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Introduction: Type 2 diabetes (T2D) is characterized by insulin resistance and

chronic inflammation, with macrophages playing a crucial role in pancreatic islet

dysfunction. This study explored the intersection of macrophage-specific gene

expression and abnormal blood monovalent inorganic cation concentration-

related genes (ABRGs) in T2D patients via single-cell RNA sequencing (scRNA-

seq) andmachine learning to identify key genes and potential therapeutic targets.

Methods: ScRNA-seq data from the pancreatic islet cells of 27 nondiabetic (ND)

patients and 17 T2D patients were analyzed to identify differentially expressed

genes (DEGs) in macrophages. These DEGs were intersected with ABRGs to

identify hub genes. Machine learningmodels were developed to predict T2D, and

structural predictions of the hub proteins were performed. PPI networks and

regulatory networks involving transcription factors (TFs) and miRNAs were also

analyzed. Correlations between hub ABRGs and immune cell infiltration, as well

as cytokine responses, were examined via ssGSEA and immune response

enrichment analysis (IREA).

Results: Sixteen overlapping hub ABRGs, including ATP1A1, CACNA1D, and

CLDN10, were identified. The GBM model demonstrated high predictive

accuracy, with an AUC of 0.988. Correlation analysis revealed significant

relationships between the hub genes and the infiltration of immune cells,

particularly macrophages. Cytokine enrichment analysis revealed that

macrophages in T2D exhibit a distinct signature of cytokines, including IL15,

IFNa1, IFNb, and IL17F. PPI networks highlighted significant interactions among
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the hub genes. Regulatory network analysis revealed that STAT3 is a central TF

and that miRNAs such as hsa-mir-1-3p are critical regulators.

Discussion: This study highlights the central roles of macrophages and ABRGs in

T2D, identifying novel genes and regulatory networks that contribute to disease

progression. The integration of scRNA-seq and machine learning provides

valuable insights and potential therapeutic targets for T2D.
KEYWORDS

type 2 diabetes (T2D), macrophages, ion homeostasis, immune infiltration, ScRNA-seq,
machine learning, cytokine signatures, therapeutic targets
Introduction

Type 2 diabetes (T2D) is a multifaceted metabolic disorder

characterized by insulin resistance, chronic hyperglycemia, and

systemic inflammation (1). Among the various immune cells that

infiltrate pancreatic islet tissues, macrophages have emerged as key

players in the pathogenesis of T2D (2). Macrophages are highly

plastic immune cells that can adopt proinflammatory (M1) or anti-

inflammatory (M2) phenotypes in response to microenvironmental

signals (3). In T2D, there is a notable shift toward the

proinflammatory M1 phenotype, which contributes to the chronic

inflammation observed in the pancreatic islets (4). This

inflammation exacerbates insulin resistance and impairs b-cell
function, ultimately leading to the progressive loss of insulin

secretion capacity (5). The role of macrophages in T2D is thus

critical, as they not only participate in the immune response but also

directly influence the metabolic dysregulation characteristic of the

disease (6).

In recent years, interest in the role of inorganic ions, particularly

monovalent cations such as sodium (Na+) and potassium (K+), in

the development and progression of T2D, has increased (7). To

investigate this, our study focuses on “Abnormal blood monovalent

inorganic cation concentration-related genes” (ABRGs). This term,

as used herein, refers to a specific gene set titled “HP_

ABNORMAL_BLOOD_MONOVALENT_INORGANIC_

CATION_CONCENTRATION,” sourced directly from the

Molecular Signatures Database (MSigDB) (8, 9). MSigDB is a

well-established and widely utilized public resource containing

curated gene sets that represent various biological states and

processes. The ABRG set we employed encompasses genes

associated with abnormal concentrations of these critical

monovalent inorganic cations. These ABRGs are involved in

various physiological processes pertinent to T2D, such as insulin

secretion, cellular metabolism, and inflammatory signaling

pathways, all of which can be influenced by the concentration

and balance of monovalent cations like Na+ and K+. For example,

disturbances in potassium levels have been linked to impaired

insulin secretion and b-cell dysfunction, whereas sodium
02
imbalance can influence blood pressure and vascular function,

both of which are often dysregulated in T2D patients (10, 11).

The identification of genes associated with ABRGs has provided

new insights into how ion homeostasis may contribute to the

metabolic and inflammatory processes underlying T2D.

Advancements in single-cell RNA sequencing (scRNA-seq)

technology have revolutionized the study of complex diseases such

as T2D by enabling high-resolution profiling of gene expression at the

level of individual cells (12). This technique allows for the dissection

of cellular heterogeneity within tissues, making it possible to identify

distinct cell populations and their specific contributions to disease

pathogenesis (13). In the context of T2D, scRNA-seq has been

instrumental in revealing the diverse roles of various cell types

within pancreatic islets, including b-cells, a-cells, and immune cells

such as macrophages (14, 15). By characterizing the transcriptomic

landscape of these cells, researchers can gain deeper insights into the

cellular and molecular mechanisms driving T2D and identify

potential therapeutic targets.

Machine learning, another rapidly evolving field, has become an

invaluable tool in the analysis of complex biological data (16, 17). In

T2D research, machine learning algorithms are increasingly used to

develop predictive models that can identify patients at risk of

developing the disease, stratify patients on the basis of disease

severity, and predict responses to treatment (18). These algorithms

can analyze large datasets, such as those generated by scRNA-seq, to

uncover patterns and relationships that might not be apparent

through traditional statistical methods (19, 20). By integrating

machine learning with scRNA-seq data, researchers can create

robust models that not only predict disease outcomes but also

enhance our understanding of the underlying biological processes.

