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Glucocorticoid resistance is a challenging problem in clinical practice. Increasing

glucocorticoid sensitivity and reducing resistance are important in the

management of certain diseases. In steroid-resistant airway inflammatory

diseases, glucocorticoid receptor (GR) expression is reduced, and impaired GR

nuclear translocation is closely related to glucocorticoid resistance. Histone

deacetylase SIRT1 regulates steroid hormone receptor activity and interacts

with the androgen receptor and GR. In some glucocorticoid-resistant diseases,

SIRT1 expression is reduced. Here, we review recent advances in the role of SIRT1

in regulating glucocorticoid signaling. First, we describe the structure, tissue

expression, and subcellular localization of SIRT1. We also discuss the molecular

mechanisms by which SIRT1 regulates glucocorticoid activity and its association

with GR, as well as the mechanisms and roles of SIRT1 in several common

glucocorticoid-resistant diseases. SIRT1 may serve as a potential therapeutic

target, providing an opportunity for the treatment of glucocorticoid-

resistant diseases.
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1 Introduction

Glucocorticoids are steroid hormones used to treat inflammatory and autoimmune

diseases. However, with their widespread use, the occurrence of glucocorticoid insensitivity

and resistance has also increased. Several diseases, including asthma, nephrotic syndrome,

and allergic rhinitis, have been shown to develop glucocorticoid resistance (1–3).

Glucocorticoids need to bind to the cytoplasmic glucocorticoid receptor (GR) to enter

the nucleus and exert anti-inflammatory effects through transcriptional activation or

inhibition. Under normal physiological conditions, the distribution of GR in the

cytoplasm and nucleus is in a state of dynamic balance. When hormone secretion

increases or exogenous hormone therapy is given, GR and glucocorticoids immediately

accumulate in the nucleus. In steroid-resistant airway inflammatory diseases, the

expression of GR is reduced, thus limiting its ability to enter the nucleus, which is

closely related to glucocorticoid resistance (4, 5).
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Histone deacetylases (HDACs) and their inhibitors play critical

roles in glucocorticoid-resistant diseases (6, 7). Reduced HDAC2

activity is associated with the modulation of glucocorticoid

insensitivity in diseases such as asthma (8). HDAC family member

sirtuin 1 (SIRT1) is reported to play a critical role in the regulation of

glucocorticoid signaling (9, 10). The human SIRT family includes seven

members (SIRT1–SIRT7) that participate in many physiological and

pathological processes, including cellular energy metabolism, DNA

repair, oxidative stress, and inflammatory response by deacetylating a

series of important proteins (11–13). However, the role of SIRT1 in

glucocorticoid-resistant diseases is unclear. Hence, in this paper, we

summarize the latest advances in the role of SIRT1 in regulating

glucocorticoid activity and glucocorticoid-resistant diseases.
2 SIRT1 gene and structure

It is widely acknowledged that the silencing information regulator

(SIR) complex confers longevity in yeast. Among the seven types of

SIRT found inmammals, SIRT1 is located at chromosome 10q21.3 and

consists of eight introns and 11 exons, with a length of 33 715 bp. The

human SIRT1 protein contains 747 amino acid residues, consisting of

NH2-terminal (513–747 residues), catalytic (244–512 residues), and

COOH-terminal domains (1–180 residues) (14). The catalytic core

consists of two domains: i.e., a highly conserved NAD+-binding

domain and a helical (269–324 residues) and zinc-binding domain

(362–419 residues). Catalytic reactions are initiated by the binding of

acetylated targets and NAD+ (15). The SIRT1 protein contains two

nuclear localization signals at residues 31–38 and 223–230 and two

nuclear expert signals at residues 138–145 and 425–431 (16) (Figure 1).

