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Department of Pathology, Xinxiang Medical University, Xinxiang, Henan, China
FHOD 1 (Formin homology 2 domain containing protein 1) is a member of

Diaphanous-related formins (DRFs) which contains a GTP-binding domain

(GBD), formin homology (FH) 1 and FH 2 domains, a coiled-coil, and a

diaphanous-like autoregulatory domain. Studies have shown that FHOD1 can

not only regulate intracellular signals in tumor cells but also regulate various

components of the tumor microenvironment (TME), such as T cells, B cells,

cancer-associated fibroblasts (CAFs), some cytokines. Aberrant expression and

dysfunction of the FHOD1 protein play a key role in tumor immunosuppression.

Specifically, FHOD1 can impair function of chemokine receptors that are

supposed to direct immune cells to localize to the tumor site accurately. As a

result of this impairment, immune cells cannot migrate efficiently into TME,

thereby impairing their ability to attack tumor cells. In addition, FHOD1 activated

signaling pathways within the immune cells abnormally, resulting in their inability

to recognize and destroy tumor cells effectively. Therefore, FHOD1 ultimately

leads to a state of immunosuppression in TME, providing favorable conditions for

the growth and spread of tumor cells. Altogether this review provides an in-depth

understanding of the role of FHOD1 in tumor immunosuppression.
KEYWORDS
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1 Introduction

Tumors develop within complex tissue microenvironments characterized by dynamic

cellar interactions. The initiation of tumorigenesis involves the acquisition of abnormal

proliferative capacity through genetic alterations, primarily including activation of proto-

oncogenes and inactivation of tumor-suppressor genes. However, a tumor consists not only

a group of cancer cells, but also of significant alterations in the surrounding extracellular
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matrix or tumor microenvironment (TME) (1, 2). These alterations

are now recognized as a critical element for tumor development and

progression, as well as potential therapeutic targets. Various

components of TME, including immune cells and cancer-

associated fibroblasts (CAFs), along with diverse cytokines (3),

which together impede effective antitumor immunity and

promote tumor progression and metastasis.

Formins are multi-domain proteins characterized by the highly

conserved formin homology (FH)2 structural domain. This

structural domain regulates the nucleation or elongation of actin

filaments (4). In addition to the FH2 structural domain, Formins

also contains several other structural domains, enabling them to

regulate their activation/inactivation state and subcellular

localization more finely. For example, some Formins possess

specific binding domains at the N-terminal or C-terminal end,

which can interact with other molecules (such as signaling

molecules, regulatory proteins) to achieve precise regulation of

Formin activity (5). In addition, some Formins contain nuclear

localization signals or membrane-binding sequences, which enable

Formins to function in specific cellular sites, further expanding the

diversity of their biological functions. The biochemical properties of

individual formins exhibit remarkable diversity and can sometimes

be functionally antagonistic: upon activation, they may participate

in various actin-related processes, including nucleation, elongation,

bundling and capping (6). At the cellular level, individual Formins

are involved in the formation of various cell protrusions, and

adhesions (7). FHOD1 (Formin homology 2 domain containing

protein 1), a 1165-amino acid FH protein, is a potent bundling

protein for actin filaments. Unlike most formins, FHOD1 does not

elongate actin filaments in vivo (8). FHOD1 contains a GTPase

binding domain (GBD), FH1 and FH2 domains, a coiled-coil, and a

diaphanous-like autoregulatory domain (DAD) (9). In addition, a

large number of studies have shown that FHOD 1 plays an

important role in tumor cell migration, invasion, and stress fiber

formation (10–13). For example, FHOD1 is frequently

overexpressed in triple-negative breast cancer, specifically,

overexpression of FHOD1 may promote malignant proliferation

and metastasis of cancer cells by regulating cytoskeletal stability, cell

migration ability, and modulation of various signaling pathways

(10). In addition to triple-negative breast cancer, FHOD1

expression has been observed to be significantly uppregulated in

glioma cells, a change that correlated strongly with the degree of

malignancy and aggressiveness of gliomas, as well as with the

prognosis of patients (14). Moreover, FHOD1 upregulates PDL1

expression in tumors through epithelial-mesenchymal transition

(EMT) (15), leading to changes in the immune microenvironment.