Given the central roles of macrophages and ABRGs in T2D

pathophysiology, this study aims to explore the intersection of these

two critical factors by cutting-edge technologies. We used scRNA-

seq to identify differentially expressed genes (DEGs) in

macrophages from T2D and nondiabetic pancreatic islet tissues.

We then intersected these macrophage-specific DEGs with ABRG-

related genes to pinpoint hub genes that may play pivotal roles in

T2D. These hub genes were subsequently used to develop predictive
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models for T2D via machine learning techniques, and their

potential functions were further explored through structural

predictions and network analyses.

This comprehensive approach, which integrates macrophage

biology, ion homeostasis, single-cell sequencing, and machine

learning, provides a deeper understanding of the molecular

mechanisms driving T2D. This study also highlights potential

therapeutic targets that could modulate both immune and metabolic

pathways in this disease.
Methods

Single-cell RNA sequencing and gene
expression profiling

To explore the gene expression profiles of pancreatic islet cells, we

obtained single-cell RNA sequencing (scRNA-seq) data from 27

nondiabetic (ND) individuals and 17 type 2 diabetes (T2D) patients

(21). The data were processed and analyzed via standard scRNA-seq

workflows via Seurat (v4.4.0), including quality control,

normalization, and clustering. To maintain data quality, we applied

the following filtering criteria: cells with a mitochondrial content less

than 15%, more than 500 cells, and a gene count ranging from 1,000-

25,000 were retained. The UMAP method was employed to visualize

the clustering of cells into distinct cell types within the islets. Seven

primary cell types were identified, including endocrine cells, stellate

cells, endothelial cells, mast cells, ductal cells, acinar cells, and

macrophages. The established marker genes were used to annotate

the cell clusters (21), and the proportions of these cell types were

compared between the T2D and ND samples. Additionally,

individual-level analyses were conducted to assess the heterogeneity

of cellular compositions across samples.
Gene set variation analysis

For GSVA, hallmark gene sets were obtained from the MSigDB

database (https://www.gsea-msigdb.org/gsea/msigdb) (8, 9). GSVA

was used to assess the variation in pathway activity across different

pancreatic islet cell types in T2D and ND samples. Using the GSVA

R package, we performed a nonparametric, unsupervised analysis to

calculate the enrichment scores for each hallmark gene set in

individual cells. The enrichment scores represent the relative

activity of specific pathways across various cell types, including

macrophages, endocrine cells, and other cell populations within the

islets. A higher score indicates greater pathway activity in the

respective cell type. The results were visualized via heatmaps,

which highlight the differential enrichment patterns in key

pathways involved in inflammation, immune responses, and

metabolism signaling in the T2D and ND samples. These cell

type-specific pathway enrichments provide insights into the

functional distinctions contributing to T2D pathogenesis.
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Machine learning for developing predictive
models

We first identified differentially expressed genes (DEGs) by

comparing macrophages in T2D and ND islet samples via the

Wilcoxon rank-sum test. From the HP_ABNORMAL_

BLOOD_MONOVALENT_ INORGANIC_CAT ION_

CONCENTRATION gene set, 149 abnormal blood monovalent

inorganic cation concentration-related genes (ABRGs) were

selected from the MSigDB database. By intersecting these ABRGs

with the identified DEGs, we pinpointed the hub ABRGs for

further analysis.

For the development of predictive models for T2D, we utilized

two datasets: GSE54279 (22) and GSE41762 (23). GSE54279,

generated from human samples via the GPL6244 platform,

included 128 samples from T2D patients. GSE41762, also

derived from human samples via the GPL6244 platform,

comprises 77 samples, with 20 controls and 57 T2D patients.

The microarray data from these datasets were preprocessed via the

RMA method to correct for background, normalize the data, and

adjust the probes. Batch effects were addressed via the

Combat method.

To build predictive models for T2D, we evaluated 12 machine

learning algorithms, creating 96 different model combinations.

These algorithms included the LASSO, Ridge, Elastic network,

Stepglm, SVM, GlmBoost, LDA, plsRglm, RSF, GBMs, XGBoost,

and naive Bayes. The combinations were assessed via the AUC in

both the training and validation cohorts. The models were

constructed using the expression data of the hub ABRGs

identified from the scRNA-seq analysis. Seventy percent of the

samples from the combined GSE54279 and GSE41762 datasets were

allocated for model training, whereas the remaining 30% were used

for validation. The best-performing model was selected on the basis

of its AUC score.
Structural prediction of T2D-associated
hub proteins via AlphaFold 3

To explore the structural characteristics of the hub proteins

associated with T2D, we utilized AlphaFold 3 (24), a state-of-the-art

tool for protein structure prediction. We selected a group of hub

ABRGs linked to T2D, including ATP1A1, CACNA1D, CALM1,

CLDN10, NUP214, TDP2, and UNC93B1, for detailed analysis.

