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Introduction:Multiple sclerosis (MS) is a chronic neurodegenerative disease that

affects over 2.8 million people globally, leading to significant motor and non-

motor symptoms. Effective disease monitoring is critical for improving patient

outcomes but is often hindered by the limitations of infrequent clinical

assessments. Digital remote monitoring tools leveraging big data and AI offer

new opportunities to track symptoms in real time and detect disease progression.

Methods: This narrative review explores recent advancements in digital remote

monitoring of motor and non-motor symptoms in MS. We conducted a PubMed

search to collect original studies aimed at evaluating the use of AI and/or big data

for digital remotemonitoring of pwMS. We focus on tools and techniques applied

to data from wearable sensors, smartphones, and other connected devices, as

well as AI-based methods for the analysis of big data.

Results: Wearable sensors and machine learning algorithms show significant

promise in monitoring motor symptoms, such as fall risk and gait disturbances.

Many studies have demonstrated their reliability not only in clinical settings and

for independent execution of motor assessments by patients, but also for passive

monitoring during everyday life. Cognitive monitoring, although less developed,

has seen progress with AI-driven tools that automate the scoring of

neuropsychological tests and analyse passive keystroke dynamics. However,

passive cognitive monitoring is still underdeveloped, compared to monitoring

of motor symptoms. Some preliminary evidence suggests that application of AI

and big data to other understudied aspects of MS (namely sleep and circadian

autonomic patterns) may provide novel insights.

Conclusion: Advances in AI and big data offer exciting possibilities for improving

disease management and patient outcomes in MS. Digital remote monitoring has

the potential to revolutionize MS care by providing continuous, long-term

granular data on both motor and non-motor symptoms. While promising

results have been demonstrated, larger-scale studies and more robust

validation are needed to fully integrate these tools into clinical practice and

generalise their results to the wider MS population.
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Introduction

Multiple Sclerosis (MS) is a chronic, inflammatory, and

neurodegenerative disease that affects the central nervous system

(CNS). It is estimated that MS impacts ~2.8 million people globally,

with a higher prevalence among women (1). MS can cause a wide

range of symptoms, depending on the location of lesions across the

CNS. Primarily, MS affects sensorimotor functioning, causing

vision loss, sensory alterations, walking difficulties, muscle

weakness, spasticity, and problems with coordination and balance

(2). Additionally, cognitive impairment can be observed in 30-70%

of pwMS (3).

The unpredictable nature of the disease, typically characterised

by a relapsing-remitting course and by progressive accrual of

disability, profoundly affects the quality of life (QoL) of people

with MS (pwMS). Furthermore, recent evidence has shown that

many pwMS can experience an insidious disease progression even

in the absence of relapses (4). Thus, MS poses significant physical,

emotional, and socio-economic burdens on individuals and their

families (5). Accurate disease monitoring is crucial to put in place

the best possible treatment plans and reduce the negative impact of

the disease on patients’ QoL. Due to organisational and economical

limitations of healthcare systems, however, conventional clinical

follow-up assessments are generally performed every 6-12 months,

or at the time of a relapse. Thus, clinicians are often unable to detect

subtle disease progression and/or to capture all relapses, since they

need to rely on patients’ recall and infrequent assessments.

The rising adoption of digital health technology in the last

decade has sparked an interest in the development, study, and

validation of new digital tools for the purpose of monitoring disease

progression. Indeed, digital remote monitoring may have the

potential to enable longitudinal monitoring of the disease course

with a granularity that would otherwise be unobtainable with more

costly and less accessible clinical follow-ups (6). A recent European

survey found that the vast majority (78%) of patients use

commercially-available digital tools (smartphone apps, wearables)

to increase awareness of their health, and that 62% of healthcare

providers believe that the data obtained from these tools impacts

their communication with patients, their understanding of patients’

health state, and their decision-making progress (7). Increasing the

adoption of validated digital remote monitoring tools into everyday

clinical practice would enable clinicians to access a much larger

dataset of quantitative measures which could help them to better

understand intra-individual disease trajectories and therefore

improve the standard of care for pwMS. Digital remote

monitoring can cover a wide range of domains (i.e., motor,

cognitive and autonomic functions, psychological wellbeing,

disease activity, sleep, diet, etc.), and can be carried out using

both active and/or passive monitoring techniques. Active

monitoring requires patients to consciously provide information,

either via patient-reported questionnaires (e.g., asking patients to

rate self-perceived fatigue on a scale 1-10), or by performing

objective assessments (e.g., by performing a digitalised cognitive

test on their smartphone). Passive monitoring leverages data from

smart devices and sensors to enable remote monitoring while
Frontiers in Immunology 02
patients go about their daily life (e.g., daily steps data from

accelerometers in a wearable device, or data from a blood glucose

monitor placed on the arm). Active and passive methods can be

paired to enhance the quality of digital remote monitoring data

(e.g., collecting daily steps data from a participant’s smartphone,

which is also used to administered weekly standardized walking

tests designed to be performed while carrying the smartphone in the

pocket, to measure the distance walked and other data obtained

from the smartphone accelerometer and gyroscope).

The definition of ‘big data’ keeps evolving, as continuing

technological advancement and increasing adoption of devices

able to capture more and more data push the boundaries of “big

data”. However, core properties like high volume (i.e., large

quantities of data), velocity (i.e., data which are acquired in real-

time) and variety (i.e., data which can be either structured or

unstructured) are shared across most definitions (8). Other

properties like exhaustivity (i.e., the ability to capture an entire

system), high resolution (i.e., the ability to collect many datapoints

at short intervals), relationality (i.e., the ability to merge different

datasets), scalability (i.e., the ability to expand rapidly in size) have

also been proposed (8). In general, data which cannot be easily

viewed, processed and analysed using traditional statistical methods

and which requires ad-hoc processing pipelines to produce

meaningful insights could be labelled as big data. A consensus

definition for big data in health research was proposed by the

Health Directorate-General for Research and Innovation of the EU

Commission, stating: “Big Data in health encompasses high volume,

high diversity biological, clinical, environmental, and lifestyle

information collected from single individuals to large cohorts, in

relation to their health and wellness status, at one or several time

points” (9).

In the context of digital remote monitoring of patients, big data

can include structured and/or unstructured data from smart

devices, wearables, self-monitoring devices, or electronic health

records (EHRs) (10). Data from wearables or data recorded

passively from smart devices can easily satisfy the “high volume”

and “high velocity” criteria of big data. Indeed, using a single tri-

axial accelerometer to monitor motor activity of a single individual

over 10 hours, with a sampling frequency of 1 Hz, would yield over

~130,000 raw data points, which would need to be processed and

aggregated using custom algorithms to derive basic interpretable

metrics (e.g., steps/minute), and then further processed to derive

more advanced metrics (e.g., time spent performing moderate vs.

intense activity). Data from smart devices used to administer active

tests is characterized by significantly lower volume and velocity but

can become big data in the context of long-term monitoring,

especially as digital remote monitoring allows to administer

repeated assessments with higher frequency, longer follow-up

times, and to larger cohorts, addressing the “scalability” property

of big data. In the context of a simple digital cognitive test for which

participants need to respond to 50 stimuli, a typical dataset would

contain information on response times, actual responses,

correctness of each response, metadata (e.g., date, time, type of

device, location, device orientation, stimulus order), resulting in

>200 datapoints for each testing session. These raw data would also
frontiersin.org
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need to be processed and aggregated to derive informative metrics

(e.g., mean reaction times). Monitoring 20 patients for 12 months

through weekly testing with this simple test would result in the

collection of ~50,000 datapoints, with longer and more complex

assessments increasing the volume of data acquired exponentially.