Nuclear import and export sequences are considered to be the

regulatory mechanism underlying the nucleocytoplasmic shuttling of

SIRT1. The 2–268 region interacts with histones 1–4 (17) and the

circadian locomotor output cycles kaput (CLOCK) protein (18), while

residues 256–259 are required for interactions with cell cycle and

apoptosis regulator 2 (CCAR2) (19).
3 SIRT1 expression and localization

SIRT1 is expressed in all tissues, particularly in testis and

endocrine tissues (20). Figure 2 shows the protein and RNA

expression levels in different human tissues (from the Human
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Protein Atlas). While SIRT1 is localized in the nucleus of HeLa

cells and HEK293 cells (21, 22), it is also found in the cytoplasm of

A549 and human bronchial epithelial cells (23, 24). Furthermore,

the subcellular localization of SIRT1 can change under specific

circumstances. In BEAS-2B cells, cigarette smoke extract can induce

nuclear translocation of SIRT1 from the cytoplasm and is associated

with strong induction of several antioxidant genes (24). In murine

microglial cells, cobalt chloride treatment can prevent SIRT1

nuclear localization, leading to neuronal damage (25). As SIRT1

deacetylates histones and various nonhistone proteins, aberrant

changes in its subcellular localization may affect its function.
4 SIRT1 interacts with glucocrticoid
signaling

4.1 Glucocorticoid induce SIRT1 expression

SIRT1 regulates the activity of glucocorticoids, while

glucocorticoids also influence the expression of SIRT1.

Dexamethasone reduces SIRT1 expression and enzymatic activity

by inducing miR-128, which is known to directly target SIRT1 in pig

preadipocytes (26). Furthermore, dexamethasone-induced expression

of miR-34a can suppress SIRT1 deacetylase activity, led to decreased

dexamethasone-induced cell death responses in malignant multiple

myeloma cells (27). In mesenchymal stem cells, dexamethasone

treatment for 24 h reduced SIRT1 expression (28). Moreover, in

rats with adjuvant-induced arthritis, glucocorticoid treatment

reduced the increase in SIRT1 expression and accompanying

inflammation in PBMCs and liver (29). These studies indicate that

glucocorticoid treatment down-regulates SIRT1 expression, which

could further impair glucocorticoid activity in certain diseases.
4.2 SIRT1 regulates glucocorticoid activity

Growing evidence suggests that SIRT1 regulates steroid

hormone receptor activity. SIRT1 generally inhibits androgen

receptor (AR), estrogen receptor (ER), and mineralocorticoid

receptor (MR) activity (30), but has different effects on

glucocorticoid signaling activity. Prednisolone is reported to

inhibit adriamycin-induced vascular smooth muscle cell

senescence and inflammation through the SIRT1-AMP-activated
FIGURE 1

SIRT1 protein structure. SIRT1 protein contains 747 amino acid residues, consisting of NH2-terminal, catalytic, and COOH-terminal domains, as well
as two nuclear localization signals (NLS) and two nuclear export signals (NES).
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protein kinase(AMPK)signaling pathway (31), with down-

regulation of SIRT1 augmenting the effects of prednisolone on

inflammation and senescence, and up-regulation of SIRT1

attenuating the effects on cellular senescence. Furthermore, SIRT1

promotes glucocorticoid induced anti-inflammatory activity but

inhibits uncoupling protein-3 (UPC3) gene transcription, a

mitochondrial membrane transporter induced by glucocorticoid

that protected skeletal muscle cells from oxidative stress damage

(32). Thus, these studies suggest that SIRT1 exerts variable

functions on glucocorticoid signaling under different conditions.

Side effects associated with glucocorticoid treatment include

osteoporosis, decreased bone mineral content, and reduced bone

tissue absorption. Recent study has shown that ferulic acid can

protect against dexamethasone-induced osteoporosis in neonatal

rats by up-regulating SIRT1 gene and protein expression and

reducing nuclear factor-kB (NF-kB) activation (33). Furthermore,
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nicotinamidemononucleotide treatment has been shown to attenuate

dexamethasone-induced osteogenic inhibition by promoting SIRT1

and peroxisome proliferator activated receptor gamma coactivator

(PGC)-1a expression, while knockdown of SIRT1 reverses the

protective effects of nicotinamide mononucleotide and the

expression of PGC-1a (34). Dexamethasone can also induce

extracellular matrix loss in chondrocytes isolated from mouse knee

joints, while melatonin pretreatment reverses the negative effects of

dexamethasone via mediation of the SIRT1 pathway and inhibition

of SIRT1 by the inhibitor EX527 reverses the protective effects of

melatonin (35). In a cellular model of corticosterone-induced

neurotoxicity, d-limonene shows neuroprotective effects through

up-regulation of SIRT1, thereby suppressing NF-kB nuclear

translocation and inhibiting inflammatory factors (36). Thus, these

results indicate that SIRT1 can suppress glucocorticoid-induced side

effects (Figure 3).
FIGURE 2

SIRT1 gene and protein expression in different human tissues. (A) Normalized expression (nTPM) levels of SIRT1 in different tissues. SIRT1 showed
high expression in the adrenal glands and testis. (B) Protein expression of SIRT1 in different tissues. Protein expression was high in the adrenal gland,
testis, and lymph node. All data were obtained from the Human Protein Atlas.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1514745
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xie et al. 10.3389/fimmu.2025.1514745
4.3 SIRT1 interacts with GR

