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The tumor microenvironment (TME) plays a critical role in cancer progression,

with cancer-associated fibroblasts (CAFs) emerging as key players in immune

evasion. This review explores the complex interactions between CAFs and

dendritic cells (DCs), essential antigen-presenting cells that activate immune

responses. CAFs impair DC maturation and function by secreting cytokines,

chemokines, and growth factors, reducing their ability to present antigens and

stimulate T cells, thus promoting an immunosuppressive environment favorable

to tumor growth. Additionally, CAFs contribute to the differentiation of

tolerogenic DCs, fostering regulatory T cells (Tregs) that further suppress

antitumor immunity. This review examines the molecular mechanisms

underlying CAF-DC crosstalk and discusses potential therapeutic strategies

a imed at restor ing DC funct ional i ty . Target ing the CAF-dr iven

immunosuppressive network offers promising opportunities to enhance the

efficacy of DC-based vaccines and immunotherapies, paving the way for

improved cancer treatment outcomes.
KEYWORDS

tumor microenvironment, cancer, stroma, immunotherapy, oncoimmunology,
immunosuppression, tolerogenicity
1 Introduction: tumor microenvironment as a

dynamic ecosystem driving cancer progression

Cancer has been described as one of the most complex diseases known. This complexity

stems from several factors contributing to the intricate nature for development. The

persistent statistic positioning cancer as the cause of death demonstrates that, despite the

vast body of research revealing the multifaceted mechanisms of carcinogenesis, this

underlying complexity remains only partially understood (1, 2). The shift in research

perspective from reductionist biology to a multidimensional understanding, with the
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recognition of the hallmarks of cancer, demonstrates the need for

cooperative actions by tumor cells to proliferate, expand, and

disseminate. Additionally, for over a century, the inevitable

accumulation of mutations has been recognized as the driving

force behind the formation of tumor cells, establishing cancer as a

genetic disease. However, this explanation is insufficient, as

evidence shows that a cell with oncogenic mutations requires a

specific context to initiate a tumor. Technological advancements in

biological research reveal that tumor cells reside in a dynamic

environment called the tumor microenvironment (TME), which

reflects their ecosystem. Considering the complexity of the disease,

it becomes evident that it arises from the TME. Within this

environment, the tumor cells cohabitate with various non-

tumoral populations embedded all in an extracellular matrix to

ultimately form the tumor mass. This non-cancerous counterpart is

typically composed of diverse resident or recruited adaptive and

innate immune cell types, cancer-associated fibroblasts (CAFs),

blood vessels such as endothelial cells and pericytes, and various

additional tissue-specific cell types (such as neurons, adipocytes,

melanocytes, keratinocytes, among others, depending on the organ

of origin), which also contributed to tumor coevolve (1–3). The

process of dynamic evolution is based on the dialogues established

between the intervening populations through signaling at two levels:

indirect paracrine signaling or direct cell-to-cell contact (3). These

interactions, which are established in a spatially and temporally

regulated manner, create niches within the microenvironment that

govern its functional state. The functionality of the TME

continuously transitions to support the intrinsic properties of the

tumor cells residing within, resulting in distinct states that drive

tumor growth, invasion, and metastasis. Thus, the composition and

functionality of a dynamic TME are shaped by the organ of origin,

tumor stage, and the patient’s characteristics (3). This habitat

creates a tumor-suppressive or supportive environment, which

correlates with treatment response and immune surveillance. Our

understanding of the TME, with focusing on stromal composition,

represents a challenge for exploring vulnerabilities and proposing

them as therapeutic strategies.

As previously mentioned, the TME is a highly specialized

ecosystem that arises, shapes, and evolves is driven by tumor cells

which one acquired capabilities to recruit and corrupt both the

normal cellular and non-cellular components of their emerging

surroundings. The nature of the tumor dictates the specific stromal

drivers involved in its progression and the dynamic and

heterogeneous plays a critical role in encompassing all stages of

tumor development (3–5). An enhanced tumor-supportive TME
Abbreviations: TME, Tumor Microenvironment; CAFs, Cancer-Associated

Fibroblasts; DCs, Dendritic Cells; Tregs, Regulatory T cells; Th, T helper cells;

TSLP, Thymic Stromal Lymphopoietin; TNF-a, Tumor Necrosis Factor-alpha;

IL, Interleukin; STAT3, Signal Transducer and Activator of Transcription 3; IDO,

Indoleamine 2,3-dioxygenase; MHC, Major Histocompatibility Complex; PGE2,

Prostaglandin E2; IR, Ionizing Radiation; ICD, Immunogenic Cell Death; ICIs,

Immune Checkpoint Inhibitors.
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serves as a dynamic reservoir of cellular and extracellular

components, intricately involved in cancer outcome. Collectively,

these elements are the tumor’s fuel for survival, invasiveness, and

response to therapies, making the TME a critical determinant for

prognosis and therapeutic intervention. For a comprehensive

overview of the major cellular and non-cellular components of

the TME, refer to de Visser and Joyce (3). Their work provides an

in-depth analysis of the key contributors, including immune cells

such as adaptive immune cells, myeloid immune cells, immune cells

at the interface of adaptive and innate immunity, stromal cells and

matrix and vascular cells. Additionally, therapeutic strategies

targeting the stromal components of the TME are thoroughly

reviewed offering insights into novel approaches to disrupt

tumor-stroma interactions and enhance treatment efficacy (4, 6)

Regarding stromal TME counterparts, two populations stand

out due to the extensive diversity of their subtypes and

subpopulations: immune cells and transformed fibroblasts. These

populations exhibit significant functional and phenotypic

heterogeneity, highlighting their key roles in the regulation and

remodeling required to the successful tumor demands. In the

following paragraphs, these aspects will be explored in depth.

Next year marks the 20th anniversary of the first scientific

evidence establishing CAFs as critical contributors to cancer

progression, acting as active components of the TME (7). Since

that landmark discovery, numerous studies have consistently

reinforced and expanded this evidence, underscoring the pivotal

role of CAFs in tumor biology and highlighting their potential as

therapeutic targets (4, 5, 8–12).