Specifically, FHOD1 regulates the function and activity of T-

lymphocytes, cancer-associated fibroblasts (CAF), and B-cells

through PDL1, which in turn affects the process of immune

escape and immunosuppression in tumors. In this review,

considering the pivotal role of FHOD1 in both tumor cells and

TME, we aimed to summarize the functions and underlying

mechanisms of FHOD1 acts in the communication between

tumor cells and TME.
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2 Effect of FHOD1 in tumor cells

2.1 Effect on FHOD1 expression during
EMT

Tumor cells acquire invasive and metastasize capabilities through

the EMT process (16). This mechanism of cellular plasticity enables

malignant cells to remodel their actin cytoskeleton and downregulate

cell-cell adhesion proteins. FHOD1 is involved in cytoskeletal

remodeling and cell migration in fibroblasts, melanoma cells, and

breast cancer cells (15, 17). As actin nucleation- forming are

recognized as key regulators of EMT, the expression pattern of

FHOD1 in human tissues shows a clear mesenchymal preference,

with predominant expression in mesenchymal cells and little

expression in epithelial cells. Notably, this expression pattern was

significant altered in oral squamous cell carcinoma, where FHOD1

was observed to be upregulated in a PI3K signaling-dependent

manner after EMT (Figure 1) (13). In EMT-transformed cells,

FHOD 1 promotes the development of spindle-shaped morphology

and facilitates the formation of mesenchymal F-actin structures.

Functional analyses revealed that FHOD1 significantly enhances

cell migration and invasion capabilities. Deletion of FHOD 1

impaired the ability of EMT cancer cells to form invasive nuclear

peduncles and degrade the extracellular matrix. Based on this finding,

we can further explore the potential role of FHOD1 in the tumor

microenvironment. EMT is a complex biological process involving

changes in cell morphology, adhesion, migration, and invasive

capacity, which plays a critical role in tumorigenesis and metastasis

(18–20). Therefore, FHOD1 may indirectly affect tumor progression

and immune evasion mechanisms by regulating EMT.
2.2 FHOD1 promotes PDL1 expression in
tumor EMT

Transcription factors play a key role in inducing FHOD1

expression during EMT, which subsequently promotes tumor cell

proliferation, migration, and invasion, thereby accelerating

tumourigenesis and progression. For example, it has been shown

that the EMT phenotype of oral squamous cell is closely associated

with elevated expression levels of ZEB1 and ZEB2 (21). Similarly, in

cutaneous squamous cell carcinoma, the EMT process is mainly

induced by the transcription factor Snail. FHOD1 is significantly

upregulated at both transcriptional and protein levels in various

EMT cell lines (13). In addition, transcription factors that promote

tissue EMT transformation have also been implicated in the

regulation of PDL1 expression (22–25). These transcription

factors include but are not limited to Snail, Twist, ZEB1, and

ZEB2. They directly regulate the transcriptional level of PDL1 by

binding to the promoter or enhancer regions of the PDL1 gene. A

representative example is the Snail-induced formation of the CCL2/

Lcn2 complex, which establishes an immunosuppressive

microenvironment that ultimately leads to upregulation of PDL1

expression (26). Thus, the role of FHOD1 in malignant tumors is
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not limited to the promotion of EMT, it further exacerbates the

immune escape phenomenon in tumors by upregulating PDL1

expression (27, 28). This dual regulatory mechanism confers a

unique biological function to FHOD1 in cancer (Figure 1).
3 Role of FHOD1 in tumor immune
microenvironment

3.1 Relationship between FHOD1 and
tumor-infiltrating T lymphocytes

The TME comprises three major components: tumor cells,

tumor stroma (inflammatory cells, fibroblasts, and vascular

networks), and the surrounding extracellular matrix (29). The

non-malignant cells of the TME play an active role in various

steps of tumourigenesis (1), significantly influencing tumor

behavior and treatment response (3, 30). Within this complex

ecosystem,various cells infiltrate the tumor mass and engage in

dynamic interactions with tumor cells through both direct cell-to-

cell contact and secreted signaling molecules (31). Tumor-

infiltrating T lymphocytes play a pivotal role in tumor immunity

(32–34), and they exert complex immunomodulatory effects

through different subpopulations such as CD4+ T cells and CD8+

T cells (35, 36), as well as anti-tumor pro-inflammatory T cells,

immunosuppressive Th2 cells, Th17 cells, and regulatory T cells.

