right along the horizontal axis. (I) Forest plot was generated to analyze one-way Cox regression, incorporating clinical
variables such as risk scores. (J) Forest plot illustrating the incorporation of clinical factors, including risk score, in multifactor Cox regression
analysis. (K) ROC curves for assessing the precision of the model were generated for 1-, 3-, and 5-year OS durations. The x-axis represents false
positive rate (1-specificity), while the y-axis represents true positive rate (sensitivity) (L) Joint ROC curves are utilized to assess the model’s
prognostic accuracy, with the x-axis representing the complement of specificity and the y-axis indicating sensitivity. (M) Column line plot of the
scoring of a patient including gender, age, stage, and risk score finally yielding the survival rate of that patient for different survival times. (N) Model
calibration curve. The x-axis depicts predicted survival, while the y-axis represents observed survival, thereby enhancing the precision of real-time
predictions. (O) Heatmap illustrating the contrasting clinical characteristics observed in the low-risk and high-risk groups, highlighting their
distinctiveness. (P) A bar chart illustrating the distribution of grades among patients categorized into high and low risk groups. The x-axis represents
the risk score, while the y-axis indicates the percentage of weight.
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SLC19A1 expression demonstrated a positive correlation with CD4

+ Th1 cells (P<0.05), while UBE2F expression indicated a positive

correlation with CD4+ Th2 cells (P<0.05). Figure 5B illustrates the

relationship between different immune cell types and risk scores

predicted by various software tools. Furthermore, Figure 5C

showcases the connection between different immune checkpoints

and our constructed risk score model. In our model genes, DUSP14,

CCNB3, and B3GNT4 were positively correlated with most of the

immune checkpoint genes (P<0.05,coef >0), while CDC25C was

negatively correlated with most of the immune checkpoint genes

(P<0.05,coef<0). Lastly, Figure 5D demonstrates that there were no

statistically significant differences among the four immunotherapy

regimens (IPS-CTLA4-negative-PD1-negative, IPS-CTLA4-

negative-PD1-positive, IPS-CTLA4-positive-PD1-negative, and

IPS-CTLA4-positive-PD1-positive) within both high-risk and

low-risk groups (P>0.05), indicating no variation in the

effectiveness of immunotherapy across these regimens.
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Correlation of risk score models with
somatic variance

We further examined the genetic mutations in patients with

colorectal cancer who are at a higher risk compared to those at a

lower risk. Waterfall diagrams, as shown in Figures 6A, B, provide

detailed information on the mutations observed. The analysis

presented in Figure 6C did not reveal any significant differences

in tumor mutation burden (TMB) between the two groups

(P>0.05). Similarly, Figure 6D suggests that there is no notable

correlation between risk score and TMB (P>0.05). However,

according to Figure 6E, patients with high tumor mutation loads

have a significantly lower survival rate compared to those with low

tumor mutation loads (P<0.05). It is worth noting that individuals

with lower tumor mutation loads tend to have better survival

outcomes. In addition, the results of further stratified survival

analysis (Figure 6F) showed that patients with low TMB in the
FIGURE 5

(A) Scatterplot analysis of correlation depicting the relationship between immune cells and genes utilized in model construction. (B) Correlation
analysis of the correlation between genes used in constructing the model and immune cells using seven different quantitative methods for immune
infiltration estimation, including TIMER, xCell, quanTIseq, MCP counter, EPIC, CIBERSORT-ABS and CIBERSORT. (C) The constructed risk score
model is evaluated using GSVA analysis to determine the association between various immune checkpoints. (D) Graphical representations depicting
the four different immunotherapy treatments administered to both high-risk and low-risk groups. These treatment protocols consist of
combinations such as IPS-CTLA4-negative-PD1-negative, IPS-CTLA4-negative-PD1-positive, IPS-CTLA4-positive-PD1-negative, and IPS-CTLA4-
positive-PD1-positive. ***p<0.001, **p<0.01, *p<0.05.
TABLE 2 Results of the multivariate cox regression analysis of the risk model.

ID HR HR.95L HR.95H P value

Age 1.04623438153006 1.02596019419357 1.06690921079641 5.98434218125019e-06

Gender 1.11129733049112 0.72801009644269 1.69637998537552 0.624842205723537

Stage 2.18763208448807 1.71021464187516 2.79832368399929 4.6081790404592e-10

riskScore 1.03835669719359 1.0261119593351 1.05074755322551 5.00628730256291e-10
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high-risk group showed a survival advantage, and the difference in