Unliganded GR is primarily localized in the cytoplasm in

complex form, where it binds with heat shock proteins,

immunophilins, and other molecular chaperones. Aberrant GR

expression or nuclear translocation is associated with

glucocorticoid insensitivity. For example, airway smooth muscle

cells from patients with severe asthma exhibit reduced GR

expression and impaired nuclear translocation associated with

reduced glucocorticoid sensitivity (4). We previously found that

decreased GR expression and impaired nuclear translocation in

respiratory syncytial virus-infected cells and mice led to

glucocorticoid insensitivity (37, 38). Notably, respiratory syncytial

virus nonstructural protein 1 (NS1) competitively inhibits GR

binding to nucleocytoplasmic transporter 13, resulting in GR

cytoplasmic retention (37).

SIRT1 can influence the transcriptional activity of AR (39) as

well as enhance GR-induced transcriptional activity through

physical interactions. Notably, SIRT1 cooperates with GR to bind

to the glucocorticoid response element-induced glucocorticoid-

responsive genes (9). Knockdown of SIRT1 influenced up to 30%

of the glucocorticoid-responsive genes. SIRT1 has also been shown

to interact with GR in a glucocorticoid-dependent manner in rats

under estradiol benzoate withdrawal (10). Furthermore, activation

of hippocampal SIRT1 has been shown to block the development of

postpartum depression-related to increased GR(GRa) expression

(10).Thus, SIRT1 may be a novel target for the treatment of

postpartum depression. In GT1–7 cells, SIRT1 knockdown using

small interfering RNAs significantly suppressed GRa expression
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and reduced GRa protein levels (40). In contrast, GRb, which
functions as a dominant-negative inhibitor of GRa, has been

reported to be elevated in corticosteroid-resistant patients with

asthma, COPD, and RSV bronchiolitis (41–43). Previous studies

have demonstrated that intrauterine growth retardation

significantly increases H3K9 acetylation at the GRb exon region,

leading to upregulated GRb expression in the rat hippocampus (44).

Notably, H3K9 is a known deacetylation target of SIRT1 (45).It

suggested that SIRT1 might play a role in the suppression of GRb
expression. However, it is important to note that there is currently

no direct evidence no direct evidence to substantiate the claim that

SIRT1 suppresses GRb expression. The relationship between them

and their role in glucocorticoid resistance still warrants

further investigation.

Recent study has shown that hyperacetylation of Hsp90 which

activity is required for the maintenance of GR stability blocks GR

nuclear translocation in INS-1 cells reversed dexamethasone effect

on insulin secretion (46). Deacetylation of Hsp90 at K294 by SIRT2

overexpression results in disassociation of Hsp90 with GR and

subsequent nuclear translocation (47), thereby repressing

inflammatory cytokine expression. There were no reports about

SIRT1 interacted with Hsp90 yet while the potential ability exist.

Post-translational modification of GR plays an important role

in regulating the biological actions of glucocorticoids. GR is

acetylated by CLOCK at lysine residues 494 and 495 within the

hinge region, which reduces the binding affinity of GR to DNA

elements as well as its ability to regulate transcription (48). The

deacetylation of GR by histone deacetylase 2 is required for efficient

transrepression of NF-kB-regulated genes (49). While, SIRT1
FIGURE 3

SIRT1 regulated glucocorticoid activity. SIRT1 induced glucocorticoid activity to suppress vascular smooth muscle cell senescence and inflammation.
Glucocorticoids induced UPC3 expression to protect skeletal muscle cells from oxidative stress while SIRT1 inhibited UPC3 expression. SIRT1
suppressed glucocorticoid-induced side effects in different cells and rats, including reduced osteoporosis in neonatal rats, decreased loss of
extracellular matrix in chondrocytes, and reduced neurotoxicity in neurocytes.
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interacted with GR whether could deacetylate these lysines residues

and change the GR activity still need further investigation but the

potential ability exist (Figure 4).
5 SIRT1 in glucocorticoid-resistant
diseases

5.1 SIRT1 expression in helper T cells

Helper T cells exhibit distinct sensitivities to glucocorticoids,

which significantly influence their survival, differentiation, and

cytokine production. Therefore, investigating the expression and

regulatory role of SIRT1 in T cell subsets is of significant

importance.SIRT1 is highly expressed in immune cells, and the

expression levels are nearly equivalent among helper T cell subsets.