These T cells are capable of secreting various immunosuppressive

cytokines, such as IL-10 and transforming growth factor b (TGF-b),
which further regulate T cell function (37). However, excessive

proliferation of tumor cells alters the supply of nutrients and oxygen

in TME, forcing T cells to change their metabolic pathways from a

dependence on glycolysis to a reliance on fatty acid oxidation(FAO)

and oxidative phosphorylation(OXPHOS) to maintain their effector

functions. This metabolic adaptation is critical for T cell survival

and function in the tumor microenvironment (38). Studies have
Frontiers in Immunology 03
shown that FHOD1 expression is associated with lymphocyte

infiltration in tumor (39). It is noteworthy that human leukocyte

antigens are predominantly localized in lymphoid tissues such as

the spleen and thymus, as well as in hematopoietic tissues (39).

Subsequent investigations have revealed that the substance is

overexpressed in human hematological malignancies, especially in

non-Hodgkin’s lymphoma and leukemia cell lines. These findings

provide important clues for further investigation of its biological

functions and potential herapeutic applications (40, 41).

In tumor cells, FHOD1 exploits the PD-1/PDL1 pathway to

evade immune surveillance, through the suppression of T-cell

responses within the TME (42, 43). PD-L1, a key ligand of PD-1,

is expressed on the surface of immune cells (44, 45) and tumor cells

(31). Upon binding to PD-1, which accumulates near the TCR site,

recruits the phosphatase SHP2 to its cytoplasmic domain.

Subsequently, SHP2 dephosphorylates proximal TCR signaling

molecules, leading to reduced T cell proliferation, reduced

cytokine secretion (interferon-g, IL-2, and tumor necrosis factor-

a), altered effector function and reduced survival of activated T cells

(Figure 2) (31). In summary, FHOD1 enhances the expression level

of PDL1 by upregulating its expression during EMT. Therefore, the

aberrant expression of PDL1 can be attributed to the upregulation

of the oncogenic pathways. These findings elucidate the critical

roles of FHOD1 and PDL1 in tumorigenesis, demonstrating their

contribution to tumor progression through the regulation of EMT

processes (46).
3.2 Interaction of FHOD1 and autophagy in
CAF

CAFs play a key role in promoting connective tissue

proliferation and immunosuppression in TME (47–50), making

them potential therapeutic targets for cancer (51–53). Autophagy is

a highly regulated, multi-step cellular process that facilitates the
FIGURE 1

FHOD1 modulates key signaling pathways involved in PDL 1 expression, and downstream signals of these pathways include ZEB and Snail, which are
transcription factors of EMT that regulate PDL 1 expression.
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transport of cytoplasmic components to lysosomes for degradation

and play crucial roles in nutrient recycling and metabolic

adaptation (54, 55). FHOD1 is enhanced by the up-regulation of

PDL1 expression during EMT, and a large body of literature has

shown that upregulation of PDL1 expression causes autophagy in

tumor fibroblasts. For example, Xiaozhen Zhang et al. found that in

an immunocompetent mouse model, autophagy in CAFs led to up-

regulation of PDL1 expression, which resulted tumor immune

escape (56). Endo S et al. reported that autophagy of CAFs

activates pancreatic stellate cells, promotes the development of

pancreatic cancer, and correlates poor prognosis in pancreatic

patients cancer (57). In summary, FHOD1 can influence CAF by

promoting the up-regulation of PDL1 protein expression (58). This

effect was primarily characterized by the enhancement of

autophagic activity in CAF cells, a crucial cellular process

responsible for intracellular degradation and component

recycling. Through autophagy, CAF cells have the potential to

help tumor cells evade the surveillance of the immune system,

thereby promoting immune escape (53, 59). Immune escape is a key

mechanism by which tumor cells evade detection and destruction

by the immune system, which is essential for tumor growth and

spread. In addition, FHOD1 inhibits TME, including immune cells,

extracellular matrix, vascular and other molecular signals, through

PDL1-mediated CAF autophagy (60). Inhibition of the TME leads

to impaired immune response in the peritumoral milieu, thereby

creating a more conducive environment for tumor cell growth and

proliferation. Therefore, elucidating the precise role of FHOD1 in

this process is important for the development of new tumor

therapeutic strategies.
3.3 FHOD1 overexpression in tumors
stimulates STAT3 activation

The STAT protein family, comprising STAT1 to STAT6, is an

important group of transcription factors that play a key role in cell

signaling (61–63). Proliferation, differentiation, apoptosis, and

inflammation are important biological mechanisms by which STAT
Frontiers in Immunology 04
proteins regulate cells (64–66). Among the STAT protein family,