Data from EHRs typically reaches big data status only when large

quantities of clinical data are collected for a large number of

patients, either longitudinally in a single centre or cross-

sectionally through multicentre collaborations. EHRs data also fits

the “exhaustivity” property of big data, as they include a wide range

of information for each patient (e.g., sociodemographic, clinical,

imaging, pharmacological). Another way that EHRs data can fit the

criteria for big data is linked to recent developments in Artificial

Intelligence (AI) applied to processing and aggregating of

unstructured text data, which could enable to start analysing large

quantities of unstructured data present in EHRs (e.g., medical

notes) in an automated (or semi-automated) quantitative way,

thus greatly expanding the dimensionality of EHR datasets.

AI is a term dating back to the 1950s, when it was coined to

represent machines exhibiting features akin to human intelligence

(e.g., reasoning, learning, vision) (11). In recent years, this term has

transitioned more and more from theory to practice, and many

subdivisions of AI have been defined, according to their respective

properties and use cases (12). Machine Learning (ML) refers

broadly to the use of computational algorithms to learn data

patterns to make predictions, and then compare the predictions

with the actual outcomes, in order to learn iteratively, thus

improving the quality of the predictions based on available data

at each iteration. Deep Learning (DL) is an evolution of

conventional ML, since it follows the same iterative learning

approach to improve predictions. However, it differs from ML in

that DL models are built from different consecutive hidden layers of

‘neurons’ (i.e., interconnected processing nodes) which are used to

process raw inputs and can be adapted to perform optimally across
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different specific tasks (i.e., speech recognition, image processing,

genomics) (13). One such example are Convolutional Neural

Networks (CNN), i.e., DL algorithms built using specific types of

connected layers to improve the neural network’s ability to perform

image recognition tasks, and have thus found large use in radiology,

by allowing automated or semi-automated scoring of CT or MRI

scans (14). The ever-increasing worldwide dissemination of

computing technology means that more and more data is being

collected every day, and the increased computational power

available today has made it possible to deploy AI in an increasing

number of applications (Figure 1).

The aim of this narrative review is to present and discuss recent

advancements in the field of digital remote monitoring in MS, with

a focus on AI tools and algorithms applied to the analysis of big data

from sensors, wearables, smartphones, and other smart devices, as

well as data from active digital assessments designed to be

performed independently and remotely by patients. Specifically,

we aim to discuss how leveraging big data and AI could allow to

improve the standard of routine disease monitoring of pwMS across

different settings and in different fields, how it could allow

researchers to obtain novel insights into specific factors driving

disease progression, and what future developments are needed to

further advance the state of digital remote monitoring in the future.
Methods

For this narrative review, we focused our literature search on

studies of digital remote monitoring of pwMS using AI and/or big

data. This includes studies aimed at validating digital monitoring

tools designed to enable active or passive digital remote monitoring

of MS symptoms and disease progression. To this aim, we

conducted a PubMed search for papers containing the following

terms in the title and/or abstract: “multiple sclerosis[Title/Abstract]
AI Big Data
Machine Learning

• Regression and classification algorithms

Large Language Models

Deep Learning

• Convolutional Neural Networks for image recognition

• Neural Networks for regression and classification

• Natural Language Processing

• Analysis of unstructured text data

Smart Devices

Wearables

Electronic 
Health Records

Active Digital 
Assessments

ACTIVE M
O

NITO
RING

PASSIVE M
O

NITO
RING

FIGURE 1

AI and Big Data for digital remote monitoring of MSFigure representing the two sets of Artificial Intelligence (AI) and big data, with specific subfields
relevant for the field of digital remote monitoring of people with Multiple Sclerosis. The arrows indicate what type of AI-based analysis is best
applicable to different types of big data obtainable from different methods of digital remote monitoring.
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AND (( ‘digi tal monitor* ’[Tit le/Abstract] OR ‘remote

monitor*’[Title/Abstract] OR wearable*[Title/Abstract]) OR

( ‘art ific ia l inte l l igence ’ [Ti t le /Abstract ] OR ‘machine

learning’[Title/Abstract] OR ‘deep learning’[Title/Abstract]))”. We

filtered the search results to only select those published in the last 10

years, i.e., from 1st January 2014 to 1st August 2024.

We then excluded all reviews, meta-analyses, study protocols,

opinion papers, editorials. We also excluded all studies where AI or

big data where not specifically applied to data from digital remote

monitoring or designed to enable it. Therefore, we excluded studies

on AI-based processing and analysis of big data from structural

(e.g., magnetic resonance) or functional (e.g., positron emission

tomography) imaging, robotics-assisted physical rehabilitation, AI-

assisted cognitive rehabilitation, AI-based psychological

counselling, AI-based analysis of genomics, and those using AI

and/or big data to estimate the risk of developing MS or to increase

diagnostic accuracy. We also excluded studies of digital remote

monitoring in which neither AI nor big data were applicable

definitions (i.e., studies aimed at validating the administration of

an established clinical test through videoconferencing or other

telemedicine approaches, without collection of big data from

sensors and/or other electronic devices).

The resulting candidate publications were screened manually by

reading the abstracts, to select those who focused on developing and

validating data processing and analysis pipelines (including AI)

applied or applicable to digital remote data from sensors and/or

active remote assessments, as well as those focusing on AI

algorithms applied or applicable to the analysis of big data from

other sources (e.g., EHRs) to improve the monitoring of disease

progression in pwMS.
Results

Our literature search revealed that the majority of studies on

digital remote monitoring of pwMS using AI and big data has

focused on the use of wearable sensors to assess and monitor motor

symptoms. This is not surprising, as motor deficits are one of the

most prevalent and invalidating symptoms of MS (2). Therefore,

our review begins by providing a report on studies focused on the

motor domain, to evaluate the feasibility and validity of digital

remote monitoring of motor functions in real-world clinical

applications and highlight issues which still require further

development. More recently, other studies have also focused on

the need to monitor cognitive symptoms, since they are frequently

reported as of the main factors which negatively impact the

autonomy and QoL of pwMS (15). We present these studies and

discuss the potential added benefits of digital remote monitoring of

cognition using AI, compared to the current standard of care, as

well as the potential to deploy “big data” to enable passive cognitive

monitoring. The use of big data and AI for the digital remote

monitoring of other symptoms or domains (e.g., sleep, autonomic

functions) or to leverage unstructured big data from EHRs to

monitor disease progression are still underrepresented in the MS

literature. However, the few studies available to date suggest that
Frontiers in Immunology 04
their further exploration may yield novel insights which would

otherwise be unobtainable by using conventional data acquisition,

processing and analysis methods. Therefore, we conclude by

presenting the studies available to date, to highlight the potential

benefits of these different applications of big data and AI to enhance

the remote monitoring of pwMS.
Motor domain

Many studies in the last 5-10 years have applied big data

analysis and AI to the study of motor symptoms, aiming either to

enable continuous passive monitoring, validate remote active motor

tests to be used for frequent remote active monitoring, or leverage

sensor data to detect digital biomarkers associated with higher odds

of disease worsening or relapsing. The three main areas of interest

appear to be falls (including both automatic fall detection using

sensor data and identification of risk factors), gait (including both

passive monitoring and active instrumented tests which can be

performed remotely and independently by pwMS), and activity

monitoring during everyday life as a digital biomarker of disability

progression. The characteristics of all reviewed studies are

summarised in Table 1.