AlphaFold 3 was run with its default settings to ensure precise

structural predictions. The primary amino acid sequences of the

chosen proteins were input into AlphaFold 3, with multiple

prediction iterations conducted for each protein to achieve

reliable and consistent results. To evaluate the quality of the

predicted structures, confidence scores such as pLDDT and pTM

were calculated. A pTM score greater than 0.5 suggested a good

structural match to the correct fold, whereas scores exceeding 0.8

indicated predictions of high confidence and accuracy.
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Correlation analysis between ABRGs

We examined the relationships between ABRGs via the “circlize”

and “corrplot” R packages. To delve deeper into the associations

between ABRGs and immune cell infiltration within T2D-affected

islets, we applied Spearman correlation analysis. This approach

allowed us to assess the correlation between the expression levels of

ABRGs and the proportion of infiltrating immune cells.
Immune cell infiltration and cytokine
response analysis

Immune cell infiltration scores for the T2D and ND groups were

calculated via single-sample gene set enrichment analysis (ssGSEA)

with the “gsva” R package, which utilizes established immune cell

markers (25). The infiltration patterns were visualized through

heatmaps generated with the “pheatmap” package. Specifically, we

focused on analyzing the relationships between 22 immune cell types

and the expression levels of hub ABRGs (ATP1A1, CACNA1D,

CALM1, CLDN10, NUP214, TDP2, and UNC93B1). Spearman’s

correlation analysis was used to assess these relationships, with

correlation coefficients (R) greater than 0.3 considered indicative of

a strong positive correlation. The results were visualized via the

“corrplot” and “ggplot2” R packages to provide a comprehensive view

of the interactions between immune cell infiltration and hub gene

expression in T2D and ND islet samples.

To further explore immune responses in macrophages, we

employed a comprehensive cytokine response dictionary derived

from data by Cui et al. (26), which captured transcriptional changes

in response to stimulation by specific cytokines. We focused on 86

cytokines in islet samples from T2D and ND individuals and

analyzed the enrichment scores (ESs) for each cytokine response

via immune response enrichment analysis (IREA).
Protein–protein interaction network
construction

To elucidate the interactions among the 7 hub ABRGs, we

constructed a PPI network using 50 genes closely associated with

these hubs. The network analysis was performed via tools such as

STRING (https://string-db.org/) (27) and Cytoscape (version 3.8.2),

and significant interactions were visualized. A significance threshold

was established with a confidence score exceeding 0.7. To further

refine our understanding, six distinct algorithms—Closeness, Degree,

EPC, MCC, MNC, and radiality—were applied to identify the top ten

hub genes within the network. The UpSet plot was used to identify

important proteins that were consistent across all six algorithms.
Regulatory network analysis of hub genes

We explored the regulatory networks involving the 7 hub

ABRGs and potential transcription factors (TFs) by integrating
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data from the JASPAR, ENCODE, and ChEA3 databases. The

network was constructed and visualized via NetworkAnalyst (28),

revealing complex interactions between the hub genes and TFs. A

Venn diagram was used to show the overlap of the transcription

factors across all three databases, indicating its central role in

regulating these hub genes.

Finally, we conducted an analysis of the regulatory network

between the 7 hub ABRGs and potential microRNAs (miRNAs) via

the miRTarBase v9.0 and TarBase v9.0 databases. A Venn diagram

illustrates the miRNAs shared between these two databases,

suggesting their potential roles in modulating gene expression

in T2D.
Statistical analysis

All analyses were conducted via R (version 4.2.1). Statistical

significance was defined as a P value less than 0.05.
Results

Overview of the study workflow

This study was designed with a comprehensive workflow to

explore the molecular mechanisms underlying type 2 diabetes

(T2D) and its associated immune responses, particularly focusing

on macrophages in pancreatic islet tissues (Figure 1).

Step 1: We began by performing single-cell RNA sequencing

(scRNA-seq) on pancreatic islet cells from both T2D patients and

nondiabetic (ND) individuals. These high-resolution data enabled

us to identify differentially expressed genes (DEGs), which are key

players in the immune landscape of islets, specifically in

macrophages.

Step 2: We intersected these macrophage-specific DEGs with a

predefined set of abnormal blood monovalent inorganic cation

concentration-related genes (ABRGs) sourced from the MSigDB

database. The overlap between the DEGs and ABRGs yielded a set

of hub ABRGs, which were crucial for subsequent analyses. These

hub ABRGs serve as the foundation for developing predictive

models for T2D. We applied multiple machine learning

algorithms to evaluate the performance of various models in

distinguishing between T2D and ND samples. The best-

performing model was selected on the basis of its accuracy, and

this model was further utilized to deepen our understanding of the

pathology of T2D.

To increase the functional relevance of these findings, we used

AlphaFold 3 to predict the three-dimensional structures of the hub

ABRG proteins. This structural information provides additional

insights into the biological roles of these proteins in T2D.

Step 4: Further analysis was conducted to examine the

relationships between these hub genes and immune cell

infiltration, as well as cytokine responses, via single-sample gene

set enrichment analysis (ssGSEA) and immune response

enrichment analysis (IREA).
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In step 5, we constructed protein–protein interaction (PPI)

networks to elucidate the interactions among the hub genes, which

provided insights into the molecular pathways involved in T2D.

Finally, we expanded our investigation to include regulatory

networks involving transcription factors (TFs) and microRNAs

(miRNAs) that could modulate the expression of the identified
Frontiers in Immunology 05
hub genes. This comprehensive workflow, which combines

scRNA-seq, DEG identification, ABRG intersection, machine

learning, PPI network construction, and regulatory network

analysis, provides a detailed landscape of the molecular

mechanisms driving T2D, highlighting potential therapeutic

targets for intervention.
FIGURE 1

Research workflow overview.
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Gene expression profiling in pancreatic
islet cells

Using scRNA-seq data from 27 ND individuals and 17 T2D

patients, we visualized gene expression across various pancreatic islet

cell types. The uniform manifold approximation and projection

(UMAP) plot revealed the clustering of cells into seven primary cell

types, including endocrine cells, stellate cells, endothelial cells, mast

cells, ductal cells, acinar cells, and macrophages, in both the ND and

T2D samples (Figures 2A, B; Supplementary Figure S1A). Further

analysis of these clusters revealed distinct subtypes within the

primary populations (Supplementary Figure S1B). Annotation of

these cell clusters, which was based on established marker genes,

confirmed the identity of each cell type (Figure 2C). A comparative

analysis of cell type proportions between T2D and ND samples

highlighted significant differences, particularly in the distribution of

endocrine cells, which are crucial for insulin secretion (Figure 2D).