Figure 5 shows RNA expression levels in different T cell subsets

(from the Human Protein Atlas). The expression is highest in naive

T-reg cells and lowest in T-reg cells. It seems that as T cells become

activated, the expression of SIRT1 decreases accordingly.
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5.2 The regulatory role of SIRT1 in T cell
differentiation and glucocorticoid
resistance

5.2.1 Treg
Foxp3+ Treg cells play a crucial role in glucocorticoid-mediated

suppression of eosinophilic airway inflammation, as evidenced by

the failure of glucocorticoids to attenuate inflammation in Treg-

depleted mice (50). In patients with nephrotic syndrome, an

elevated Foxp3+ Tregs ratio in peripheral blood is associated with

enhanced glucocorticoid sensitivity (51). Furthermore, in

glucocorticoid-resistant acute Graft-versus-Host Disease (GVHD),

mesenchymal stem cell treatment has been shown to increase

Foxp3+ Tregs population, leading to significant alleviation of

disease severity in murine models (52).Additionally, research

showed that LINC01512 promotes SIRT1 expression in Treg cells,

enhancing their differentiation and alleviating inflammation in

necrotizing enterocolitis (53). However, in chronic periodontitis,

SIRT1 expression is increased in CD4+ T cells, which suppresses

Treg cells and disrupts the Th17/Treg balance, leading to persistent
FIGURE 4

SIRT1 interacts with glucocorticoid receptor (GR). GR is predominantly localized in the cytoplasm in complex form, where it binds with heat shock
proteins, immunophilins, and other molecular chaperones. Acetylation of Hsp90 results in impaired nuclear translocation, and acetylation of GR
reduces its binding affinity to DNA elements as well as its ability to regulate transcription. SIRT1 directly interacts with GR and enhances it
transcriptional activity and inhibits GR binding with p300. The potential ability of SIRT1 deacetylates Hsp90 and GR exsit as SIRT2 deacetylates Hsp90
or HDAC2 deacetylates GR.
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local inflammation (54). Studies have shown that inhibiting SIRT1

can enhance Foxp3 mRNA transcription and acetylation, thereby

increasing the number and function of Treg cells (55). SIRT1

inhibitors can also enhance the function and stability of Treg

cells, reducing inflammatory responses (56).

5.2.2 Th17
Previous studies have demonstrated that pathogenic Th17 cells

represent a distinct subset of pro-inflammatory and glucocorticoid-

resistant Th17 cells in humans. These pathogenic Th17 cells are

characterized by the CCR6+CXCR3+ phenotype and co-express IL-

17A and IFN-g, whereas nonpathogenic Th17 cells exhibit the

CCR6+CCR4+ phenotype and produce IL-17A without IFN-g (57).

SIRT1 appears to play a regulatory role in this process, as it promotes

CCR4 expression, with CCR4 levels being significantly reduced in

SIRT1 knockout cells (58). This suggests that SIRT1 may preferentially

enhance the development of nonpathogenic Th17 cells, potentially

promoting glucocorticoid responsiveness in inflammatory diseases.

Recent research has further elucidated the mechanisms underlying

glucocorticoid resistance, showing that IL-1b induces STAT5-mediated

glucocorticoid resistance in Th17 cells, which suppresses

glucocorticoid-induced anti-inflammatory genes in experimental

autoimmune encephalomyelitis (EAE) mice. Importantly, Th17-

specific deletion of STAT5 abolished the IL-1b-induced
glucocorticoid resistance, rendering EAE mice sensitive to

glucocorticoid treatment (59). SIRT1 has been demonstrated to

interact with STAT5 through direct binding, leading to STAT5

deacetylation and substantial suppression of STAT5 phosphorylation,

which subsequently alleviates growth hormone resistance in mice

(60).Consistent with these findings, another study revealed that

active SIRT1 downregulates STAT5 expression and suppresses
Frontiers in Immunology 06
pSTAT5 signaling (61). Furthermore, SIRT1 has also been shown to