Risk of falls
Falls are a major health concern for pwMS, as over 50% of them

are estimated to experience at least one fall in a 6-month period, of

which half result in injury (16). Continuous remote monitoring of

pwMS in real-life environments and automatic falls detection has

the potential to increase the detection rate of falls in everyday life,

allowing a more precise monitoring of clinical progression.

Moreover, it could help identify specific risk factors and

consequently develop prevention strategies.

Tulipani et al. (17) investigated the ability to predict fall risk in

37 pwMS wearing a chest and a thigh sensor during sit-stand

transitions of daily life and during a standardised sit-stand task in

the clinic. Using reported falls in the previous 6 months to

dychotomize participants in “fallers” or “non fallers”, they

evaluated the ability of sensor data to correctly classify patients in

either class. Sit-to-stand transitions in daily life were detected using

a DL (long Short-Term Memory) algorithm tuned to detect activity

states, which allowed them to select only sensor data from periods

of transition from the “sitting” to the “standing” state. Using

Receiver Operating Characteristics (ROC) analysis, the best

predictor of high fall risk in their study was a chest acceleration

metric recorded during execution of the sit-stand task in the clinic

(Area Under the Curve [AUC]= 0.89). The best performing sensor

metric during the real-life task execution, i.e., average sit-stand time,

had slightly lower predictive power (AUC= 0.81). Their results

suggest that conventional sensor metrics (e.g., acceleration, total

time of execution) may provide useful insights into the fall risk of

pwMS, although with reduced accuracy, compared to instrumented

functional assessments performed in the clinic. The same research

group recently published a longitudinal study (18), with the aim of

extending the analysis of sit-stand performance to longitudinal
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remote monitoring. They recruited 23 pwMS and monitored them

for six weeks, using three wearable sensors worn for all hours of the

day (one on the left upper chest, two on the thighs) to record

acceleration and surface biopotentials. Furthermore, they applied

DL analysis to detect periods of sit-standing transitions. The

algorithm identified different fatigue and instability phenotypes

which were predictive of fall risk. They also observed that stability

tended to decline over the course of the day, providing interesting

quantitative insights into daily fluctuations of motor performance.

Taken together, these results suggest that DL algorithms may enable

to reliably identify activity states remotely and during everyday life,

thus allowing to contextualise motor features obtained by the

analysis of big data collected continuously from sensors. This is

particularly interesting, since novel insights could be obtained by

investigating some motor features (e.g., stability) during specific

activity states of interest (e.g., sit-to-stand transitions), rather than

across the entire range of daily activity states, which would be

unfeasible if activity states had to be observed by an examiner or

reported by the patient.

DL algorithms were also implemented retrospectively, to detect

patients who had a positive recent history of falls (in the previous six

months), by leveraging accelerometer data from sensors placed on

the sternum, lower back, thigh, and shanks during a one-minute

walking task in the clinic (19). This study found that a bidirectional

long short-term memory neural network could be used to

automatically identify and analyse sensor data from 1-minute

walking tests performed remotely and autonomously by pwMS,

and identified pwMS who had previously fallen with high accuracy

(ROC AUC= 0.88). Notably, this DL algorithm trained on raw

sensor data significantly outperformed the classification accuracy of

neurologist-administered measures and patient-reported outcome

measures, as well as conventional statistical analyses and other

traditional ML models (logistic regression, k-nearest neighbours,

support vector machine, decision tree) based on conventional

aggregate spatiotemporal gait parameters (e.g., average speed).

This suggests that AI can leverage big data to capture nonlinear

relationships and motor phenotypes associated with an increased

risk of falls which are not detected through conventional clinical

exams or basic aggregate statistics.

Another key application of big data is the automatic detection of

real-world falls in freely moving patients through sensors from

wearables and/or smartphones. Mosquera-Lopez et al. (20)

developed an algorithm which detects possible falls by combining

acceleration and movement features recorded by wearable sensors

connected to wireless beacons placed throughout the home. As fall

detection was performed in a fully unsupervised way, accuracy of the

detection pipeline was tested using 10-fold cross-validation (CV).

This system proved highly accurate in detecting falls (sensitivity=

92%, specificity= 98%), producing 0.65 false alarms per day, which

translates to roughly 2-3 false alarms per week. However, due to the

small sample size and relatively short monitoring time, their dataset

was highly imbalanced, with only 270 seconds of fall data compared

to over 2,000,000 seconds of total data. In a more recent study (21),

the same researchers conducted a secondary analysis of the same
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dataset, to investigate the relationship between mobility measures

(including both movement metrics and location data) and risk of falls

in pwMS. They found that half of falls occurred while walking, and

that participants were sedentary for most of the time spent at home

(>95%). Interestingly, they were able to observe that almost one third

(28%) of falls occurred within one second of gait initiation, thus

providing quantitative data to highlight the critical role of gait

initiation in determining fall risk during everyday life. These results

are promising, although the feasibility of this tracking method is

obviously lower than that of monitoring devices which do not require

altering/adapting the home environment of patients, which could

hinder its applicability for real-life long-term monitoring of pwMS.

Moreover, such systems cannot be used to assess motor performance

in everyday life settings other than patients’ homes (e.g., the

workplace), limiting the generalizability of their findings. Further

studies with much larger samples and longer monitoring durations

are required to assess the true feasibility of this monitoring approach,

as well as its validity and reliability for real-life clinical applications.

Increasing the range of possible applications of digital remote

monitoring is key, to enable monitoring of motor functioning in a

more ecological way, which would also allow extend this possibility

to a wider range of pwMS. Therefore, more and more studies have

tried to leverage commercially available smart devices for remote

data collection, as their widespread availability could greatly extend

the reach of digital remote monitoring, compared to more

experimental and multi-device approaches. A pilot study (22)

investigated the ability of a commercially available smartphone

and smartwatch to automatically detect falls in an experimental

environment, in which healthy controls (HCs) performed a set of

simulated falls. Using an experimental setting in which participants

performed simulated falls, they were able to directly observe the

number of false positives and false negatives produced by the fall

detection algorithm, from which they calculated sensitivity and

specificity. They found that the joint use of smartphone and

smartwatch improved the specificity of all analysed algorithms by

a range of 5-15%, compared to smartphone- or smartwatch-only

detection, although the issue of false positives alarms remained, as

denoted by several false alarms raised during 24h of continuous

monitoring. Moreover, the extremely small sample size (N = 4)

significantly limits the generalisability of their results. Another

study (23) investigated automatic fall detection through a system

of tri-axial sensors fitted to six different body parts (head, chest,

waist, right wrist, right thigh, right ankle) of HCs performing a

standardised set of voluntary falls in an experimental setting.

Through ML analyses they were able to reach values >99% for

accuracy, sensitivity, and specificity. However, it must be stressed

that this result was again observed in a small sample of HCs,

performing standardised falls in a controlled setting. Perhaps even

more importantly, such a complex sensor array would likely be

unfeasible for everyday real-life monitoring of pwMS. It should be

noted that studies wishing to evaluate automatic falls detection

accuracy through direct observation (i.e., through simulated falls

experimental paradigms) are inherently limited, since having pwMS

or people with other chronic health conditions performing
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simulated falls would pose evident ethical and safety issues.

Crucially, this questions the ecological validity of fall detection

algorithms validated on young healthy participants. Further

research is needed to determine the feasibility and validity of

automated fall detection through smartphone and/or wearable

data in pwMS and in real-life scenarios.