While the existence of CAFs is widely recognized, it actually

remains a subject of debate about their precise role within TME.

Over the past few decades, numerous studies have reported both

pro-tumorigenic and anti-tumorigenic functions of CAFs, with

attempts at therapeutic targeting yielding conflicting results.

These endeavors often failed to account for the extensive

heterogeneity and plasticity inherent in the CAF population, a

complexity that is only now being fully appreciated. This

variability may reflect diverse origins and specialized functions

acquired by CAFs in response to specific environment cues and

the tumor modeling received within the TME (4, 12).

Given the described role of this population, it is unsurprising

that it predominates in the tumor niche, with some exceptions

where its presence is null or minimal, such as in hematological

cancers or glioblastomas, respectively, due to the natural lack of

fibroblasts in these tissues (5, 11–14).

On the other side, the immune cells are abundantly present in

the tumor with the intention to defend against the body to the

malignant tissue. However, this response is unsuccessful due to the

inevitable interstromal interactions with CAFs, which result

dominate and create an immunosuppressive condition. The

intricate interactions between stromal cells CAFs and various

immune cells are thoroughly revised in detail by Xu et al. (4).

Among the actions performed by them, we can mention remodeling

the ECM to create a physical barrier for immune cell transit,

modulating the antitumor activity of immune infiltrates, and

enhancing the expression of checkpoint molecules (4, 11, 12).
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This condition is strongly maintained by tumor cells, which result

in evading immune system attacks.

The objective of this review is to investigate the intricate and

often enigmatic interactions within the TME, particularly focusing

on the roles of immune cells and CAFs. By delving into the

complexities of tumor immune surveillance and the potential

barriers to effective antitumor responses, this review seeks to

uncover the underlying mechanisms that could reveal new

therapeutic avenues for cancer treatment.
2 Crucial role and function of immune
cells in the TME

Tumor immune surveillance is a critical mechanism through

which the immune system identifies and eliminates transformed

cells before they can develop into clinically significant tumors. This

process involves various immune cells from both the innate and

adaptive immune systems, each playing distinct roles in recognizing

and responding to tumor cells (15). The effectiveness of tumor

immune surveillance can be understood through the three E’s

theory: Elimination, Equilibrium, and Escape. In the elimination

phase, the immune system effectively recognizes and destroys

nascent tumor cells, preventing their growth. The equilibrium

phase follows, where surviving tumor cells may enter a dormant

state, controlled by the immune system. Lastly, in the escape phase,

this equilibrium can be disrupted, allowing tumor cells to develop

mechanisms to evade immune detection and suppress immune

responses, leading to tumor growth and progression (16–18).

The innate immune system provides the first line of defense

against tumors and includes various cell types found within the TME.

Natural Killer (NK) cells are crucial for recognizing and killing tumor

cells that may have downregulated major histocompatibility complex

(MHC-I) molecules, and they can also secrete cytokines that enhance

the immune response. Additionally, Myeloid-Derived Suppressor

Cells (MDSCs) expand in cancer and exert immunosuppressive

effects, inhibiting T cell activation and promoting tumor growth,

representing a significant barrier to effective immune surveillance (16–

18). Tumor-associated neutrophils (TANs) also play important roles

in tumor immune surveillance and progression. They can exhibit

either tumor-suppressive (N1) or tumor-promoting (N2) phenotypes

depending on signals in the TME, contributing to angiogenesis,

extracellular matrix remodeling, and immunosuppression (19). gd T

cells are unconventional lymphocytes with potent cytotoxic functions

and rapid cytokine release, capable of responding to stress-induced

molecules on tumor cells (20). However, they may also acquire

regulatory phenotypes that favor tumor growth. Monocytes,

recruited from the bloodstream, can differentiate into tumor-

associated macrophages or dendritic cells and modulate the immune

milieu through the secretion of inflammatory or suppressive

cytokines, thus playing dual roles in tumor immunity depending on

their polarization and context. Macrophages, which can adopt

different functional states such as pro-inflammatory (M1) or anti-

inflammatory (M2), play a versatile role in the TME. Often,
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macrophages exhibit an M2-like phenotype that promotes tumor

progression and suppresses effective immune responses (21).

The adaptive immune system, which provides long-lasting and

memory immunity, is represented by T lymphocytes and B

lymphocytes. CD8+ cytotoxic T cells are key players in directly

killing tumor cells, while CD4+ helper T cells orchestrate immune

responses by activating other immune cells. B lymphocytes

contribute to the immune response by producing antibodies

against tumor antigens and can participate in forming tumor-

infiltrating lymphoid structures within the TME (16–18).

Regulatory T cells (Tregs) are a subset of CD4+ T cells

characterized by their expression of the transcription factor FoxP3,

playing a critical role in maintaining immune tolerance and preventing

excessive immune responses. In the context of cancer, Tregs can

significantly influence the immune landscape within the TME. They

are often expanded and activated, contributing to immune suppression

that inhibits the activity of effector T cells, such as CD8+ cytotoxic T

cells, thereby promoting tumor growth. Tregs achieve this through

several mechanisms, including the secretion of immunosuppressive

cytokines like IL-10 and TGF-b, which dampen immune responses and

promote an anti-inflammatory environment favorable to tumor

survival. Additionally, Tregs can inhibit the activation and

proliferation of other immune cells through direct contact and

promote the differentiation of MDSCs and other immunosuppressive

cell types, exacerbating the immunosuppressive TME (16–18).