STAT1, STAT3, and STAT5 are considered to have important roles in

cancer cells (67, 68). Among them, STAT1 is involved in anti-tumor

immune response, while STAT3 and STAT5 exhibit pro-tumorigenic

properties, and their overexpression is closely associated with tumor

progression and malignancy (66, 69–71). STAT3 is a key oncogenic

transcription factor that is constitutively activated in tumor cells and

immune TMEs, serving as a key signaling hub integrating multiple

oncogenic signaling pathways (72–74). Abnormally activated STAT3

inhibits apoptosis, induces cell proliferation (75, 76), upregulates

matrix metalloproteinase expression, increase matrix stiffness (77),

and promotes EMT (75), with the proinflammatory cytokine

interleukin-6 (IL-6) being one of the main culprits. It can drive

many cancer “hallmarks” by activating the JAK/STAT3 signaling

pathway (78). The IL-6/JAK/STAT3 signaling pathway constitutes a

self-sustaining regulatory circuit that plays a key role in both cancer

development and progression. This molecular cascade can be

triggered by chronic inflammation, which is widely recognized as an

important risk factor for tumorigenesis (79–83). IL-6 triggers the

activation of CAF (84), and activated CAF up-regulates the expression

of markers such as a-smooth muscle actin (a-SMA), fibroblast

activation protein, platelet-derived growth factor-b, and N-cadherin

(85). In addition, activation of FHOD1 protein has been found to be

closely associated with the initiation of the STAT3 signaling pathway

(86, 87), a process that has attracted much attention in oncology

research. Upon activation, FHOD1 induces STAT3 phosphorylation,

initiating a downstream signaling cascade that ultimately leads to a

significant upregulation of IL-6 expression. As a key pro-

inflammatory cytokine in the tumor microenvironment, IL-6 plays

a dual role in promoting CAF activation and creating a favorable

environment for tumor cell proliferation and metastasis (85).The

activation of CAF is a critical step in the process of tumourigenesis

and progression. These activated fibroblasts are capable of secreting a

variety of growth factors and extracellular matrix proteins, thus

providing the necessary support for tumor cells. Mechanistically,

FHOD1-mediated STAT3 activation induces IL-6 production,

which subsequently triggers CAF activation (88, 89). This cascade of

molecular events establishes a microenvironment that promotes

tumorigenesis and progression (90–92).

In addition, the STAT3/EMT axis mediates the invasion of a

variety of tumors, including colorectal, lung, breast, and brain

tumors (93–95). ZEB1/2 protein, TGF-b, Snail, and other EMT

regulators are affected by STAT3 signaling (96–98). It has been

reported that Snail-induced up-regulation of CSF1R triggers STAT3

signaling while suppressing the expression of miRNA-34a, which

promotes the induction of EMT in colorectal carcinogenesis (99).

UBE2S up-regulates the expression level of HIF-1a, which

stimulates STAT3 signaling, leading to Snail and Twist1

overexpression and inducing EMT (100). we speculate that

FHOD1 could trigger a series of downstream events by activating

the STAT3 signaling pathway, which in turn promotes cancer cell

invasion and metastasis. Specifically,when the STAT3 signaling

pathway is activated, a series of gene expression changes are

triggered, two transcription factors known to inhibit the

expression of epithelial cell markers while promoting the
FIGURE 2

In tumor cells, FHOD1 uses the PD-1/PDL1 pathway to evade immune
surveillance mainly by inhibiting t-cell responses in the TME.
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expression of mesenchymal cell markers, which in turn promotes

the EMT process (101–103) (Figure 1). In addition, the expression

of TGF-b and Snail proteins, crucial regulators of the EMT process,

was significantly upregulated, thereby greatly enhancing cancer cell

migration (79). These findings highlight the role of FHOD1 in

driving colorectal cancer progression and metastasis, establishing its

key molecular role in tumor progression.
3.4 Interaction between FHOD1 and CD21
in human B cells

CD21 is a multifunctional cell surface glycoprotein that is

highly expressed in B lymphocytes and follicular dendritic cells

(FDCs) (104). However, it is also present in a variety of other cell

types.CD21 is a receptor for complement C3dg fragments (105), for

CD23 (106), and itself. CD21 consists of an extracellular region

consisting of 15–16 short consensus repeat units, a hydrophobic

transmembrane region, and an intracellular region of 34 amino

acids (107, 108). These three known ligands bind to two N-terminal

repeats (106, 107), and crystal structure analysis suggests that they

form a highly flexible domain (109). The role of human CD21 in the

immune response has been extensively studied and is now well

characterized (110, 111). As a key component of the B-cell co-

receptor complex, CD21 plays a crucial role in regulating antibody

production through multiple mechanisms. These include

modulation of B-cell receptor (BCR) signaling through the

immune complex (C3d-Ab-Ag), promotion of Fc receptor

signaling, and enhancement of B cell memory through the

retention of pathogens (including HIV) on FDCs (107, 112–115).