Gait analysis
Gait disturbances are common in MS, they can present in the

early disease stages, and significantly affect QoL by reducing

autonomy and impacting negatively on socio-economic status

(24). Instrumented assessments of gait are well documented (25)

but, until recently, have largely relied on sophisticated lab-based

assessments which are costly, cumbersome, and can fail to capture

the true walking performance of pwMS in real-life environments.

Consequently, most research to date has focused on validating

wearable data recorded during laboratory experiments in which

participants perform a mix of structured tests and simulated real-

life activities. Only recently, researchers have begun leveraging big

data gathered from wearables during everyday life to estimate gait

parameters of pwMS, or to validate such monitoring devices with a

mixed study procedure including both lab-based and remote-based

data collection.

Salis et al. (26) validated a multi-sensor system designed to

allow real-world monitoring (three inertial sensors, two plantar

pressure insoles, and two distance sensors) in 128 participants with

different pathologies (including 20 pwMS) who performed a mix of

structured tests (e.g., Timed-Up and Go) and simulated activities

(e.g., setting the table for dinner). They compared data from the

wearable sensors with data from a stereophotogrammetry system,

which served as reference. They used intraclass correlation

coefficients (ICC) to assess reliability, which can be considered

excellent when ICC > 0.90, good when 0.75 < ICC < 0.90, moderate

when 0-5 < ICC < 0.75, and poor when ICC < 0.50. The reliability of

the wearable system was excellent for structured tests, with ICC

values >0.95, while it decreased slightly for simulated activities of

everyday life (ICCs between 0.69-0.98). They also evaluated the

feasibility of this wearable system for real-life use by recording 2.5

hours of unsupervised activity and reported that the system was well

accepted, without major technical or usability issues. However, it

must be noted that the real-world part of this study included only 20

healthy young adults and lasted a short time. Further real-life

feasibility and acceptability studies with much longer monitoring

periods are therefore definitely needed to derive any meaningful

conclusions on real world long-term feasibility.

Chitnis et al. (27) collected data remotely from 23 pwMS

wearing three sensors (placed on wrist, ankle, and sternum) for

eight weeks during real-world daily activities. They designed a

workflow for the classification of unstructured raw sensor data,

using a DL classifier to distinguish activity periods (i.e., idle,

walking, running). Then, they selected only the activity segments

classified as “walking” to derive mobility features. Several features

extracted from real-world walking bouts (i.e., stance time, swing

time, mobility activity time, turning velocity) correlated with gold-

standard clinical scales like the Expanded Disability Status Scale

(EDSS) and the Multiple Sclerosis Functional Composite (MSFC)
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and standardised walking tests performed in the clinic (Timed 25-

Foot Walk [T25FW]).

While multiple wearable sensors undoubtedly afford a higher

degree of precision and provide more data to extract spatiotemporal

gait parameters, compared to a single wearable sensor, one must

also consider the feasibility of such approaches for longitudinal

remote monitoring. Indeed, using multiple sensors imposes higher

costs and is more burdensome for patients and researchers alike.

This issue grows exponentially with longer follow-up times, limiting

the ability to study long-term trends and patterns of motor function

in pwMS. More specifically, compared to wearing sensors on

multiple body parts, using a single sensor facilitates monitoring in

a wider variety of daily life situations (e.g., in public), enhancing the

ecological validity of data thus collected. Therefore, some

researchers have begun to evaluate the validity of data obtained

from a single wearable sensor, which could prove more economical

and easier to use, therefore allowing larger studies with longer

follow-ups.

Atrsaei et al. (28) developed and validated a ML-based gait

estimation approach to predict gait speed and detect waling bouts

using a single sensor on the lower back. They recruited 35 pwMS,

who performed walking tests in the clinic and at home. and found

that reference values obtained from sensors on both feet correlated

strongly with gait speed estimated from the sensor on the lower

back during a walking test in the clinic (r = 0.96) and at home (r =

0.95); gait speed during daily activities at home were also strongly

correlated with reference values recorded in the clinic (r = 0.89).

These results show that not only using a single sensor on the back

approximates reference values extremely well for walking tests

performed in the clinic, but is also able to provide accurate

estimation based on real everyday activities. They also tested a

ML-based algorithm (naïve Bayes classifier) for automated walking

bouts detection and used leave-one-out CV to evaluate its accuracy,

using only digital remote data collected during unsupervised daily

life activities. The ML-based walking bout detection had high

accuracy (96.4%) in detecting walking bouts remotely, during

everyday life. Although the authors reported analysing >300

hours of daily activity measurements, the small sample size

significantly limits the generalizability of these promising results

obtained using a single sensor.

A similar approach (single sensor worn on the lower back; in

the clinic and during 2.5 hours of real-world activities) was adopted

by a European multicentric study (MOBILISE-D) on N=97

participants with different medical conditions (including 13

pwMS) (29). Reliability was considered good-to-excellent in the

clinic (ICC range= 0.79-0.91) and moderate-to-good (ICC range=

0.57-0.88) in real-world activities, compared to a multisensory

reference system which included pressure insoles. Although the

reliability of the system was lower in the real-world scenario, it was

still deemed to remain within a usable range. Predictably, this study

found that walking bout duration affected the accuracy of gait speed

estimation, with shorter bouts yielding less accurate estimates. It is

therefore possible that further studies with more data at the intra-

individual level may yield higher accuracy.

Aiming to further explore the use of devices which could be

accessible to larger proportions of the population, Bourke et al. (30)
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analysed gait parameters recorded by a waist-worn smartphone

with built-in accelerometer during a two-minute walking test

performed remotely and independently by 76 pwMS and 25 HCs

over 24 weeks. The test-retest reliability across consecutive pairs of

testing sessions was either excellent or good-to-excellent for 58/92

gait parameters in pwMS, and 29/92 in HCs, indicating higher

variability in healthy persons across consecutive test sessions. These

results suggest that remote sensor data recorded during active

walking tests, using only a waist-worn smartphone, has

comparable reliability to sensor data from clinical assessments.

This encourages further research, as it could enable a much wider

diffusion of instrumented remote walking assessments tanks to the

ever-increasing availability of smartphones and wearables, thus

expanding the reach of gait monitoring to those with reduced

access to clinical services. However, this study involved mainly

people with relapsing-remitting MS (RRMS), and only data from 62

participants (51 pwMS, 11 HCs) was used for the analyses (the

authors did not explicitly state the reason for excluding almost 40%

of the initial sample size). Therefore, further studies with larger

sample sizes and more rigorous reporting are needed to establish

the feasibility and validity of using smartphone-based sensor data as

an endpoint in clinical trials and for real-life clinical monitoring.

All the studies examined so far have been conducted on small

samples, and their results cannot therefore be generalised to the

wider population of pwMS. The large volume of data obtained

through wearable sensors and the high costs associated with

specialised sensors has greatly limited the ability of researchers to

conduct studies on large samples and with adequately long follow-

ups, as evidenced by the studies discussed so far. Multicentric

studies on larger samples of pwMS, however, are needed to derive

more reliable insights on the validity, reliability, and feasibility of

digital remote monitoring tools. As part of the RADAR-CNS

initiative, Sun et al. (31), monitored an European cohort (from

Italy, Spain, and Denmark) of 337 pwMS over an average duration

of 10 months using a commercial wearable (Fitbit). They analysed

real-world steps data and applied correlation-based feature

selection to select the most relevant features and tested the ability

of different ML regression algorithms (random forest, gradient

boosted trees, and elastic net) to estimate 6 Minutes Walking Test

(6MWT) performance in the clinic by using digital remote

monitoring data collected during everyday life. Results show that

minute-level features were more predictive than day-level features.