survival curves between the two groups of high and low TMB in the

low-risk group was not very significant. However, it is obvious that

the overall survival of patients in the low-risk group is significantly

longer than that in the high-risk group, both in the high TMB group

and the low TMB group. Finally, the stromal/immune/estimated

scores were calculated using the ESTIMATE algorithm as depicted

in Figure 6G.
Correlation of risk scoring models with
biological function

GSEA was used to identify potential regulatory mechanisms

(Figure 7A). The results of enrichment analysis showed a significant

enrichment of olfactory signaling pathway, autophagy regulation

pathway in the high expression group of GAD1 gene, and cell

adhesion pathway, extracellular matrix receptor interactions

pathway, adhesion plaque pathway, drug metabolism-cytochrome

P450, and vascular smooth muscle contraction pathway in the low

expression group. Figure 7B shows the correlation between different

signaling pathways and the risk scoring model: the P53 signaling
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pathway, oligomerized nucleotide-binding structural domain-like

receptor signaling pathway, NOTCH signaling pathway,

HEDGEHOG signaling pathway, and calcium ion signaling

pathway correlated with the risk scoring model (P<0.05). And we

explore the sensitivity of risk-scoring models to drugs and

immunotherapy regimens by using the pRRophetic algorithm

(Figure 7C). We observed significant differences (P<0.05) in the

sensitivities of all 39 drugs tested between the high- and low-risk

groups, with a majority of the drugs exhibiting lower sensitivities in

the high-risk group compared to the low-risk group (the low-risk

group displayed a lower IC50).
Discussion

The progression of CRC is characterized by slow growth and

high heterogeneity, which presents challenges in determining the

most appropriate immunotherapy for individual patients. Previous

studies have demonstrated a correlation between immune cell

infiltration in CRC and patient prognosis (16). WGCNA is an

efficient method that accurately analyzes multiple genes, enabling

the construction of networks to explore the relationship between
FIGURE 6

(A) Waterfall diagram illustrating the mutations observed in each patient sample from the high-risk group of individuals with bowel cancer. The plot
includes information on mutation characteristics and tumor mutational burden (TMB). (B) Waterfall diagram illustrating the frequency of gene mutations
observed in bowel cancer patient samples belonging to the low-risk group. The plot also includes information on specific mutation characteristics and
TMB. (C) A box line plot is presented to illustrate the variation in tumor mutational load (TMB) between the high and low risk groups. The horizontal axis
represents risk levels, while the vertical axis displays tumor mutational load. (D) Scatterplot illustrating the correlation between risk score and TMB. The
x-axis represents risk score, while the y-axis represents tumor mutational load. (E) A Kaplan-Meier diagram illustrates the contrast in survival outcomes
between groups categorized by their tumor mutational load, with time on the horizontal axis and probability of survival on the vertical axis. (F) Survival
odds were plotted against survival times using Kaplan-Meier curves obtained from stratified survival analysis. (G) Graphical representation of violin plot.
The x-axis represents matrix/immunity/estimated scores, while the y-axis represents TME scores.
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different genes and clinical manifestations (17). Although several

studies have utilized WGCNA to develop prognostic prediction

models, there remains a lack of comprehensive models capable of

assessing both patient prognosis and response to immunotherapy.

To address this gap and identify personalized therapies for CRC

patients, we conducted immune infiltration analysis on 514 samples

and constructed a prognostic model using WGCNA combined with

LASSO-Cox regression.

In this study, we successfully demonstrated the efficacy of our

prognostic prediction model. By employing the WGCNA method

and integrating data from the TCGA and GEO databases, our
Frontiers in Immunology 11
model consistently obtained AUC values greater than 0.70 in

receiver operating characteristic (ROC) curves for the prediction

of overall survival (OS) time at 1, 3, and 5 years. In addition, in the

combined ROC analysis, the area under the curve (AUC) of

different predictors showed that the risk score of our model had

significantly better predictive performance than Age,Gender and

stage (Risk: AUC=0.784,Age: AUC=0.621,Gender: AUC=0.500,

Stage: AUC=0.705). Additionally, we have noticed strong

associations between the risk-assessment model and different

variables, such as the tumor microenvironment, biological

funct ion, as wel l as response to chemotherapy and
FIGURE 7

(A) GSEA shows the enrichment of seven pathways. Horizontal coordinates are the sorted values of the dataset, and vertical coordinates are the
enrichment scores and the amount of genes sorted. (B) Revealing the association between diverse signaling pathways and the risk score model is
demonstrated through GSVA analysis. (C) A box line plot is utilized to illustrate the variation in sensitivity levels among 39 drugs, specifically
comparing high and low risk groups. The horizontal axis represents the level of risk, while the vertical axis indicates the degree of sensitivity.
***p<0.001, **p<0.01, *p<0.05.
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immunotherapy. These findings further validate the predictive

capabilities of our model and may serve as a valuable reference

for anticipating immunotherapy outcomes in patients.