This analysis was further refined by evaluating the proportions at the

individual level within each disease group, providing a detailed

overview of the cellular heterogeneity in the islet samples (Figure 2E).

GSVA revealed the differential enrichment of hallmark gene

sets across various cell types in both the T2D and ND samples

(Figure 2F). Notably, key pathways associated with inflammation,

metabolism, and the immune response presented distinct

enrichment patterns in macrophages, endocrine cells, and other

pancreatic islet cell types. Specifically, proinflammatory and

metabolic pathways were more prominently enriched in

macrophages from T2D samples, highlighting the role of

macrophages in the inflammatory processes and metabolic

dysregulation characteristic of T2D. Additionally, pathways

related to insulin signaling and b-cell function were differentially

enriched in endocrine cells, underscoring the functional

impairment of insulin-producing cells in T2D. These findings

provide valuable insights into the cell type-specific molecular

mechanisms contributing to T2D pathogenesis.
Development and validation of predictive
models using machine learning

To develop predictive models for T2D, we first identified 1986

DEGs, specifically from macrophages in the pancreatic islet tissues of

T2D andND individuals (Supplementary Table S1). TheseDEGs were

then cross-referenced with 149 genes associated with ABRGs

(Supplementary Table S2), as identified from the MSigDB database.

This intersection resulted in 16 overlapping ABRGs, which were

selected as hub ABRGs for further analysis (Figure 3A,

Supplementary Table S3).

Using these hub ABRGs, we tested a total of 96 machine

learning model combinations to predict T2D. Among these

models, the gradient boosting machine (GBM) model

demonstrated superior performance, achieving an AUC of 0.988

in the training cohort and 0.758 in the validation cohort, with an

average AUC of 0.873 across both cohorts (Figure 3B;

Supplementary Table S4). To further explore the molecular
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profiles of these hub ABRGs, we applied UMAP visualization,

which highlighted distinct expression patterns of the seven key

hub genes identified by the GBM model (ATP1A1, CACNA1D,

CALM1, CLDN10, NUP214, TDP2, UNC93B1) specifically in T2D

samples (Figure 3C).

Additionally, structural predictions for these hub proteins were

successfully generated via AlphaFold 3, providing valuable insights

into their potential functional roles in T2D pathology (Figure 3D,

Supplementary Table S5). ATP1A1 has a high confidence level

(pTM = 0.81), indicating that it is a reliable target for downstream

experimental analysis. Other proteins, such as TDP2 (pTM = 0.72),

UNC93B1 (pTM = 0.68), CACNA1D (pTM = 0.68), CALM1 (pTM

= 0.62), and CLDN10 (pTM = 0.61), also show moderate

confidence, requiring further validation to ensure accuracy.

Protein NUP214 (pTM = 0.34) has lower confidence levels,

implying a need for cautious interpretation and more extensive

validation. This approach, which combines DEG identification

from macrophages, intersection with ABRGs, and machine

learning, allowed us to construct and validate predictive models

that provide a deeper insight of the mechanisms driving T2D.
Hub gene correlations and immune
characteristics in T2D

We performed a comprehensive analysis of the functions of the

7 hub ABRGs in T2D. A circular diagram illustrating the

relationships among these hub genes revealed both positive and

negative correlations, with red and blue lines indicating these

interactions, respectively (Figure 4A). For example, UNC93B1 and

NUP214 demonstrated an antagonistic relationship (correlation

coefficient, cor = -0.74), whereas CACNA1D and CALM1

exhibited a significant synergistic interaction (cor = 0.70)

(Figure 4B; Supplementary Table S6).

Further correlation analysis was performed to explore the

associations between the hub ABRGs and 22 immune cell types

in T2D patients via ssGSEA (Figure 4C; Supplementary Table S7).

Notably, a positive correlation was observed between macrophage

infiltration and the expression of CLDN10, UNC93B1, TDP2, and

ATP1A1 (Figure 4D). In contrast, NUP214, CACNA1D, and

CALM1 were negatively correlated with macrophage infiltration

(Figure 4E). These results highlight the intricate interplay between

immune responses and gene expression in T2D, providing insights

into the potential roles these hub genes play in modulating immune

characteristics within the diabetic environment.
Cytokine signature enrichment in
macrophages

To explore immune responses in macrophages, we utilized

cytokine response dictionary, derived from the dataset compiled

by Cui et al. (26). We focused on the responses of islet samples

from T2D and ND individuals to 86 cytokines (Figure 5A). The

IREA cytokine enrichment plot displayed enrichment scores (ESs)
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for each cytokine response in macrophages, comparing T2D

versus ND islet samples. The results revealed significant

cytokine signatures in T2D, with the shading bars indicating the

false discovery rate (FDR)-adjusted P values.
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For macrophages, we observed dominant enrichment in several

key cytokines, including IL15, adiponectin, IL11, IFNa1, IFNb,
prolactin, IL9, IL7, IL17F, and TSLP (Figure 5B; Supplementary

Table S8). These cytokines are known to play critical roles in
FIGURE 2

Gene expression visualization in pancreatic islet cells. (A) UMAP plot depicting the clustering of single-cell RNA-seq data from 27 nondiabetic (ND)
individuals, highlighting the identification of seven primary islet cell types. (B) UMAP plot for single-cell RNA-seq data from 17 type 2 diabetes (T2D)
patients, which also identified seven primary islet cell types. (C) Annotation of cell clusters on the basis of recognized marker genes, validating the
identity of each cell type. (D) Comparative analysis of cell type distributions across T2D and ND samples categorized by disease state. (E) Individual-
level comparison of cell type proportions in T2D and ND samples. (F) GSVA analysis illustrating the enrichment of hallmark gene sets across various
cell types.
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FIGURE 3