Interestingly, they also noted that upper bound statistics (e.g., 90th

percentile of minute-level step count) were more strongly related to

clinical test scores, indicating that the average performance in

clinical gait tests may reflect the upper portions of the

distribution of real-life gait abilities. This insight is particularly

valuable, as it could mean that the impression of motor functioning

that a clinician gets from a patient performing a walking test in the

clinic may be an overestimation of their actual day-to-day average

motor performance. The accuracy of 6MWT score estimation was

quite low, reinforcing the idea that walking performance of pwMS

could differ significantly between real life and clinical testing. These

findings demonstrate that, in addition to allowing digital remote

monitoring, leveraging data from wearables collected during
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everyday life can provide insights that would not be obtainable

through conventional study paradigms, thus improving our

understanding of the true validity of gold-standard and widely

used clinical tests.

Another study with a large sample size (32) (N = 205 pwMS)

focused on validating gait parameters (velocity, ambulation time,

cadence, stride length) estimated trough sensor data from

connected insoles with pressure and motion sensors, compared to

a classic lab-based reference system based on pressure plates. They

showed strong concordance between the two systems for gait

velocity (ICCs > 0.83), ambulation time (ICC = 0.93), and

cadence (ICCs > 0.90), whereas stride length showed poor

concordance (ICC = 0.30). Sensorised foot insoles allow

continuous data collection in everyday life without requiring

visible devices, which could cause stigma or discomfort to some

patients. Therefore, this large study provides valuable data on the

validity of this gait monitoring device, which may prove particularly

useful for patients which are unwilling and/or unable to wear visible

devices such as smartwatches or body-mounted sensors. However,

one key limitation is the compatibility of insoles with different shoe

types, and the need to switch the insoles when changing shoes and

when recharging, which could prove burdensome for patients in the

long term, and could lead to missing data for extended periods of

time or in some specific settings (e.g., while wearing slippers

at home).

Whereas most of the literature to date has focused on obtaining

gait parameters from accelerometers, Delahaye et al. (33)

investigated gait parameters derived from a wearable sensor with

integrated Global Positioning System (GPS). Validating GPS-

derived walking speed and distance metrics may potentially

enable to implement remote monitoring via commercially

available and non-wearable devices (e.g., smartphones), thus

removing the need for specially designed wearable sensors which

may be perceived as cumbersome or that patients may be

embarrassed to wear in public. The authors recruited a small

convenience sample (N = 18) of pwMS who performed the

6MWT and an outdoor walking session at usual pace (up to 60

minutes). By integrating GPS and altitude data, they were able to

measure gait parameters and associate them with variations in the

terrain conformation, which could not only allow to better

understand variability in motor activity observed through digital

remote monitoring, but may also be used to standardize future

studies on outdoor walking performance across different centres

and countries, They found that walking speed during an outdoor

walking session was significantly correlated with 6MWT

performance measured in the clinic, whereas maximum walked

distance was not. They also noted that 40% of participants did not

reach their maximum walking distance during the first walking

bout, but on subsequent ones. This suggests that the first stint of a

walking task (as is the case for clinical walking tests) may not

necessarily yield the best performance. Once again, one can

appreciate how real-world motor data collected remotely and

digitally was able to provide novel insights which enhance our

understanding of the validity of testing procedures performed

routinely in clinical or research settings. However, only 12
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participants had valid GPS data, which means that GPS data could

not be analysed for one third of participants. Therefore, more

studies are needed to validate GPS-derived measures, and several

technical limitations must be addressed, such as the accuracy of

GPS-calculated walked distance for shorter walking bouts, or its

accuracy in different environments and settings.

Activity monitoring
Data from wearable sensors may be used to characterise patients

not only in terms of their raw quantitative performance metrics (e.g.

daily step count), but to infer activity states and behavioural patterns

which may be associated with clinical features and/or impact disease

progression. This may be done either using knowledge-based

frameworks or with a data-driven approach, providing both

researchers and clinicians with more readily interpretable outcome

measures. Moreover, characterising activity states may enhance the

informative value of raw quantitative measures (e.g., by differentiating

between steps counted during a light walk or during an intense run).

An example of the knowledge-based approach has been

proposed by Stavropoulos et al. (34), who showcased a framework

using a priori semantic rules to model “problem labels” which could

be quickly and easily understood by clinicians and provide added

value to raw quantitative data. As an example, “Steps < 500 & Heart

Rate < 100 for duration > 800” was a rule used to determine an

instance of “Lack of Movement”. They then reported the example of

a patient for which “Lack of Movement” instances appeared

sporadically in the first months of remote monitoring and

intensified in time, ultimately occurring almost every day in the

last months. This provides a simple and effective way for clinicians

to monitor potential risk factors and/or indices of disease worsening

without necessarily having to analyse raw data, which may be

cumbersome or outright unfeasible depending on the resources of

different healthcare centres. However, frameworks based on a priori

rules strongly rely on the goodness of their assumptions, and the

validity of their output must be carefully assessed with ad-hoc

studies implementing baseline and follow-up clinical assessments to

provide quantitative measures of disease progression.

Block et al. (35) adopted a data-driven approach to characterize

walking activity, based on minute-to-minute steps data from 94

pwMS who wore a Fitbit continuously for 1 year. They applied an

unsupervised ML clustering algorithm (3-compartment Gaussian

Mixture Model) to detect the proportion of three levels of activity

(low, moderate, high) based on individual participants’ steps data,

and then evaluated associations with clinical parameters (walking

tests, EDSS scores) and patient-reported outcomes. The detected

activity levels correlated more strongly with clinical and patient-

reported outcomes, compared to raw step count, and the

combination of raw steps data and activity levels outperformed

both individual metrics. This suggests that the qualitative aspect of

steps data plays a pivotal role in predicting key clinical outcomes

such as EDSS score. While we can expect patients with lower

disability to be more active overall, leveraging AI algorithms to

continuously and automatically evaluate the proportion of time

spent in low- or high-intensity walking may enable to differentiate

two patients which would appear identical if one were to look only
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at basic aggregate statistics like step count. Indeed, 1000 steps could

be performed while doing house chores over 1 hour, or during a

short but intense 5-minute walk, two different activities which

cannot be accurately distinguished by examining step count alone.

Salomon et al. (36) collected data from 132 pwMS and 90 HCs

wearing an accelerometer placed on the lower back for seven days,

aiming to uncover daily-living rest-activity fragmentation patterns,

circadian rhythms, and fractal regulation parameters. Results showed

that pwMS had a more fragmented activity behaviour (likely

indicating a greater need for pauses when carrying out prolonged

physical activity) and lower amplitude in circadian changes of daily

activity (i.e., the difference in activity levels between the five most and

least active hours of the day) than HCs. Moreover, both circadian and

fragmentation measures were associated with disability severity, as

measured by EDSS score. Although a simple general metric like total

physical activity remained the strongest discriminator between pwMS

and HCs, this study found that incorporating more sophisticated

metrics like fragmentation patterns and circadian rhythms detection

improved the ability to differentiate between patients and HCs, and

between patients with low vs. high disability. This was a cross-

sectional study, and therefore could not provide any info on the

predictive value of these features on disability progression or relapse

risk. However, it is possible that circadian rhythms and fragmentation

patterns could also provide novel insights on disease progression (e.g.,

a patient maintaining the same overall level of activity, but with

increased fragmentation due to requiringmore frequent rest). Further

studies are needed to establish the utility of more advanced activity

measured for real life monitoring of pwMS, with specific emphasis on

their ability to predict relapse and/or disease progression.