Dendritic cells (DCs) serve as crucial mediators between the

innate and adaptive immune systems within the TME. They capture

tumor antigens from the microenvironment, process them, and

present them to naïve T cells in the lymph nodes. By doing so, DCs

bridge the initial innate immune response and the subsequent

adaptive response, guiding the differentiation of T cells into

effector cells capable of targeting tumor cells effectively (22–24)

Factors influencing tumor immune surveillance include the

immunogenicity of the tumor, the presence of immune

checkpoints, and the TME itself. A well-functioning immune

response can lead to the recognition and destruction of tumors;

however, tumors can develop various mechanisms to evade

immune detection, such as downregulating antigen presentation,

secreting immunosuppressive factors, and creating a hostile TME

that inhibits immune cell function (16–18).
3 Function and significance of
dendritic cells in the immune
response: challenges faced by DCs in
cancer

Dendritic cells (DCs) are pivotal in bridging the gap between

the innate and adaptive immune systems, playing a vital role in

shaping the quality and magnitude of the immune response. As the

most potent antigen-presenting cells (APCs), DCs are essential for

initiating and regulating T cell responses, which are critical for

effective tumor immune surveillance (25).
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Traditionally, the classification of DCs subsets has relied on

their ontogeny; however, recent single-cell analyses are uncovering

a broader spectrum of functional states of DCs in the context of

cancer. Within the TME, several subsets of DCs are present, each

with distinct functions that contribute to the immune landscape

(26). Conventional dendritic cells (cDCs) are primarily responsible

for capturing and presenting tumor antigens to T cells, facilitating

their activation. These cells can be further divided into two subsets:

cDC1 cells, which are primarily involved in cross-presentation of

antigens to activate CD8+ T cells (27), and cDC2 cells, which are

more effective at activating CD4+ T helper cells and producing

cytokines that shape the immune response (28). In addition to

cDCs, plasmacytoid dendritic cells (pDCs) are known for their

ability to produce large amounts of type I interferons in response to

viral infections and tumor-derived signals. In the TME, pDCs can

exhibit both immunostimulatory and immunosuppressive

functions, influencing the overall immune landscape and

potentially contributing to tumor progression or suppression,

depending on the context (29). Furthermore, monocyte-derived

dendritic cells (mo-DCs) arise from circulating monocytes that

differentiate in response to inflammatory signals present in the

TME. They can play a dual role by acting as APCs while also

contributing to immunosuppression, depending on the tumor

context (30, 31). While both humans and mice possess

conventional DCs (cDC1 and cDC2) and plasmacytoid DCs

(pDCs), their phenotypic markers and developmental pathways

show important divergences. For example, human cDC1 express

CLEC9A, XCR1, and CD141, whereas murine cDC1 are typically

defined by CD8a or CD103 expression, although both rely on

BATF3 and IRF8 for development and are key players in cross-

presentation and Th1 polarization. Similarly, human cDC2 express

CD1c and SIRPa and depend on IRF4, while their murine

counterparts are CD11b+ and also express SIRPa (32).

Importantly, a novel subset termed DC3 has been described in

humans, characterized by the co-expression of CD1c and CD14 and

a distinct proinflammatory profile; however, no direct murine

equivalent has been identified to date. DC3 arise from a low-IRF8

progenitor and are capable of inducing Th17 or Th1 responses

depending on the context (33, 34).

Beyond their antigen-presenting capabilities, DCs produce

various cytokines that influence T cell differentiation and

activation. Depending on the signals they receive from their

environment, DCs can polarize T cells toward different subsets,

such as T helper (Th) 1 cells that promote a strong immune

response or regulatory T cells (Tregs) that can suppress immune

activity. Their ability to migrate to lymph nodes and stimulate T

cells underscores their indispensable role in orchestrating effective

immune responses against tumors and infections (35, 36).

Overall, the functional versatility of DCs in the TME highlights

their significance in modulating immune responses. Understanding

the diverse roles of DC subsets and their interactions within the

TME is crucial for developing strategies to enhance tumor

immunity and improve therapeutic outcomes. Recently, the role

of a newly classified group of dendritic cells known as regulatory

dendritic cells (regDC) has garnered significant attention in tumor
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immune response against cancer. Emerging findings indicate that

regDC can promote immune tolerance by suppressing effector T

cells and facilitating the expansion of Tregs within the TME. This

immunosuppressive activity enables tumors to evade immune

detection and grow unchecked, presenting challenges for effective

cancer treatment (37).

In the context of tumor immune surveillance, DCs play a crucial

role in detecting and presenting tumor-associated antigens,

initiating an effective antitumor immune response (38). However,

in cancer patients, the functionality of DCs is often compromised

due to the immunosuppressive nature of the TME. Factors such as

cytokines, metabolites, and cell-to-cell interactions within the TME

can lead to the maturation of dysfunctional DCs that fail to activate

T cells effectively. This dysfunction may manifest in several ways:

decreased expression of co-stimulatory molecules, impaired

cytokine production, and reduced capacity for antigen

presentation. Consequently, the immune system may not mount

an adequate response against the tumor, allowing for tumor growth

and progression (39).

The TME can indeed be a significant contributor to the

challenges faced by DCs in cancer patients, as the presence of

cancer-associated fibroblasts (CAFs), regulatory immune cells, and

various soluble factors can create a hostile environment that impairs

DCmaturation and function. CAFs, in particular, play a pivotal role

in shaping TME and can profoundly impact the behavior of DCs.

Their interactions with DCs and other immune cells can lead to

further suppression of the immune response, contributing to the

overall immune evasion by tumors (40). Understanding these

mechanisms is essential for developing strategies to enhance DC

functionality and improve tumor immune surveillance. This

knowledge will pave the way for novel immunotherapeutic

approaches aimed at countering the adverse effects of the TME,

particularly the influence of CAFs, which will be explored in the

following section.
4 Cancer-associated fibroblasts and
their role in the TME

Fibroblasts are critical players in tissue homeostasis, wound

healing, fibrotic conditions, and cancer progression (41). In cancer,

fibroblasts transition into CAFs, which become prominent

components of the TME. CAFs can originate from diverse

sources, including resident fibroblasts, mesenchymal stem cells

(MSCs), epithelial cells, endothelial cells, pericytes, and adipocytes

(9, 42). This plasticity allows fibroblasts to adapt to the TME, driven

by signals such as TGFb, PDGF, and FGF, which convert normal

fibroblasts into CAFs (41).