Development and validation of predictive models using machine learning. (A) Identification of 1986 differentially expressed genes (DEGs) between
T2D and ND samples. From the HP_ABNORMAL_BLOOD_MONOVALENT_INORGANIC_CATION_CONCENTRATION gene set, 149 related genes
were identified, with 16 intersecting with DEGs. (B) Performance metrics of 96 machine learning model combinations, where the GBM model
demonstrated the highest accuracy in both the training (AUC=0.988) and validation (AUC=0.758) datasets. The average AUC for training and
validation was 0.873. (C) UMAP plot displaying the expression patterns of hub genes related to abnormal blood monovalent inorganic cation
concentrations. (D) Structural prediction of hub proteins via AlphaFold 3, with successful predictions for 7 hub proteins.
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modulating immune responses and inflammation: IL15 is involved

in the activation and proliferation of NK cells and T cells,

potentially contributing to the elevated immune activation

observed in T2D. Adiponectin is a hormone with anti-

inflammatory properties; however, its role in macrophages in the

context of T2D might reflect a compensatory response to
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inflammation. IL11 is typically associated with fibrotic responses,

which may be related to tissue remodeling and fibrosis in diabetic

islets. Type I interferons (IFNa1 and IFNb) are key players in

antiviral responses, but their enrichment in T2D suggests a chronic

inflammatory state that could exacerbate autoimmunity or

metabolic dysfunction. Prolactin has been implicated in immune
FIGURE 4

Characterization of immune features and hub genes in T2D. (A) Circular diagram depicting the relationships among the 7 hub genes, with red and
blue lines indicating positive and negative correlations, respectively. (B) Correlation coefficients between the 7 hub genes, visualized through a pie
chart. (C) Correlation analysis between the 7 hub genes and 22 immune cell types via ssGSEA, with significance levels marked as *P < 0.05.
(D) Positive correlations between CLDN10, UNC93B1, TDP2, and ATP1A1 expression and macrophage infiltration. (E) Negative correlations between
NUP214, CACNA1D, and CALM1 expression and macrophage infiltration.
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regulation, and its involvement here could reflect its role in

modulating inflammatory pathways in T2D. IL9 and IL7 are

cytokines that support the survival and function of various

immune cells, potentially contributing to the sustained immune

activity observed in T2D islets. IL17F is part of the IL-17 cytokine

family, which is known for promoting inflammatory responses; its

enrichment could be linked to the proinflammatory environment in

T2D. Thymic stromal lymphopoietin (TSLP) is involved in the

activation of dendritic cells and T-helper cells, possibly driving

immune responses in the diabetic pancreas.

This enrichment of cytokine responses in macrophages

underscores their significant role in the inflammatory
Frontiers in Immunology 10
microenvironment of T2D. The identified cytokines likely

contribute to the chronic inflammation characteristic of T2D,

which can impair insulin signaling and b-cell function, further
exacerbating the disease.
PPI network of the hub genes

We constructed a PPI network using 50 genes closely linked to

the 7 hub ABRGs, which revealed significant interactions among

these genes (Figure 6A; Supplementary Table S9). Notably, CALM1,

CACNA10, ATP1A1, and CLDN10 were highly interconnected,
FIGURE 5

Cytokine signature enrichment in macrophages. (A) Utilizing a comprehensive cytokine response dictionary. (B) The IREA cytokine enrichment plot
presents the enrichment score (ES) for each of the 86 cytokine responses in macrophages from T2D versus ND islet samples.
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suggesting their collaborative role in T2D pathogenesis (Figure 6A).

In contrast, NUP214, UNC93B1, and TDP2 appeared to function

more independently (Figure 6A). To further refine our

understanding of these interactions, we used six distinct

algorithms—Closeness, Degree, EPC, MCC, MNC, and Radiality

—to identify the top ten hub genes, which could serve as potential

targets for therapeutic intervention (Figure 6B; Supplementary

Table S10). The UpSet plot revealed 5 shared proteins
Frontiers in Immunology 11
(CACNA1D, CACNA1C, CACNA1S, CACNA1F, and RYR1)

among all six algorithms (Figure 6C, Supplementary Table S11).
Regulatory network of hub genes and TFs

We explored the regulatory network between the 7 hub ABRGs

and potential TFs via data from the JASPAR, ENCODE, and ChEA3
FIGURE 6

Protein–protein interaction (PPI) network of the hub genes. (A) PPI network created from 50 genes closely linked to the 7 hub genes, showing gene
interactions. CALM1, CACNA10, ATP1A1, and CLDN10 were notably interconnected, whereas NUP214, UNC93B1, and TDP2 exhibited more
independent behavior. (B) The top ten hub genes were identified via six algorithms: closeness, degree, EPC, MCC, MNC, and radiality. (C) UpSet plot
showing 5 shared proteins in all six algorithms.
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databases. The network analysis identified a complex web of

interactions, with circular nodes representing hub ABRGs and

diamond-shaped nodes representing TFs. A total of 52 nodes and 79

edges were identified in the JASPAR database (Figure 7A;

Supplementary Table S12), 123 nodes and 144 edges in the

ENCODE database (Figure 7B; Supplementary Table S12), and 61

nodes and 213 edges in the ChEA3 database (degree filter=2.0,

Figure 7C; Supplementary Table S12). A Venn diagram further

revealed the overlap of STAT3 across all three databases, indicating

its central role in regulating these hub genes (Figure 7D; Supplementary

Table S13).
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Regulatory network of hub genes and
miRNAs