Creagh et al. (37) also adopted a data-driven approach,

analysing raw sensor data (smartphone + smartwatch) of 97

participants (24 HCs, 52 pwMS with mild disease severity, 21

pwMS with moderate disease severity) who performed a daily

two-minutes walking test remotely for 24 weeks. Raw sensor data

were analysed with a deep CNN pre-trained on an open-source

human activity recognition dataset, to calculate a continuous

quantitative measure of disease severity at each timepoint.

Average disease severity across all timepoints correlated strongly

with EDSS score. More interestingly, longitudinal disease severity

trends were found to be associated with self-reported relapses.

These preliminary results suggest that a continuous quantitative

measure of disease severity may be more sensitive to change than

the EDSS, and that it could also allow to detect trend changes in

quasi-real time, which could potentially enable researchers and

clinicians to detect relapses and shifts to progressive MS more

efficiently. However, significant limitations such as adherence to

frequent active testing and reliability of remote tests must be

addressed, before such measures can be effectively implemented

in everyday clinical practice. Indeed, the authors report that

adherence was highly variable across participants, as participants

with mild MS showed higher adherence than those with moderate

MS and HCs. Moreover, adherence decreased linearly for all

subgroups at later timepoints and, in some cases, in

concomitance with the onset of reported relapses, as patients

stopped performing the walking tests once they began
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experiencing a significant worsening of motor function happening.

These preliminary findings suggest the need to evaluate adherence

to digital remote monitoring via active testing not only as a function

of time, but also by uncovering potential associations with

sociodemographic data (e.g., economic status, age), clinical

features (e.g., cognitive impairment, depressive symptoms), or

disease progression (e.g., patients becoming wheelchair-bound).
Cognitive domain

The use of AI and big data for monitoring cognitive function in

pwMS has seen significantly less development, compared to the

monitoring of motor function. This is likely because evaluating

cognitive processes relies much more explicitly on active testing,

and it is therefore more laborious to obtain large amounts of data.

Indeed, a wearable sensor can detect thousands of datapoints for

many motor features passively, just by being worn during everyday

activities. The same approach cannot be easily applied to cognitive

processes like memory or information processing speed, which are

latent variables which need to be evaluated through specifically

designed tasks. This significantly limits the ability of researchers to

deploy big data to study cognition in MS. Nevertheless, some recent

efforts have been made to integrate AI and big data in this field, and

their results point to some interesting avenues for future research.

The characteristics of all reviewed studies are summarised

in Table 2.
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Active monitoring
Most efforts have been focused on developing digital versions of

established neuropsychological tests, with the aim of enabling

automated administration and scoring, thus enabling remote

administration and freeing up time for clinicians. In such cases,

AI can provide novel ways to automate test administration and

scoring, whereas big data has been mainly viewed in the context of

granular digital test metrics which would be unfeasible to record

manually, but which could enhance the information obtained from

the execution of a test, compared to conventional scores.

Birchmeier et al. (38) aimed to digitize the Brief Visuospatial

Memory Test – Revised (BVMT-R), a visuospatial learning test

which is considered one of the gold-standard cognitive tests in MS

(39). Scoring this test is a time-consuming semi-quantitative

procedure which requires trained healthcare professionals to

evaluate the shape and position of 18 drawings, assigning a score

ranging 0-2 to each drawing, and then calculating the final total test

score. The authors tested the ability of a CNN to automatically score

patients’ drawings, and compared its accuracy to clinician ratings,

using a validation sample of 135 patients (for a total of 624

drawings). The CNN achieved a good accuracy for perfect or

completely wrong drawings (i.e., those scored either 0 or 2 by

human raters), while the accuracy for partially wrong drawings (i.e.,

those scored as 1 by human raters) was unsatisfactory (57%). This

suggests that CNNs may not yet substitute clinicians and enable

fully automated scoring, especially for drawings which present only

slight inaccuracies and are therefore trickier to score, as they require
TABLE 2 Summary of studies on cognitive domain.

Study Year Sample Study type
Cognitive
domain

Algorithms used
Aim

Type of
monitoring

Birchmeier
et al. (38)

2019 135 pwMS Cross-sectional
Visuospatial
learning

CNN for image classification task
Validation of
automated
test scoring

Active testing

Birchmeier
et al. (40)

2020 294 pwMS Cross-sectional
Visuospatial
learning

CNN for image classification task
Validation of
automated
test scoring

Active testing

Petilli
et al. (41)

2021 35 HCs Cross-sectional

Visuo-
constructional
ability and
visuospatial
memory

Custom algorithm for image
preprocessing, segmentation and
scoring of spatial, procedural and
kinematic features

Enhancing the
informative value of
conventional tests

Active testing

Khaligh-
Razavi
et al. (42)

2020
91 pwMS
83 HCs

Cross-sectional
Information
processing speed

ML multinomial logistic regression
Validation of digital
test for autonomous
and remote use

Active testing

Lam
et al. (45)

2021
102 pwMS
24 HCs

Cross-sectional –

Custom algorithm for processing and
feature extraction from single-
keystroke level datapoints

Validation of
keystroke dynamic
for monitoring
of cognition

Passive
monitoring

Lam
et al. (46)

2022 102 pwMS

Longitudinal
(12 months of continuous
monitoring and clinical
follow-ups every
3 months)

–

Clustering and PCA of features
extracted from keystroke data;
LMM to evaluate associations with
cognitive outcomes

Validation of
keystroke dynamic
for monitoring
of cognition

Passive
monitoring
Articles are listed based on year of publication (in ascending order). CNN, Convolutional neural Network; HCs, Healthy Controls; LMM, Linear Mixed Models; ML, Machine Learning; PCA,
Principal Component Analysis; pwMS, people with Multiple Sclerosis.
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higher-level decision making than what AI can provide as of today.

However, AI-based predictions may be implemented to provide

preliminary recommendations, thus enabling faster scoring by

human raters and reducing organisational burdens. In a

subsequent study (40) with a larger validation sample size (1525

drawings), the authors observed that automated ratings matched

with 72% of ratings from one neuropsychologist, and with 79% of

ratings from another neuropsychologist. Interestingly, when

comparing the ratings given by the two neuropsychologists, they

observed an agreement in 82% of cases, highlighting the inherent

unreliability of such semi-quantitative scoring protocols. This

highlights the need to carefully consider the outcome metrics of

AI validation studies, especially for semi-quantitative ratings, not

only for cognitive tests, but also for other applications (e.g., MRI

lesions counting). Indeed, aiming for 100% accuracy, especially

while using a small number of human raters as reference may not be

the ideal method. In such cases, reaching 100% accuracy could

either be impossible, or lead to overfitting (i.e., training the AI

algorithm to become an essential copy of that particular group of

raters, which lead to poor generalizability and reliability).

Conversely, an AI-based support-decision system may allow to

increase inter-rater reliability, as AI-based criteria should

hypothetically be more consistent that human raters, although

ad-hoc studies are needed to support this hypothesis.