The interaction of CD21 and CD23 on B cells is thought to protect

B cells from apoptosis (116). However, the function of CD21 on

most other cell types remains unclear (117).

The interaction of FHOD1 with CD21 in mammalian cells is

realized through the C-terminus, a region containing a dad-like

structural domain that binds to its own N-terminus through an

intramolecular inhibitory interaction. The binding of phosphorylated

Rho GTPase to the n-terminal GTPase-binding domain uncouples

this interaction. In colorectal cancer cells, stimulation of CD21

triggers the generation of mechanical forces by Rho GTPase and

Rac1, which recruit FHOD1 to the vicinity of CD21. This recruitment

facilitates colorectal carcinogenesis and tumor progression.

Furthermore, FHOD1 plays a pivotal role in CD21-associated

cytoskeletal reorganization and the regulation of intracellular

signaling pathways (Figure 3) (117).
4 Conclusion

Forins represent a highly conserved family of actin regulatory

proteins that play crucial roles in various tumor cell functions (119),

such as cell morphogenesis, cell division, and cell polarity (120). In

addition, FHOD1 is one of the most highly expressed human forints

detected in a variety of tumor cell lines and tissues, underscoring its

fundamental importance in cytoskeletal organization and associated
Frontiers in Immunology 05
cellular processes (12), FHOD1 was also shown to be able to influence

immunochemokines within tumor cells through signaling pathways.

Immunochemokines are signaling molecules that attract immune cells

to specific locations, and they play a key role in immune surveillance

and tumor immune escape. The regulatory function of FHOD1 in

modulating the accumulation of these immunochemokines may

significantly impair the immune system’s capacity to recognize and

eliminate tumor cells, consequently fostering an immunosuppressive

tumormicroenvironment.This phenomenon of immunosuppression is

a strategy for tumor cells to escape the surveillance of the host immune

system, allowing them to survive and spread in vivo.

In this exhaustive review, we elucidate the pivotal role of

FHOD1 protein in tumor biology, with a specific focus on its

regulatory mechanism in upregulating PDL1 expression through

the EMT pathway (121–123). Our analysis not only reveals the

potential mechanism of FHOD1 in tumor cell proliferation and

invasion but also demonstrates its importance in tumor

microenvironment. Researchers have found that the upregulation

of FHOD1 expression is closely related to the invasiveness of tumor

cells, which may provide a new target for tumor therapy.

Furthermore, the upregulation of FHOD1 expression in tumor

cells in tumor cells is not limited to the promotion of tumor cell

proliferation and invasion, but also involves a complex network of

signaling pathways that regulate the expression and function of

immune molecules. For example, FHOD1 may play an important

role in tumor immune escape by regulating certain key signaling

molecules, particularly its effect on the expression of the immune

checkpoint molecule PD-L1. Increasing evidence suggests that the

aberrant expression of FHOD1 is associated with changes in the

immune microenvironment of multiple tumor types, which

provides new perspectives for understanding the mechanism of

tumor immune escape.
FIGURE 3

The covalent attachment of activated C3 d to antigen targets the
complex to follicular dendritic cells. CD21 stimulates B cells to
participate in the regulation of antibody production through BCR
signaling mediated by immune complexes (C3d-Ab-Ag) (118). When
CD21 is stimulated, the mechanical force generated by Rac1 attracts
FHOD1 to the vicinity of CD21, thereby facilitating promoting the
development and progression of colorectal cancer.
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In conclusion, the role of FHOD1 in tumorigenesis and

development cannot be ignored, as it regulates tumor cell

behavior and remodels the immune microenvironment through

multiple mechanisms. These findings not only deepen our

understanding of tumor biology, but also provide new

perspectives and promising therapeutic targets for cancer

treatment. With further research, we expect to gain a more

comprehensive understanding of the function of FHOD1 in

tumor biology, which will help develop innovative and effective

therapeutic strategies (124–126).
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