Finally, we analyzed the regulatory network between the 7 hub

ABRGs and potential miRNAs via the miRTarBase v9.0 and

TarBase v9.0 databases. The network analysis identified 52 nodes

and 79 edges in the miRTarBase v9.0 database (Figure 8A;

Supplementary Table S14) and 541 nodes and 1082 edges in the

TarBase v9.0 database (Figure 8B; Supplementary Table S14). A

Venn diagram illustrated the 40 miRNAs, such as hsa-mir-1-3p,

hsa-mir-196a-5p, and hsa-mir-340-5p, that were shared between
FIGURE 7

Regulatory network of hub genes and transcription factors (TFs). (A) Circular nodes represent hub genes, and diamond-shaped nodes represent TFs.
Interactions between the 7 hub genes and potential TFs were mapped via the JASPAR database, revealing 52 nodes and 79 edges. (B) Network
analysis based on the ENCODE database, showing 123 nodes and 144 edges. (C) Network analysis using the ChEA3 database, identifying 61 nodes
and 213 edges (degree filter=2.0). (D) Venn diagram illustrating the overlap of the TF STAT3 across the JASPAR, ENCODE, and ChEA3 databases.
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these two databases, suggesting their potential regulatory roles in

modulating gene expression in T2D (Figure 8C; Supplementary

Table S15).
Discussion

In this study, we employed a comprehensive approach to

elucidate the molecular mechanisms underlying type 2 diabetes

(T2D), with a particular focus on the role of macrophages in

pancreatic islet tissues. By integrating single-cell RNA sequencing

(scRNA-seq), machine learning, and network analysis, we aimed to

identify key genes associated with T2D, explore their functional

relevance, and uncover potential therapeutic targets.

Our investigation began by leveraging scRNA-seq data to

identify differentially expressed genes (DEGs) in macrophages

from T2D and nondiabetic (ND) pancreatic islet tissues.

Macrophages are known to play a critical role in the

inflammatory processes that characterize T2D. The immune

response enrichment analysis (IREA) in our study revealed that

macrophages in T2D samples presented a distinct cytokine

signature, notably including enrichment of proinflammatory
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cytokines such as IL15, IFNa1, IFNb, and IL17F. These cytokines

are closely associated with the proinflammatory M1 phenotype of

macrophages (29–31). The observed cytokine enrichment suggests

that macrophages in T2D are more inclined to adopt a

proinflammatory state, which has been linked to b-cell
dysfunction and insulin resistance. This finding aligns with

previous studies (32, 33), providing robust evidence for the

proinflammatory shift of macrophages in T2D. These DEGs

formed the basis for further analysis aimed at revealing the

molecular underpinnings of T2D.

A key innovation in our study was the intersection of

macrophage-specific DEGs with abnormal blood monovalent

inorganic cation concentration-related genes (ABRGs). ABRGs

have been increasingly recognized for their role in various

metabolic and inflammatory pathways related to T2D

pathophysiology. By focusing on these genes, we identified 16

overlapping hub ABRGs that are likely central to the disease

process. These hub genes not only reflect the dysregulation of ion

homeostasis in T2D but also underscore the importance of

macrophages in mediating these effects.

To further explore the significance of these hub ABRGs, we

developed predictive models for T2D via machine learning
FIGURE 8

Regulatory network of hub genes and miRNAs. (A) Circular nodes represent hub genes, and square nodes represent miRNAs. Network analysis based
on the miRTarBase v9.0 database identified 52 nodes and 79 edges. (B) Analysis via the TarBase v9.0 database revealed 541 nodes and 1082 edges.
(C) Venn diagram showing the 40 miRNAs shared between the miRTarBase v9.0 and TarBase v9.0 databases.
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techniques. Among the 96 model combinations tested, the gradient

boosting machine (GBM) model emerged as the most effective,

demonstrating high accuracy in distinguishing between T2D and

ND samples. The hub genes identified by GBM, including ATP1A1,

CACNA1D, CALM1, CLDN10, NUP214, TDP2, and UNC93B1,

underscore the potential of machine learning in identifying robust

biomarkers for T2D and the utility of integrating omics data with

advanced computational methods.

Among the hub genes identified, several have established links to

T2D through their roles in pancreatic beta-cells and systemic metabolic

regulation. For instance, ATP1A1 (encoding the a1 subunit of the Na
+/K+-ATPase) and CACNA1D (encoding the a1 subunit of the

Cav1.3 L-type calcium channel) are known to influence ion

homeostasis and have been implicated in insulin secretion and b-cell
function (34, 35). Additionally, CALM1 (calmodulin 1), a key mediator

of calcium signaling, has been linked to various metabolic processes,

including glucose metabolism (36). However, our study specifically

identified ATP1A1, CACNA1D, and CALM1 as DEGs in

macrophages from T2D pancreatic islets when compared to non-

diabetic individuals, and as hub ABRGs. This shifts the focus towards

their potential involvement in macrophage functions within the

T2D microenvironment.