Another study focused on automated scoring of visuospatial

tests (41), with the aim of providing more varied and detailed

performance metrics, compared to the conventional scoring

procedure, which only yields a single score indicating overall

accuracy. They developed a tablet-based version of the Rey

Complex Figure copy task, a visuo-constructive and visuospatial

memory task which relies on semi-quantitative scoring, similarly to

what has been described above. They administered it to 35 HCs and

extracted performance indices capturing three different aspects of

drawing abilities (spatial, procedural, and kinematic), for which a

composite score was also calculated. They showed that automated

scoring via CNNs could provide a much richer performance profile,

by aggregating large quantities of data which could not be feasibly

recorded manually by clinicians administering a test in a clinical

setting (e.g., pressure strength, velocity, procedural drawing

timeline). This may be very useful for research purposes and may

ultimately lead to better classifications of cognitive profiles in MS

(i.e., by disentangling the effect of motor, procedural, and

visuospatial deficits). Therefore, the potential benefit of

automated scoring may not be limited only to reducing test

administration and scoring times. Indeed, automated AI-based

scoring based on constructional and/or procedural drawing

features recorded digitally may ultimately yield higher consistency

than current scoring methods based on semi-quantitative ratings

made by humans. However, such procedures require a high degree

of standardisation; in this study, all participants used the same

hardware, and drawings had to be manually screened before AI-

based scoring.

Khaligh-Razavi et al. (42) developed a custom computerized

image classification task to assess processing speed, and validated it

in a sample of 91 pwMS and 83 HCs. The novelty of their approach

consists in the embedding of AI (in the form of a ML multinomial
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logistic regressor) in the testing pipeline, so that their test does not

yield a quantitative score, but rather a multi-level prediction on the

cognitive status of the examinee, along with its associated predicted

probability. This approach aims to predict cognitive status by

automatically integrating a multi-dimensional feature set comprised

of basic test scores (e.g., classification accuracy),more sophisticated

metrics (e.g., intra-trial accuracy over time), and demographic data

(e.g., age and education) to produce predictions on cognitive status

on a test-by-test basis. By comparing the predictions made by the ML

algorithm with cognitive impairment labels based on published cutoff

values for gold-standard neuropsychological tests administered in the

clinic, they demonstrated excellent discriminant validity for cognitive

impairment in MS (AUC = 0.95, sensitivity = 82.9%, specificity =

96.1%). This approach to cognitive testing merits further research, as

it may present many significant advantages. For clinical practice, it

could reduce time allotted to test administration and scoring, as the

test procedure is automated and seamlessly provides a prediction on

cognitive status, thus enabling clinicians to dedicate more time to

interact with patients and caregivers. For research purposes, an

integrated AI data analysis pipeline allows to automatically leverage

a larger amount of test performance metrics to derive more detailed

insights into the cognitive profile of pwMS. Finally, automated ML-

based scoring can leverage consecutively acquired data to

continuously upgrade its predictions, likely making it ever more

accurate as time progresses and more data is acquired, without the

need for repeated validation studies which can be costly and

time consuming.

Passive monitoring
Passive monitoring of cognitive functions represents an exciting

frontier, as it could potentially enable granular long-term

monitoring through big data analysis, without the need for

patients to allocate time and energy to actively performing

cognitive tests. This could increase the feasibility of continuous

monitoring over the years, something which is very hard to achieve

through active monitoring, where attrition naturally increases as

time progresses (43, 44). However, there is still little evidence on

what methods could enable valid and reliable passive monitoring of

cognitive functioning.

Lam et al. (45) developed a keyboard app for smartphones,

which allows to passively track timing-related keystroke features

(e.g., latency between successive key presses, hold time, flight time)

and correction-based features (e.g., correction duration, pre-

correction slowing). They recruited 102 pwMS and 24 HCs, who

were monitored passively as they used the keyboard app for 14 days.

Results showed weak-to-moderate correlations with clinical

disability, cognitive functioning, and upper limbs dexterity, as

measured by the gold-standard clinical tests. Moreover, they

observed that most timing-related features were significantly

different between HCs and pwMS. In a follow-up longitudinal

study (46), they monitored 102 pwMS for 12 months, using the

keyboard app for passive monitoring and via clinical follow-ups

every three months with clinical tests for upper limb dexterity and

cognition. To evaluate associations between passive monitoring

features and clinical features, they aggregated keystroke data into

a cognition score cluster and a fine motor score cluster. They found
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that the cognition score cluster was significantly associated with

cognitive functioning at the group level, but not at the individual

level, whereas the fine motor score cluster was significantly

associated with upper limb dexterity at both the group and

individual level.

In conclusion, the evidence available so far indicates that

keystroke dynamics may be used to passively monitor

longitudinal upper limb dexterity changes at the intra-individual

level, whereas the same cannot be yet said for cognitive changes,

suggesting that practice effects of repeated testing may have been a

confounding factor. Moreover, the concurrent validity of keystroke

dynamics is significantly lower than that of digitalized active

cognitive tests (47). This is to be expected, as everyday activities

such as typing leverage various sensory, motor, and cognitive

processes and are not typically performed as rigorously and

precisely as cognitive tasks, therefore introducing more noise.

Thus, further research is needed, before keystroke dynamics can

be considered an effective and reliable passive monitoring tool for

cognition in MS. However, the potential to obtain data on cognitive

functioning without requiring conscious effort by patients remains

an enticing prospect, since it would allow to eliminate the

aforementioned issue of loss to follow-up common to active

longitudinal testing, and could provide novel, undiscovered

insights on the cognitive functioning of pwMS by truly leveraging

big data. One key aspect that should be addressed in the future

regards the ethics of collecting keystroke data, as it could

theoretically allow to uncover patients’ sensitive information

(passwords, bank details) and warrants a stronger enforcing of

data privacy policies.
Other applications

AI and big data can play a significant role in enhancing

monitoring capabilities in aspects of MS care/research other than

motor and cognitive functioning. These range from passive

monitoring of sleep and heart rate variability to the analysis of

big data from real-world clinical records. We have grouped these

different topics in a single encompassing section, given the small

number of publications available thus far, to discuss their potential

contribution towards further advancing the standard of care for

pwMS, as well as their limitations.

Woelfle et al. (48) recruited 31 pwMS and 31 HCs, with the aim

of studying whether remote monitoring of heart rate and sleep

parameters could complement step count data in explaining MS

severity. Participants wore a commercially available smartwatch

(Fitbit Versa 2) for six weeks, during which parameters were

extracted for sleep (e.g., sleep efficiency, light/deep/REM sleep

duration), heart rate, and activity(e.g., proportion of sedentary/

lightly active/fairly active/very active). While activity measures were

predictably those most strongly correlated with clinical scales of

disability and gait tests, median heart rate and deep sleep

proportion also showed moderate correlations. Moreover,

incorporating sleep and heart rate measures increased the ability

to predict disability (measured by EDSS score), compared to using

either baseline sociodemographic data and/or smartwatch-derived
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motor parameters. This pilot study with a small sample size suggests

that sleep and heart rate data may indeed complement activity

measures in explaining disease severity. These results are

encouraging, especially for the promised ability to track objective

sleep parameters remotely and through minimally invasive and

economical devices, as compared to portable EEGs or

polysomnography performed in the lab, greatly enhancing the

feasibility of longitudinal studies of sleep. However, the small

sample size warrants further larger studies, to increase the

generalizability of results, especially since smartwatch data was

lost for 7/62 participants due to synchronization issues,

highlighting the need for more reliable data storage and

synchronization technologies before such tools can be deemed

reliable for larger clinical trials.