deacetylate STAT3, inhibiting its nuclear translocation and binding to

the ROR-gt promoter, thereby suppressing Th17 cell differentiation

(62). This mechanism is particularly relevant given that increased p-

STAT3 expression in Th17 cells has been associated with

glucocorticoid insensitivity in a neutrophilic airway inflammation

mouse model (63). Collectively, these findings suggest that SIRT1

may restore glucocorticoid sensitivity in Th17 cells by targeting either

STAT5 or STAT3 signaling pathways. Conversely, one study showed in

inflammatory bowel disease, SIRT1 expression is upregulated, and

specific inhibition of SIRT1 significantly reduces ROR-gt mRNA levels

in Th17 cells, leading to a decrease in Th17 cell proportion and

alleviation of local inflammation (64).

5.2.3 Th2
In allergic inflammation models, SIRT1 inhibits Th2 cell

differentiation by suppressing the mTORC2-IL-4-STAT6-GATA3

signaling axis (65). However, in allergic rhinitis models, SIRT1

expression is increased in CD4+ T cells, where it promotes Th2 cell

proliferation by downregulating FasL, caspase-3, and p53

expression (66).

5.2.4 Th1
In Th1 cells, SIRT1 expression levels are relatively high, but

Foxo1 retention in the nucleus is limited. Treatment with Ex527 did

not significantly alter IFN-g secretion (67). In bronchiolitis

obliterans following lung transplantation, SIRT1 expression is

reduced in peripheral blood T cells, leading to diminished

responsiveness to glucocorticoids. Activation of SIRT1 enhances

the inhibitory effect of glucocorticoids on IFN-g and TNF-a
production in T cells (68).
FIGURE 5

SIRT1 gene expression in T cell subsets.
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Given the diverse functions of SIRT1 across different T cell

subsets and inflammatory microenvironments, its role in

modulating glucocorticoid responses may remain complex.

Further direct evidence are needed to elucidate how SIRT1

regulates glucocorticoid responses in T cells.
5.3 The role of SIRT1 in other
glucocorticoid-resistant diseases

Accumulating evidence highlights the important role of SIRT1 in

glucocorticoid-resistant diseases. SIRT1 single-nucleotide

polymorphisms are associated with glucocorticoid sensitivity in

primary immune thrombocytopenia (69). Furthermore, CC/TC

genotypes of SIRT1 rs12778366 show a two-fold increase in the

risk of glucocorticoid resistance (70). CD8+ T and natural killer T cell

(NKT)-like cells in patients with chronic obstructive pulmonary

disease (COPD) show glucocorticoid resistance associated with

decreased SIRT1 expression (71). Treatment with SIRT1 activators

restores the anti-inflammatory activity of prednisolone and reduces

pro-inflammatory cytokine production (72). Glucocorticoids are also

widely used to treat B acute lymphoblastic leukemia, although their

efficacy is often impaired by the development of resistance (73).

FOXO3a translocates into the nucleus to mediate the cytotoxic

function of dexamethasone, and SIRT1/2-mediated acetylation of

Lys-242/5 is associated with dexamethasone-induced FOXO3a

activity (73). Human peripheral blood mononuclear cells (PBMCs)

from patients with severe asthma show reduced SIRT1 protein

expression and activity and increased Th2 cytokine expression (74);

and treatment of HUT78 T-cells with SIRT inhibitors can increase

GATA Binding Protein 3(GATA-3) acetylation and IL-4 and IL-13

expression (75). However, severe asthmatics appear to be largely

unresponsive to high-dose inhaled and systemic glucocorticoids (76).

While direct evidence showing an association between SIRT1 and

glucocorticoid resistance in asthma is still lacking, studies have

demonstrated that SIRT1 plays a critical role in suppressing allergic

airway inflammation in vivo and in vitro (77).
6 Concluding remarks and future
perspectives

Glucocorticoid resistance and reduced sensitivity are

unresolved issues in severe asthma and other diseases. SIRT1 can

regulate glucocorticoid activity and interact with GR. Thus,
Frontiers in Immunology 07
Activation or inhibition of SIRT1 represents a promising novel

therapeutic strategy for clinical trials and therapeutic applications.

Further studies are still needed to determine the role of SIRT1 and

glucocorticoids and the therapeutic activity of SIRT1 in

glucocorticoid-resistant diseases.
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