The heterogeneity of CAFs manifests at multiple levels: cellular

(function and activation state), microenvironmental (interactions

with tumor cells and the extracellular matrix), and regional (tissue-

specific functions), influencing tumor biology and treatment

responses. Understanding this heterogeneity is crucial for the

development of targeted therapies (9). CAFs play key roles in the
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TME by secreting a wide range of growth factors, inflammatory

mediators, and extracellular matrix (ECM) components, which not

only promote tumor growth but also contribute to therapy

resistance and immune evasion (10) Through signaling

interactions with cancer cells, CAFs drive processes such as

proliferation, metastasis, angiogenesis, and immunomodulation,

among others (42)(Figure 1).

Recent advances in single-cell RNA sequencing (scRNA-seq)

and transcriptomics have revealed a high degree of heterogeneity in

CAFs across different cancer types, enabling the identification of

distinct CAF subpopulations that correlate with specific tumor
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responses and tailor personalized therapies (9). Although CAF

nomenclature varies across studies and cancer types, these

subpopulations can be grouped into well-defined functional and

molecular categories that reflect their role in the TME. Over the

years, studies in various cancer types have consistently identified at

least two main CAF subtypes: myofibroblastic CAFs (myCAFs) and

inflammatory CAFs (iCAFs), with multiple classification systems

converging on these categories (43). myCAFs are characterized by

high aSMA expression, which confers a contractile phenotype and

a crucial role in extracellular matrix (ECM) remodeling. Although
FIGURE 1

Origin and functions of cancer-associated fibroblasts (CAFs). CAFs represent a heterogeneous cell population within the TME and can originate from
various cellular sources. Within TME, CAFs acquire an activated phenotype and secrete a wide range of soluble factors, including cytokines, growth
factors, and extracellular matrix components. These mediators regulate key processes in tumor progression, including cancer cell proliferation,
metastasis, angiogenesis, and immunomodulation, thereby fostering a tumor-promoting environment. The figure illustrates the main signaling
pathways associated with each of these functions, highlighting the interactions between CAFs and other TME components.
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these CAFs have been identified as myCAFs in pancreatic ductal

adenocarcinoma (PDAC) and lung cancer (44, 45), in other tumor

types, they have been assigned different nomenclatures despite

sharing similar functions and molecular signatures. For example,

in melanoma, myCAFs have been designated as CAF-S2 (46), in

colorectal cancer as CAF-B (47) and in breast cancer as mCAFs

(48). Conversely, iCAFs exhibit a secretory profile characterized by

the production of cytokines and growth factors, enabling them to

modulate inflammation and tumor progression. They have been

described in various tumors, including PDAC, melanoma, and

breast cancer (46, 48, 49). These CAFs play a key role in shaping

the immune landscape of the TME, as they induce chronic

inflammation and contribute to an immunosuppressive

environment that promotes tumor survival. Their secretion of

cytokines such as TGF-b, IL-6, CXCL1, and CXCL12 suppresses

the activity of cytotoxic CD8+ T cells and promotes the recruitment

of immunosuppressive cells such as MDSCs (41).

Recently, a CAF subtype with immunomodulatory properties,

antigen-presenting CAFs (apCAFs), has gained attention due to

their presence in various solid tumors. Characterized by MHC-II

expression, these fibroblasts suggest a crucial role in interacting with

immune cells. To date, they have been described in pancreatic, lung,

and breast cancer (45, 50–53). In PDAC, apCAFs have been shown

to modulate immune responses, whereas in melanoma, they have

been designated as CAF-S1 and perform a similar function in

suppressing antitumor immune responses (46, 49). These findings

highlight the remarkable diversity of CAFs, whose genetic and

proteomic profiles vary among different tumor types, playing key

roles in both cancer progression and therapeutic responses (9).
5 Mechanisms of CAF-mediated
modulation of DCs

Given the critical role of DCs in innate immunity, their

dysfunction in the TME, and the influence of CAFs in driving

immunosuppression, we chose to focus this review on the

interaction among these three key components. While DCs are

essential for initiating anti-tumor immune responses (54, 55), their

function is often impaired in the TME through interactions with

stromal cells, particularly CAFs (56, 57), which play a significant

role in modulating DC activity and contributing to immune evasion

and tumor progression.

CAFs critically influence DCs within the TME by impairing the

antigen-presenting function of DCs and downregulating co-

stimulatory molecule expression (such as CD80, CD86, and MHC-

II) on their surface. These molecules are crucial for the activation of T

cells and the initiation of an effective anti-tumor immune response.

This CAF-DC crosstalk involves both the secretion of cytokines,

chemokines, growth factors, and extracellular vesicles, along with

direct cellular contacts (40). These molecular mechanisms undermine

DC functionality, leading to immunosuppression.

The modulation of DCs by CAFs seems to be tumor-specific, as

distinct CAF-derived factors influence DC maturation, antigen
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presentation, and immune functions. These effects are shaped by

the unique characteristics of the TME, with CAFs secreting factors or

activating pathways tailored to the immune landscape of each tumor

type. Transcriptomic analysis of fibroblasts has revealed significant

differences between fibroblasts from various anatomical sites,

suggesting that fibroblasts can transfer tissue-specific information

to DCs (58, 59). In the following sections, we will detail the reported

CAF-DC crosstalk in various tumor types, with a summary of this

information provided in Table 1, along with an integrative figure to

enhance understanding of these complex interactions (Figure 2).
5.1 CAF-DC crosstalk in breast cancer

In breast cancer, using the 4T1 metastatic mouse model, CAFs

have been shown to modulate immune polarization within the

TME, promoting tumor progression and metastasis. Liao et al.

demonstrated that in vivo depletion of CAFs via a DNA vaccine

targeting fibroblast activation protein (FAP) shifted the immune

polarization from a Th2-dominant to a Th1-dominant response.

This was associated with reduced recruitment of pro-tumor

immune cells, including tumor-associated macrophages (TAMs),

MDSCs, and Tregs, while enhancing the chemotherapy-induced

recruitment of anti-tumor immune cells such as DCs and cytotoxic

CD8+ T lymphocytes. The vaccine also increased IL-2 and IL-7

protein expression and enhanced the anti-metastatic effects of

doxorubicin, further suppressing IL-6 and IL-4 expression. These

findings suggest that CAFs represent viable therapeutic targets in

metastatic breast cancer. Consequently, tumor angiogenesis and

lymphangiogenesis were reduced, improving anti-tumor immune

responses and suppressing spontaneous metastasis of 4T1 breast

cancer cells (60).
5.2 CAF-DC crosstalk in pancreatic cancer

In pancreatic cancer, CAFs have been found to secrete thymic

stromal lymphopoietin (TSLP) following activation by tumor-

derived TNF-a and IL-1b. Previous studies have linked TSLP

with the induction of Th2 responses through DC activation (68).