Hilty et al. (49) used a previously validated and CE-certified

wearable for heart rate detection, with the aim of studying the

autonomic nervous system in 56 pwMS and 26 HCs, by analysing

circadian trends recorded continuously over a period of two weeks.

They applied signal processing algorithms and polynomial

regression algorithms to reconstruct circadian trends from big

data acquired continuously at 1Hz by the sensor. They observed

that circadian trends could distinguish not only pwMS from HCs,

but also between pwMS with/without evidence of inflammatory

activity (defined either by radiological activity or by a clinical

relapse in the prior 12 months), between those with/without

evidence of disease progression (defined by neurological

deterioration without a relapse event), and between those with

low/moderate-to-high disability (defined using an EDSS score

cutoff = 3). Their results suggest that continuous heart rate

monitoring could enable to uncover specific circadian patterns

which distinguish pwMS across inflammatory states (associated

with overactive sympathetic activity at night and overall reduced

circadian variability) and disease progression (associated with

overall reduced heart rate variability and reduced circadian

adaptation of the autonomic nervous system). Therefore,

autonomic nervous system monitoring with wearable sensors

could provide new digital biomarkers and serve as an endpoint in

clinical trials for both immunoregulation and symptomatic

treatment. Notably, at least seven days of continuous wearing

were required to establish robust circadian trends due to high

variability of wearable-based heart rate at both the intra-

individual and inter-individual level. More studies on larger and

more heterogeneous cohorts are needed to confirm these results and

increase the generalizability of these results, as >80% of this sample

was made up of people with RRMS.

Seccia et al. (50) focused on the application of AI to analyse real-

world clinical records of 1624 pwMS (totalling over 18,000 records

between 1978 and 2018). They tried to predict the probability of

shifting from the relapsing-remitting to the progressive phase at

different timepoints (180, 360, 720 days from last visit). They tested

predictions based on data from the last available visit using different

ML models (visit-oriented approach), or based on the entire clinical

history (history-oriented approach) using a specifically designed

recurrent neural network (RNN). They found that the visit-

oriented approach was better at predicting shifts to progressive MS

at 180 days, largely thanks to the inclusion of imaging and liquor
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history, suggesting that these two methods are informative on the risk

of conversion to progressive MS in the short term. Conversely, the

history-oriented approach performed better for predictions of

shifting to progressive MS at longer intervals (360 and 720 days),

owing largely to its better precision (reflecting less false positives).

Crucially, the history-oriented approach was more reliant on clinical

features, as bothMRI and liquor data was unavailable for the majority

of participants at all time points. Taken together, these results indicate

that AI can effectively leverage real-world clinical big data to predict

the risk of conversion to progressive MS. One key limitation is the

intrinsic nature of real-world clinical data, which often contains

missing data, as seen for liquor and MRI data in this study. It is

crucial that clinical expertise is applied during the planning of

analysis and data preprocessing, to determine if missing data are

meaningful or not, and how they should be dealt with (e.g., missing

liquor data can be expected, as lumbar punctures are not performed

at each clinical visit, whereas EDSS score should ideally be available at

all timepoints). This once again underlines the importance of data

collection and maintenance. A well-structured and well-described

feature set allows for much easier collaborations and sharing of data,

thus promoting the fusion of different expertise (namely clinical and

data science), which could further increase our understanding of MS.

Accurate data maintenance could also allow to perform future

analyses on data with longer follow-up durations, increasing our

understanding of longitudinal disease patterns in MS.
Conclusion

The growing adoption of digital remote monitoring tools has

great potential to improve both research and clinical aspects of MS,

thanks to remote tracking of motor and non-motor symptoms. This

review highlights that connected devices like smartphones and,

especially, wearables can effectively monitor motor impairments,

such as fall risk and gait disturbances, through continuous, granular

data collection during real-world activities. Remote monitoring of

physical activity is gaining significant traction in clinical research

application. This is demonstrated by the inclusion of remote activity

monitoring data as an exploratory endpoint in a recent drug trial

(51), albeit through a basic daily step count metric. Further

improvements may derive from AI algorithms which can

recognize activity states, enriching the quantitative sensor data.

The evidence available on cognitive monitoring still favours the

adaptation of active cognitive tests in digital form, to allow remote

longitudinal monitoring, which may increase the standard of care

for those with reduced mobility and/or access to specialized MS

care. Recent advances in AI-driven cognitive tests and keystroke big

data provide potential pathways to enable passive cognitive

monitoring, but further research is needed to confirm their

reliability and clinical utility.

Some studies have explored less-studied domains like sleep and

circadian autonomic patterns, with interesting results which suggest

that remote monitoring of these domains is feasible and could

provide novel insights, compared to traditional research methods.

Finally, preliminary exploratory studies have leveraged big data
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from clinical health records, with promising results, highlighting

the need for careful recording, structuring, and maintenance of real-

world clinical datasets. Increased awareness of the importance of big

data in MS has led to the rising prominence of collaborative

databases, both on a national (52–54) and international scale (55,

56), as well as multicentric studies on digital outcomes (57).

However, despite these advancements, challenges remain,

including the small sample sizes observed in many studies, which

limit the generalizability of their results to different MS populations,

namely those with progressive MS, higher disease severity, and

reduced access to specialized MS centres. Inclusiveness is a key area

which should be addressed more carefully by future studies. Indeed,

when assessing the real-world feasibility of digital monitoring for the

entire MS population, researchers should be mindful of potential

sampling bias, as patients willing/able to undergo such protocols may

present distinct features (e.g., younger patients, with lower disability,

higher educational attainment, and without cognitive impairment).

For the use of AI and ML algorithms, researchers should never forget

that an algorithm with many input variables may be very accurate but

unusable by non-specialized MS centres which cannot obtain all the

clinical/instrumental/sensor data on which the algorithm was trained

on. Another significant limitation is the heterogeneity of monitoring

methods and study protocols, which negates the possibility to

compare feasibility, reliability, and validity data across different

studies and devices. Future studies should strive to address these

outstanding issues, since feasible, reliable and valid digital monitoring

tools represent an invaluable resource for both research and

clinical practice.

Finally, the recent rise and diffusion of conversational AI agents

(e.g., ChatGPT) has led to some researchers exploring their

usefulness in the setting of MS care (58, 59). When applied to

disease monitoring, conversational AI could be integrated in

eHealth apps as a chatbot, similar to examples from other fields

(see for example (60)). This could allow patients to report their

symptoms in a conversational manner, instead of having to answer

omni-comprehensive and pre-defined structured lists of questions

or questionnaires, which could feel alienating and repetitive, leading

to low adherence. This may not only be perceived as a more natural

and interpersonal approach by patients, but may also reduce their

burden, by eliminating the need to answer questions which are not

relevant for them at that moment in time. Moreover, an AI-driven

closed loop system may also guide the administration of validated

patient-reported questionnaires through eHealth apps, by selecting

only the questionnaires that are most relevant for each individual

patient, based on their reported symptoms at that specific

timepoint. We hypothesize that this approach would reduce the

time and energy demand on patients, while also providing a more

interpersonal, responsive and adaptive monitoring framework,

which could then lead to higher adoption and adherence to

digital long-term monitoring. However, systematic studies are

required to substantiate these hypotheses. Firstly, studies should

evaluate the technical feasibility of applying conversational AI to

longitudinal symptoms monitoring in MS, focusing particularly on

the safety, validity and reliability of the information provided by AI.

Secondly, they should investigate the expectations and needs of
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patients, caregivers and clinicians toward digital monitoring, to

determine if and how AI can be applied to address them.
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