Our investigation into their roles in macrophages revealed

several key findings. Firstly, the altered expression of ATP1A1,

CACNA1D, and CALM1 in macrophages from T2D patients

suggests these ion homeostasis-related genes are also pertinent to

macrophage biology or are indicative of macrophage dysfunction in

T2D. Secondly, we explored their correlation with macrophage

infiltration. Our analysis showed a positive correlation between

the expression of ATP1A1 and macrophage infiltration in T2D,

suggesting that higher ATP1A1 expression in macrophages might

be associated with an increased presence or a particular activity state

of macrophages contributing to the inflammatory environment

characteristic of T2D. Conversely, we observed that CACNA1D

and CALM1 expression levels were negatively correlated with

macrophage infiltration in T2D patients. This intriguing finding

could imply several possibilities: these genes might be

downregulated in specific pro-inflammatory macrophage

populations prevalent in T2D islets; their decreased expression

could be part of a disrupted regulatory mechanism within

macrophages in the T2D microenvironment; or it may reflect a

shift in macrophage subpopulations, where those with higher

expression of CACNA1D and CALM1 are less abundant.

The identification of these genes as DEGs in macrophages,

coupled with their established roles in ion homeostasis, implies they

are part of the molecular machinery within these immune cells that

could influence inflammatory responses or other macrophage

functions relevant to T2D. ABRGs, as a group, are involved in

various physiological processes relevant to T2D, including

inflammatory signaling pathways. Therefore, our study highlights

that ATP1A1, CACNA1D, and CALM1, being dysregulated in

macrophages, likely contribute to T2D pathogenesis through their

involvement in the immune response and inflammation mediated

by these cells. While our current findings primarily point to the

association of these genes with macrophage states and infiltration in
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T2D, further research is warranted to elucidate the precise

molecular mechanisms by which ATP1A1, CACNA1D, and

CALM1 modulate macrophage phenotype and function (e.g.,

cytokine production, phagocytosis, or antigen presentation) in the

context of type 2 diabetes. Our findings lay the groundwork for such

future investigations by highlighting these genes as relevant players

in macrophages in T2D.

On the other hand, several hub genes identified in our study—

namely CLDN10 (claudin 10), NUP214 (nucleoporin 214), TDP2

(tyrosyl-DNA phosphodiesterase 2), and UNC93B1 (unc-93

homolog B1)—have not been previously extensively associated

with T2D. Our investigation provides new insights into their

potential roles, particularly within macrophages in the T2D

context. All four of these genes were identified as DEGs in

macrophages from T2D pancreatic islets in our study, forming a

primary basis for discussing their involvement in the disease.

Our findings suggest that these genes may play novel roles in

T2D pathogenesis, particularly through their involvement in the

immune response and inflammation mediated by macrophages.

Specifically, our correlation analysis revealed distinct associations

with macrophage infiltration: CLDN10 expression showed a

positive correlation with macrophage infiltration in T2D. This

finding, coupled with literature connecting CLDN10 with

immune infiltration in other contexts, supports its potential

relevance to macrophage activity and the inflammatory

environment in T2D. UNC93B1 expression also demonstrated a

positive correlation with macrophage infiltration. UNC93B1 is

recognized as an innate-immune related gene, further

substantiating its potential role in macrophage biology and

immune responses within the diabetic islets. TDP2 expression

was similarly positively correlated with macrophage infiltration in

T2D. While specific prior literature on TDP2’s role in macrophages

is not extensively cited in this study beyond its identification as a

DEG, its positive correlation with macrophage presence suggests it

may contribute to the inflammatory microenvironment mediated

by macrophages in T2D. In contrast, NUP214 expression was found

to be negatively correlated with macrophage infiltration in our T2D

samples. This novel finding suggests a distinct role for NUP214

concerning macrophage presence or phenotype in T2D, possibly

being downregulated in certain macrophage populations or

involved in a disrupted regulatory pathway.

Collectively, the differential expression of these genes in

macrophages and their varied correlations with macrophage

infiltration highlight them as novel players in macrophage

pathobiology in T2D. Their dysregulation likely contributes to

T2D pathogenesis via macrophage-mediated immune and

inflammatory processes. While for CLDN10 and UNC93B1,

existing literature supports their immune functions (37, 38), the

precise roles and mechanisms of all four genes, particularly TDP2

and NUP214, within macrophages in the T2D setting warrant more

specific invest igation. Their identification and init ial

characterization in this study provide a strong foundation for

such future research.

We also utilized AlphaFold 3 for structural prediction of the

hub proteins, which provided additional insights into their
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functional relevance. The predicted three-dimensional structures of

these proteins offer a basis for future studies aimed at understanding

their specific roles in T2D and designing targeted therapies.

Notably, structural analysis revealed potential interaction sites

with other proteins, suggesting that these hub ABRGs could be

involved in complex molecular networks driving T2D pathology.

Our exploration of protein–protein interaction (PPI) networks

further supported this notion. PPI analysis revealed significant

interactions among the hub genes, particularly those involving

CALM1, CACNA1D, ATP1A1, and CLDN10, which were highly

interconnected. These findings suggest that these genes may work

collaboratively to regulate key pathways involved in T2D. In

contrast, other hub genes, such as NUP214, UNC93B1, and

TDP2, appeared to function more independently, indicating that

multiple distinct pathways contribute to the disease.

The correlation analysis between hub ABRGs and immune cell

infiltration revealed important insights into the interplay between

gene expression and immune responses in T2D. Specifically, several

hub genes, including CLDN10 (37), UNC93B1 (38), and ATP1A1

(39), were positively correlated with macrophage infiltration. These

findings suggest that these genes may contribute to the

inflammatory environment in T2D, further exacerbating the

disease. The cytokine enrichment analysis provided additional

evidence for this, showing that macrophages in T2D exhibit a

distinct cytokine signature that likely drives the chronic

inflammation characteristic of the disease.