De Monte et al. showed that TSLP secreted by CAFs activates

myeloid dendritic cells (mDCs), endowing them with the ability to

promote Th2 polarization (61). Specifically, TSLP-containing

supernatants from activated CAFs induced mDCs in vitro to

upregulate the TSLP receptor (TSLPR), secrete Th2-attracting

chemokines, and gain Th2-polarizing capacity. Furthermore,

TSLP-activated DCs (CD11c+ TSLPR+) were identified in the

tumor stroma and draining lymph nodes, but not in non-

draining nodes. In vivo experiments showed the presence of Th2-

attracting chemokines in the tumor and stroma, and the

intratumoral infiltration of Th2 cells was found to correlate with

CAF-derived TSLP production and reduced patient survival. These

findings demonstrate that a TSLP-driven shift towards Th2

immunity plays an active role in tumor progression. A higher
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TABLE 1 Overview of CAF-DC interactions across different tumor types.

CAF-DC Analyzed cellular
Findings Reference

Depletion of CAFs via a DNA vaccine
targeting FAP increased DC recruitment
and shifted immune polarization from a
Th2 to a Th1 response. Enhanced
chemotherapy-induced recruitment of
DCs and CD8+ T cells, decreased IL-6
and IL-4 expression.

Liao et al. (60)

CAFs secrete TSLP upon activation by
TNF-a and IL-1b from tumor cells.
TSLP activates mDCs to promote Th2
polarization, contributing to tumor
progression. Increased Th2 cells are
associated with worse prognosis.
Blocking TSLP may improve survival

De Monte et al. (61)

al
re

CAFs recruit DCs and induce their
differentiation into regulatory DCs,
which acquire immunosuppressive
properties. Treatment with IL-6
increases STAT3 activation, enhancing
IDO production and promoting Treg
expansion, leading to immune tolerance

Cheng et al. (62)

al
re

CAFs-derived exosomes modulate
miRNA and cytokine expression,
inducing a regulatory phenotype in DCs

Mirza et al. (63)

CAFs modulate the differentiation,
maturation, and functions of monocyte-
derived DCs, promoting a
tolerogenic phenotype

Berzaghi et al. (64)

WNT2 suppresses the differentiation and
immunostimulatory activities of
dendritic cells

Huang et al. (65)

CAFs completely suppress the
differentiation of DCs from peripheral
blood monocytes, while tumor cells
significantly inhibit LPS-induced DC
maturation. This indicates that tumor
cells and CAFs can modulate different
stages of the anti-tumor
immune response

Saryglar et al. (66)
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Th2/Th1 cell ratio in the tumor stroma is associated with a poorer

prognosis in surgically resected patients. Based on these findings,

De Monte et al. proposed a model of complex crosstalk between

tumor cells, CAFs, DCs, and Th2 cells that promote tumor growth.

In this model, pancreatic tumor cells release TNF-a and IL-1b
proinflammatory cytokines, which had been previously reported

(69–71), stimulating CAFs to secrete TSLP. This TSLP activates and

matures resident DCs loaded with tumor antigens. These activated

DCs then migrate to the draining lymph nodes, where they prime

Th2 cells specific to the tumor antigen. The primed CD4+ Th2 cells

are drawn back to the tumor by Th2 chemokines (TARC and

MDC). Recruited GATA-3+ CD4+ Th2 cells contribute to tumor

progression. This Th2-driven inflammation is associated with

reduced patient survival (61). As a potential solution, blocking

TSLP production by CAFs could help improve the prognosis of

pancreatic cancer.
5.3 CAF-DC crosstalk in hepatocellular
cancer

Likewise, in hepatocellular carcinoma tumors, Cheng et al.

demonstrated that CAFs modulate DCs differentiating them into

regulatory DCs, which acquire characteristics of functional immune

tolerance (62). A transwell co-culture model confirmed that CAFs

have a strong ability to recruit DCs, and neutralizing SDF-1a
significantly inhibits the migration of DCs towards CAFs, while

neutralizing IL-6 does not have this effect. Additionally, using an in

vitro cell-to-cell interaction model, it was observed that DCs

adhered to CAFs, forming aggregates. These DCs had fewer and

shorter dendrites after treatment with lipopolysaccharide (LPS),

along with reduced expression of functional markers. They also

showed increased secretion of immunosuppressive cytokines like

IL-10, TGF-b, and HGF, while the production of IL-12p70 and

TNF-b was decreased. These DCs demonstrated a lower ability to

stimulate the proliferation of CD3+ T cells and promoted the

expansion of CD4+ CD25+ Foxp3+ regulatory T cells (Tregs) by

secreting IDO (62). IDO, produced mainly by immune cells

recruited by the tumor, particularly DCs (72) is a key enzyme in

tryptophan metabolism involved in immune tolerance and

immunosuppression in cancer, as it can induce T cell anergy and

Treg expansion (73, 74).

Various studies have shown that regulatory DCs in the tumor

region express high levels of IDO, contributing to inhibiting anti-

tumor immune responses (75, 76). The transcription of IDO has

been linked to the activation of STAT3 (77). In this sense, Cheng

et al. also demonstrated that STAT3 activation in DCs, mediated by

IL-6 from CAFs, is essential for IDO production. Inhibitory

antibodies targeting STAT3 and IL-6 can reverse the regulatory

function of CAFs on DCs (62). Furthermore, it was shown that DCs

treated with IL-6 exhibited increased STAT3 activation and IDO

production, resulting in immunosuppressive effects on T cell

responses. In a previous study, IL-6-treated dendritic cells

negatively regulated the expression of CD1a, CD83, CD80, CD86,

and HLA-DR while increasing CD14 expression (78).
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5.4 CAF-DC crosstalk in lung cancer

In lung tumors, Berzaghi et al. showed that CAFs paracrinally

induced a tolerogenic phenotype in DCs by downregulating key DC

markers (CD14, CD1a, CD209) and impairing the differentiation of

monocyte-derived DCs in vitro (64). The inability of these cells to

downregulate CD14 may be related to previous findings showing

that IL-6 secretion by CAFs promotes monocyte differentiation into

macrophages instead of DCs by inducing M-CSF (79). Additionally,

previous studies have shown that high IL-6 expression in stromal

cells induces a tolerogenic DC phenotype in a prostate cancer

model, characterized by elevated levels of CD14 and PD-L1 (80).