The tumor microenvironment consists of both tumor cells and

immune cells that penetrate into the tumor. The interaction

between these two cell types significantly influences the

development of tumors (18). Our study analyzed the extent of

infiltration by different immune cells in each sample, and through

analysis of variance, we concluded that compared to normal

samples, tumor samples exhibited higher rates of infiltration by

activated mast cells, neutrophils, etc. Conversely, there was a lower

rate of infiltration by resting dendritic cells, resting mast cells, M2

macrophages, and eosinophilic granulocytes. Tumor-associated

macrophages and neutrophils are generally believed to promote

tumor growth; however, their plasticity and polarization within

different tumor microenvironments can lead to the formation of

distinct phenotypes with varying roles in tumors (19). Previous

studies have shown that CD4+ T-cells secrete cytokines to support

anti-tumor immunity generated by CD8+ T-cells. Additionally,

eosinophils may be associated with controlling CD4+ T-cell

activity while exhibiting an inverse correlation with regulatory T-

cell characteristics (20). Examining these populations of immune

cells offers a more comprehensive comprehension of the correlation

between the tumor microenvironment and the progression

of tumors.

We performed clustering analysis on immune cell-related genes

to construct a co-expression network, through which we identified

fourteen genes that were utilized in our model development.

Among these genes, CDC25C, MRPS18C, NOP14, ORC1,

PSMD12, and MAPKAPK3 were classified as low-risk genes.

Conversely, FKBP4, DUSP14, SLC19A1, CCNB3,B3GNT4,SCEY2,

ISY1,and CIAO1 were categorized as high-risk genes. In an

independent investigation that centers on the development of a

prognostic forecasting model for individuals with colon cancer,

DNA repair-associated genes (DRGs) were examined, CDC25C,

which is involved in cell cycle activity, was found to be a low-risk

gene involved in the regulation of the G2/M transition cell cycle

checkpoint and DNA damage repair (21). The CDC25C gene was

identified as one of the key genes in both the prediction of colon

adenocarcinoma by anchorage-dependent cell death-related genes

as well as in prognostic models of colon cancer (22–24). This

corroborates the application of CDC25C gene in prognosis.

Similarly, PMSD12 was also considered as a low-risk gene, which

can be used as a feature to predict the prognosis of colon

adenocarcinoma in amino acid metabolism-related models (25).

Zhang et al. found that there was a large amount of NOP14 mRNA

in the tissues of colon cancer patients, which was considered to be a

protective prognostic factor for colon cancer patients (26). Zhu et al.

mentioned that NOP14 is important in cell proliferation, cell

metastasis, cell apoptosis and other tumor progression is

important (27). ORC1 plays an important role in epigenetic

regulation by modifying histones. Chromatin remodeling or

acetylation in CDC6/ORC1 may delay DNA replication and

promote the development of colorectal cancer (28). All of the

above studies confirmed the prognostic value of low-risk genes in
Frontiers in Immunology 12
colon cancer. Regarding high-risk genes, DUSP14 has been

identified as a target gene of ATF3, which has an impact on the

development of CRC; therefore it is closely associated with poor

prognosis in CRC patients (29). Meanwhile, FKBP4 has been found

to have multiple functions in various human diseases associated

with hormone-dependent, stress-related and neurodegenerative

changes (30–32). And FKBP4 expression is upregulated in most

cancer types such as breast cancer, squamous lung cancer, etc.,

which means the high expression of FKBP4 may be closely related

to tumorigenesis (33). In addition, as part of the spliceosome C

complex, higher expression level of ISY1 was associated with better

prognosis in cervical cancer, which is contrary to our findings and

may be related to the biological characteristics of cancer, tumor

microenvironment, cancer biology, and differences in gene

expression profiles, etc., which need to be further investigated

(34). Abnormal glycosylation is a prevalent form of post-

translational modification that contributes to the diversity

observed in CRC. Based on its involvement in constructing

glycemic risk prediction models, B3GNT4 has been recognized as

a high-risk gene linked to unfavorable prognosis (35). All of these

findings provide substantial theoretical support for our developed

prognostic model.

All of these findings provide substantial theoretical support for

our developed prognostic model.

Immunological examinations were conducted to investigate

patient responsiveness toward chemotherapy and immunotherapy.

The inhibitory surface molecules that are highly expressed on the

surface of exhausted T cells to prevent their activation are defined as

immune checkpoints (36), which are key molecules in the regulation

of immune response and are involved in the maintenance of

immune tolerance and the regulation of immune response (37).