Our regulatory network analysis involving transcription factors

(TFs) and microRNAs (miRNAs) highlighted the complex

regulatory mechanisms governing the expression of hub ABRGs

in T2D. Among the TFs identified, STAT3, known for its

multifaceted roles in inflammatory signaling and b-cell function,
has been extensively reported in relation to T2D (40). STAT3 is

crucial for maintaining b-cell homeostasis by modulating the cell

cycle and protecting against DNA damage, as evidenced in models

of pancreatic injury (41). Additionally, STAT3 plays a vital role in

b-cell survival by negatively regulating the PTEN-AKT signaling

pathway, which is critical for preventing b-cell apoptosis under

hyperglycemic conditions (42). Moreover, STAT3 has been

implicated in mediating b-cell epithelial–mesenchymal transition

in the context of chronic pancreatitis-related diabetes, where its

activation promotes b-cell dedifferentiation and loss, further

contributing to diabetes progression (43). These findings

collectively underscore the importance of STAT3 in both the

maintenance of b-cell function and the pathogenesis of T2D.

Similarly, hsa-mir-1-3p (44) and hsa-mir-340-5p (45) are

miRNAs that have been previously implicated in metabolic

regulation and T2D pathogenesis, suggesting their involvement in

modulating the expression of genes critical to the disease. In

addition to these known regulators, our study identified several

novel miRNAs that have not been previously associated with T2D.

For example, hsa-mir-196a-5p is among the newly identified

miRNAs that may play roles in the regulatory networks driving

T2D, potentially influencing macrophage activity and b-cell
function. The discovery of these novel regulatory molecules

provides novel insights into the transcript ional and
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posttranscript ional control of T2D-associated genes .

Understanding these regulatory networks could open new

avenues for therapeutic intervention by targeting specific TFs or

miRNAs to modulate gene expression in T2D. This approach may

lead to more precise strategies for controlling inflammation,

preserving b-cell function, and ultimately managing or preventing

the progression of T2D.

However, this study has several limitations that should be

acknowledged. The scRNA-seq analysis was based on a relatively

small clinical cohort (27 ND and 17 T2D individuals), a common

challenge in studies involving human pancreatic islets, which may

impact the broader generalizability of the initial DEG findings. The

observed drop in AUC for our machine learning model from the

training (0.988) to the validation set (0.758), while still indicating

reasonable predictive performance of the hub ABRGs, suggests

some overfitting and underscores the need for model validation

and refinement in larger, more diverse cohorts. Moreover, our

conclusions on the roles of these hub genes in T2D are largely

based on correlative and computational analyses. While these

methods are powerful for hypothesis generation, future studies

employing genetic association data from resources like the UK

Biobank and utilizing Mendelian Randomization approaches would

be invaluable to help establish causal relationships between these

hub genes and T2D risk.

Furthermore, the primary objective of this study was to employ

a comprehensive bioinformatics approach, integrating scRNA-seq

data analysis, machine learning, and network biology, to uncover

novel genes and potential therapeutic pathways. Consequently, the

identification of the seven hub ABRGs (ATP1A1, CACNA1D,

CALM1, CLDN10, NUP214, TDP2, and UNC93B1) and the

construction of their intricate regulatory networks involving

transcription factors and miRNAs were completed based on

analyses of existing databases and computational methods. We

acknowledge that these predictions and network constructions,

while providing valuable insights and generating strong

hypotheses, warrant further investigation through experimental

validation to substantiate their functional roles and therapeutic

potential. For instance, as noted, while structural predictions for

ATP1A1 showed high confidence, other proteins require

further validation.

Crucially, the specific regulatory roles of the identified hub

genes in macrophage functions—such as their direct impact on ion

channel activity or cytokine secretion—and the confirmation of

their expression levels and patterns in vivo, require direct

experimental confirmation. While our study proposes these hub

genes as potential novel therapeutic targets, their detailed clinical

implications, including potential interactions with existing T2D

therapies such as SGLT2 inhibitors, remain to be elucidated. Future

translational research will need to explore these aspects once the

functional roles and relevance of these targets are more

firmly established.

While conducting extensive new wet-laboratory experiments

(e.g., using in vitro cell models, animal models of T2D, or patient-

derived samples) is beyond the scope of the current manuscript,

which focuses on the initial discovery and nomination of these
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targets through advanced computational analysis, we firmly believe

that our study provides a robust and detailed foundation for such

future experimental work. The identified hub genes and regulatory

pathways are now high-priority candidates for these targeted

validation studies. Similarly, while our study proposes these hub

genes as potential novel therapeutic targets, their detailed clinical

implications, including potential interactions with existing T2D

therapies such as SGLT2 inhibitors, remain to be elucidated and

represent an important avenue for future translational research

once their functional roles are more firmly established.

Understanding these regulatory networks and the functions of the

identified hub genes could reveal opportunities for therapeutic

intervention by targeting specific genes, TFs, or miRNAs to modulate

gene expression in T2D. This approach may lead to more precise

strategies for controlling inflammation, preserving b-cell function, and
ultimately managing or preventing the progression of T2D.

In conclusion, our study provides a detailed landscape of the

molecular mechanisms driving T2D, emphasizing the central roles of

macrophages and ABRGs in the disease process. The integration of

scRNA-seq, machine learning, and network analysis has enabled us to

identify key genes and pathways contributing to T2D and to propose

potential therapeutic targets. The findings presented here offer a strong

foundation for future experimental validation and translational

research aimed at developing novel therapeutic strategies for T2D.
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SUPPLEMENTARY FIGURE 1

UMAP visualization of pancreatic islet cell clusters. (A) UMAP plot of singlecell

RNA-seq data from 27 nondiabetic (ND) and 17 type 2 diabetes (T2D)
individuals, identifying seven primary islet cell types. (B) UMAP plot of the

same dataset, highlighting distinct subtypes within the islet cell populations.
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