The continuous secretion of immunosuppressive signals (IL-6,

PGE2, TGF-b) by irradiated lung CAFs may explain why

monocyte-to-DC differentiation is unaffected after irradiation (IR)
Frontiers in Immunology 09
(64, 81, 82). IR has been found to elicit substantial immunological

responses that significantly influence disease outcomes in both pre-

clinical and clinical settings (83–85). IR induces immunogenic cell

death (ICD) and promotes the release of tumor-associated antigens

and immune adjuvants, triggering pro-inflammatory reactions and

enhancing immune cell recruitment. This process disrupts the

equilibrium of tumor immune tolerance (86, 87). However, IR

can also activate immunosuppressive pathways that contribute to

tumor radioresistance (88). Therefore, treatment outcomes depend

on the intricate interplay between pro-immunogenic and anti-

immunogenic signals. Recent studies have identified a correlation

between CAFs and heightened resistance to radiotherapy in both

non-small cell lung cancer (89) and colorectal cancer (90).

Furthermore, there is emerging evidence indicating a loss of pro-

tumorigenic functions in CAFs following IR exposure (91).
FIGURE 2

Schematic representation of tumor types and their impact on CAF-DC interactions. Overview of tumor types studied for CAF-DC interactions,
highlighting the signaling molecules involved and their impact on DC functionality. The assignment of CAF phenotypes across tumor types,
presented in italics, is speculative and based on literature-informed interpretation, not on direct experimental evidence. This figure illustrates how
different tumor microenvironments influence the behavior of both CAFs and DCs, emphasizing the complexity of their interactions and the
subsequent effects on immune responses. In breast cancer, stromal cells (iCAFs) secrete IL-6 and IL-4, helping tumor growth and immune system
modulation by shifting the immune response towards Th2 and attracting pro-tumor cells. Similarly, in pancreatic cancer, iCAFs promote a transition
to a Th2 response by secreting TSLP, which makes DCs adopt an immunosuppressive phenotype. MyCAFs from hepatocellular carcinoma secrete
SDF-1a and IL-6, leading to immune tolerance in dendritic cells by attracting T-reg cells and reducing T-cell growth. In colorectal and esophageal
cancers, myCAFs release WNT2, which prevents dendritic cells from maturing and stops T-cell activation. In lung cancer, iCAFs create a tolerogenic
phenotype in DCs by secreting immunosuppressive molecules such as IL-6, TGF-b, PGE2, and IL-10, which block T-cell responses. However, in
head and neck cancer, CAFs release chemokines like CCL8 and CXCL5, which attract cDCs, boost immune activation, and help recruit B and T
lymphocytes. “+” indicates activation or stimulation; “–” indicates inhibition or suppression.
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It has also been observed that both paracrine factors from CAFs

and cell contact-mediated mechanisms are involved in inducing a

tolerogenic phenotype in DCs, characterized by reduced expression

of activation markers (CD80, CD86, CD40, and HLA-DR),

increased IL-10 release, along with decreased antigen capture,

migration capacity, and CD4+ T-cell priming ability (64). This is

consistent with previous studies showing that both cell-cell

interactions (CAF/DC) and soluble factors secreted by fibroblasts

act as strong regulators of DC differentiation and function (92–94).

These findings align with earlier research demonstrating a

direct link between tumor-associated fibroblasts and the

induction of tolerogenic DCs in hepatocellular carcinoma (62),

lung cancers (95), and pancreatic cancer (61). Furthermore, the data

suggest that the loss of CAF-mediated effects on DCs following IR is

not dependent on the modulation of previously highlighted soluble

mediators (TGF-b, IL-6, or PGE2, as well as VEGF, TDO, and

TSLP) (61, 95–97).

Berzaghi et al. further explored the impact of ionizing radiation

on CAF-mediated regulation of DCs. It has been observed that

ionizing radiation, when administered in fractionated medium

doses but not in high doses, can modify or reverse CAF-mediated

immunoregulatory properties in DCs. This is done by altering CAF

paracrine factors that modulate the NF-kB/p65 and STAT3

signaling pathways in DCs. Based on these findings, it is

hypothesized that IR may modulate a pro-inflammatory CAF

secretome that regulates multiple downstream genes, including

cytokines, chemokines, receptors, and transcription factors

relevant to dendritic cell functions (64)

In lung adenocarcinomas, CAF-derived exosomes play a critical

role in regulating DC maturation by mediating paracrine

interactions within the TME. These exosomes modulate miRNA

expression and cytokine levels in CAF-conditioned media,

contributing to both pro- and anti-tumorigenic responses.