Normally, immune checkpoints inhibit the activity of T cells

through negative regulation to prevent T cells from attacking

normal tissues (38). However, many tumor cells are taking

advantage of this property to inhibit T cells by upregulating

immune checkpoints to achieve immune escape, enabling them to

survive and proliferate in vivo (39). Recently, immune checkpoint

regulation through targeted immunotherapy, known as ICB, has

demonstrated promising effectiveness in cancer treatment (40). Our

study identified prognostic models that correlated with various

immune checkpoints such as TNFSF18, TNFRSF4, TNFRSF9,

TNFRSF14, TNFRSF18, TNFRSF25, TMIGD2, CD28, CD44,

CD48, CD80, CD244, CD274, CD276, CD200R1, CD40LG,

ICOSLG, ICOS, HHLA2 and BTLA. We found that TNFRSF4,

ICOSLG and TNFRSF25 were positively correlated with the risk

score (P<0.05,coef>0), while ICOS and HHLA2 were negatively

correlated with the risk score (P<0.001,coef<0). Li et al. also

reported similar findings while constructing a prognostic model

for CRC (41). It has been proposed that the upregulation of ICOS/

ICOSLG expression could potentially play a role in the advancement

of atypical cytology, transitioning from low-grade colorectal lesions

to high-grade lesions and ultimately leading to CRC. This finding

aligns with our analysis results (42). To evaluate the response to ICB

treatment we employed TMB and TIDE scoring methods. Generally

speaking, patients with high TMB respond better to ICB therapy
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(43), whereas higher TIDE scores are associated with poorer

response to ICB therapy (44). Therefore, TMB can affect patient

survival by affecting the response to immunotherapy. However, in

our study, the overall prognosis of the high TMB group was worse

than that of the low TMB group (Figure 6E), and similar results were

also found in the study of Chen et al. (45). According to the results

of our further subgroup analysis, this may be because the main

factor affecting the prognosis of patients is still the risk score

(Figure 6F), which also showed similar results in the study of Jin

et al. (46). In addition, our results showed that there was no

significant difference in tumor mutation burden (TMB) and

Tumor immunotherapy response score between the high and low

risk groups (P>0.05), which may be due to the prognostic model

constructed based on TCGA database samples. In real clinical

conditions, most of these samples are treated with first - and

second-line chemotherapy regimens, in which chemotherapy-

sensitive patients are more likely to show better prognosis, which

is independent of immunotherapy. Thus, although our prognostic

model was based on immune-related genes, it was not directly

related to TMB and Tumor immunotherapy response score.

Additionally, four different immunotherapy regimens (IPS-

CTLA4-neg-PD1-neg; IPS-CTLA4-neg-PD1-pos; IPS-CTLA4-pos-

PD1-neg; IPS-CTLA4-pos-PD1-pos) showed no notable differences

in treatment effects (P>0.05) during subsequent analyses.

The selected 39 drugs exhibited varying sensitivities between the

high and low-risk groups (P<0.05). Notably, certain drugs such as

S.Trityl.L.cysteine, SL.0101.1, WH.4023, JW.7.52.1, NVP.BEZ235,

PF.4708671, JNJ.26854165, EHT.1864, GSK269962A, Dasatinib,

BMS536924, Bryostatin.1, Ponatinib, AMG706, AZD0530,

AZD8055 and GSK650394 revealed a higher level of sensitivity

within the high-risk group while Temsirolimus, T ipifamib,

X681640, RDEA119, Methotrexate, BMS708163, Bosutinib,

BIRB0796, BIBW2992, S alubrinal, Nilotinib, Paclitaxel, PLX4720,

FTI277, GNF2, GW843682X AP24534, AZD8055 and ABT888

showed higher sensitivities in the low-risk group. This disparity may

potentially arise from variances in the physiological mechanisms

exhibited by these distinct cohorts. Tyrosine kinase inhibitors

(TKIs) were observed to be highly enriched among the drugs that

demonstrated sensitivity in the high-risk group which may suggest a

correlation with protein tyrosine kinase-associated pathways like IL6/

JAK/STAT and PI3K/AKT where high-risk patients are at significant

risk of developing diseases associated with these pathways.

Nevertheless, it is crucial to recognize specific constraints in our

research that require consideration. Further validation of our model

should be pursued by analyzing a substantial number of samples to

effectively demonstrate its prognostic value. Moreover, conducting

biological experiments is imperative for investigating the potential

mechanisms underlying immune-related prognostic genes in CRC.
Conclusion

In brief, our study has devised a risk assessment model that

effectively forecasts the OS of colon cancer patients by incorporating
Frontiers in Immunology 13
immune-associated genes. This novel approach exhibits significant

promise as a dependable technique for prognostic evaluation in the

field of clinical practice. Moreover, we have identified significant

distinctions between the low-risk and high-risk groups in terms of

their clinical characteristics, immune checkpoint expression,

infiltration patterns of immune cells, and drug sensitivity profiles.

These groundbreaking findings provide valuable insights into exploring

novel targets for immunotherapy in patients with colon cancer.
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