Notably, exosomal miRNAs induce post-transcriptional

modifications, resulting in epigenetic changes in recipient cells

(98, 99). Studies have demonstrated that immature DCs exposed

to CAF-conditioned media undergo differentiation into regDCs,

marked by reduced expression of maturation markers and an

increase in miR-146a levels, underscoring the role of miR-146a as

a critical epigenetic regulator in inhibiting DC maturation. This

effect was further associated with increased levels of anti-

inflammatory cytokines such as IL-6, IL-10, and TGF-b, along
with decreased levels of the pro-inflammatory cytokine TNF-a,
indicating the suppressive influence of CAF-derived exosomes on

DC maturation within the TME (63). Additionally, elevated

expression of the regulatory marker CTLA-4 was observed,

suggesting its involvement in the generation of regDCs, which

suppress T cell responses through the production of IL-10 and

IDO (100). Moreover, the potential of curcumin, known for its anti-

inflammatory and immunomodulatory effects (101–104), was

evaluated in this context. Using ELISA to profile cytokines in

CAF-conditioned media treated with curcumin, it was found that

curcumin could convert regDCs into mature DCs. These mature

DCs were characterized by increased expression of co-stimulatory

molecules, reduced CTLA-4 expression, and lower levels of
Frontiers in Immunology 10
immunosuppressive cytokines and miR-146a. may guide

regulatory DCs toward a more mature phenotype, thereby

enhancing anti-tumor immune responses. Furthermore, curcumin

treatment led to a reduction in IL-6, IL-10, and TGF-b levels in the

conditioned media, effectively transforming the TME from an

immunosuppressive to an immunomodulatory state. These results

align with previous research, demonstrating that curcumin can

effectively modulate CAF activity, promoting the secretion of

exosomes that create an immunomodulatory TME. This study

lays the groundwork for developing synergistic therapeutic

strategies combining curcumin with DC-based immunotherapies

to overcome cellular resistance in cancer treatment (63).

Despite the immunomodulatory effects of curcumin in

preclinical models, its role as a therapeutic agent remains highly

debated. While several studies have demonstrated its ability to

regulate the TME by reducing immunosuppressive cytokines and

promoting DCmaturation, significant concerns persist regarding its

clinical applicability. However, despite promising laboratory

findings, several challenges hinder its translation into clinical

practice, including poor bioavailability, rapid metabolism, and

variability in systemic absorption. These limitations present major

obstacles to its therapeutic use, as high doses are often required to

achieve biological effects, raising concerns about potential toxicity

and off-target effects. Managing these risks is crucial, and ongoing

research aims to find ways to balance therapeutic efficacy with

safety, possibly through dose optimization and more targeted

delivery strategies. Clinical trials have attempted to address these

limitations by testing different curcumin formulations and dosages.

Phase I studies have confirmed the presence of curcumin and its

metabolites in bodily fluids and tissues, indicating some degree of

bioavailability. Moreover, early-stage trials in patients with

colorectal, oral, and hepatic cancers have suggested a potential

role for curcumin in cancer prevention. However, these initial

findings require validation in larger, well-designed studies to

determine whether curcumin can meaningfully influence clinical

outcomes. Similarly, pilot trials assessing curcumin as an adjunct to

conventional therapies have reported benefits such as improved

oxidative balance in patients undergoing chemotherapy and

radiation, reduced severity of treatment-induced side effects like

mucositis and dermatitis, and overall enhancement in quality of life.

Yet, the heterogeneity in study designs, patient populations, and

dosing regimens makes it difficult to establish standardized

recommendations for its use in oncology. One of the major

barriers to curcumin’s clinical adoption is its pharmacokinetic

profile, which limits its systemic effectiveness. Advances in drug

delivery, such as nanoformulations, liposomal preparations, and

structural analogs, have been developed to enhance absorption and

stability, but their feasibility for widespread clinical application

remains uncertain. Additionally, patient-specific factors, including

genetic background, gut microbiota composition, and immune

status, may influence curcumin’s therapeutic effects, adding

another layer of complexity to its use in cancer treatment. Beyond

these considerations, curcumin’s broad-spectrum biological activity

raises concerns regarding potential unintended effects. While it has

demonstrated anti-inflammatory and immunomodulatory
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properties, these effects could theoretically interfere with certain

anticancer treatments, such as immune checkpoint inhibitors and

chemotherapy. Its precise role in modulating immune responses

within the TME is not yet fully understood, and further research is

needed to clarify whether it enhances or counteracts existing

therapeutic strategies. Despite these unresolved questions,

curcumin continues to be investigated as a potential modulator of

immune responses in cancer. Some studies propose that it may help

reprogram the TME toward a more immunostimulatory state,

which could be beneficial for DC-based immunotherapies.

However, until larger, well-controlled trials establish its safety,

efficacy, and optimal delivery methods, curcumin cannot yet be

considered a standard component of cancer treatment. Future

research should focus on refining its pharmacological properties,

identifying patient subgroups that may benefit the most, and

conducting rigorous clinical evaluations to determine its true

therapeutic potential (105).
5.5 CAF-DC crosstalk in oesophageal
cancer

In oesophageal squamous cell carcinoma (OSCC), WNT2, a

secreted glycoprotein that activates the Wnt/b-catenin signaling

pathway and promotes tumor progression (106), has emerged as a

significant factor in the TME. Notably, WNT2 is primarily

expressed in CAFs (106–108). Huang et al. demonstrated that the

secretion of WNT2 by CAFs is critical for facilitating tumor

immune evasion, as it suppresses DC differentiation, which are

essential for activating CD8+ T cells. A negative correlation has

been observed between WNT2-expressing CAFs and the activity of

CD8+ T cells in primary OSCC tumors, underscoring the role of

WNT2 in creating an immunosuppressive microenvironment.

Therapeutic interventions using an anti-WNT2 monoclonal

antibody have been shown to increase antigen-presenting DCs

within tumors, correlating with enhanced CD8+ T cell responses

and tumor suppression. Anti-WNT2 monoclonal antibodies not

only restore DC differentiation but also enhance T cell activation,

improving the anti-tumor immune response and boosting the

efficacy of immune checkpoint inhibitors in tumor models (39). A

combination of anti-WNT2 and anti-PD-1 monoclonal antibodies

has been found to enhance anti-tumor T cell responses and improve

the effectiveness of anti-PD-1 therapy in syngeneic mouse models of

OSCC and CRC by increasing active DCs.

At a mechanistic level, WNT2 secreted by CAFs inhibits both

DC differentiation and immune-stimulating functions in vitro.

CAF-derived WNT2 reduces CD11c+ and CD103+ DC

differentiation, leading to diminished tumor antigen presentation

and CD8+ T cell activation, while not affecting overall CD45+

immune cell infiltration (65). The JAK2/STAT3 pathway,

particularly in CD103+ DCs, plays a key role in DC

differentiation (109). Studies have demonstrated that the p-JAK2/

p-STAT3 (Tyr705) pathway is crucial for DC differentiation, with

WNT2 suppressing this process via SOCS3 upregulation in DC

precursors. Given these findings, targeting CAF-derived WNT2
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could restore DC differentiation and improve T cell responses in

tumor models (65). Inhibiting CAF-derived WNT2 could also

enhance the efficacy of immune checkpoint inhibitors, such as

PD-1/PD-L1 inhibitors, offering new avenues for OSCC

immunotherapy. WNT2 also drives tumor growth and invasion

by activating Wnt/b-catenin signaling, particularly in OSCC cells.

Tumor fibroblast (TF)-derived WNT2 stimulates cancer cell

proliferation and invasion through this pathway. In vitro studies

using CHO-Wnt2 conditioned media have shown that TF-secreted

WNT2 promotes tumor cell growth and invasiveness. Targeting

WNT2 with monoclonal antibodies presents a potential strategy to

disrupt tumor-stroma interactions, reducing tumor growth and

metastasis (106).

Beyond OSCC, WNT2 overexpression has been linked to

various malignancies, including colorectal (110–114), gastric (115,

116), pancreatic cancer (117), melanoma (118) and non-small cell

lung cancers (119). In CRC, WNT2 promotes migration and

invasion (107, 111), while in gastric, pancreatic and NSCLC, it

accelerates cancer progression (120–122). However, in OSCC,

WNT2 expression is primarily restricted to stromal cells,

suggesting its role in modulating the TME (106, 123).

While targeting WNT2 is a promising therapeutic strategy,

challenges remain across different cancer models. In malignant

pleural mesothelioma (MPM), WNT2 expression correlates with

poor prognosis and tumor progression. Preclinical studies using

human MPM cell lines have shown that WNT2 inhibition via

siRNA or monoclonal antibodies induces tumor programmed cell

death, even in b-catenin-independent pathways, suggesting a

noncanonical role of WNT2 in cell survival. Although anti-

WNT2 antibodies alone are less effective than standard

chemotherapy like Alimta, their combination enhances tumor

suppression (124).

Preclinical studies in breast cancer xenografts demonstrate that

WNT2 silencing reduces tumor growth and overcomes

chemotherapy (125). In human melanoma models, monoclonal

antibodies targeting WNT2 induce apoptosis in WNT2-

overexpressing melanoma cells, sparing normal cells. WNT2

siRNA treatment produces similar effects by downregulating b-
catenin and survivin, leading to tumor suppression in xenograft

models (126).

Despite promising results, translating WNT2-targeted therapies

into clinical practice faces significant challenges. Clinical trials

remain in early stages, and further research is needed to assess

feasibility and safety. Key challenges include potential off-target

effects on healthy tissues, efficient tumor delivery, and patient-

specific variations in WNT2 expression and immune response.

Scaling up production and ensuring consistent therapeutic

efficacy also require optimization.

Future research should prioritize early-phase clinical trials to

assess safety, dosing, and efficacy of anti-WNT2 monoclonal

antibodies in OSCC and other cancers. Combination strategies

with immune checkpoint inhibitors or standard chemotherapy

warrant further investigation to determine potential synergistic

effects. Identifying biomarkers predictive of patient response

could help tailor WNT2-targeted therapies, optimizing treatment
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outcomes. Nevertheless, ongoing preclinical and clinical studies

suggest that targeting WNT2 could become a key tool in precision

cancer therapy.
5.6 CAF-DC crosstalk in colorectal cancer

In colorectal cancer (CRC), WNT2 has also emerged as a pivotal

factor in the tumor microenvironment. Similar to OSCC, it is

secreted primarily by CAFs and influences tumor dynamics

significantly. Huang et al. have shown that WNT2 in CRC acts by

inhibiting the differentiation of DCs, thereby impeding T cell

activation. Specifically, CAF-derived WNT2 disrupts the JAK2/

STAT3 signaling pathway, essential for maintaining DC

differentiation, leading to diminished anti-tumor immunity.

Targeting WNT2 secreted by CAFs in CRC is proposed as an

effective strategy to restore DC differentiation and boost T cell

responses in preclinical models, similar to findings in OSCC (65).

Moreover, Saryglar et al. using co-culture experiments

demonstrated that colorectal adenocarcinoma cells and stromal

cells exert distinct effects on the differentiation and maturation of

DCs in vitro. CAFs were found to completely suppress the

differentiation of DCs from peripheral blood monocytes induced

by granulocyte-macrophage colony-stimulating factor (GM-CSF)

and IL-4, while having no significant impact on their maturation in

the presence of bacterial lipopolysaccharides (LPS). In contrast,

tumor cell lines did not impede monocyte differentiation; however,

certain lines significantly diminished CD1a expression and

inhibited LPS-induced DC maturation. These findings suggested

that tumor cells and CAFs may modulate different stages of the

anti-tumor immune response (66)
5.7 CAF-DC crosstalk in head and neck
cancer

In head and neck squamous cell carcinoma (HNSCC), the

crosstalk between CAFs and DCs shows a unique pattern

compared to other cancers, where CAFs typically drive

immunosuppression. In HNSCC, CAFs may instead facilitate

immune activation by promoting DC recruitment to the TME.

Muijlwijk et al. used an in vitro transwell migration assay to show

that conventional dendritic cells (cDCs) and B cells, but not CD4+

or CD8+ T cells, were attracted by tumor microenvironment

(TME)-conditioned media from different anatomical sites. The

cDC migration was site-specific and correlated with distinct

proteins in the TME secretome. Further validation confirmed that

chemokines like CCL8, CXCL5, CCL13, and CCL7 were responsible

for cDC1 and cDC2 migration. Single-cell RNA sequencing showed

that CAFs expressed these chemokines, with myCAFs having the

highest CXCL5 levels. Removing fibroblasts from the TME reduced

DC migration, showing that, even though CAFs are usually seen as

immunosuppressive, they actually help attract cDCs to the TME in

HNSCC. This recruitment could be important for better antitumor
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immunity and treatment response. Additionally, patients who

responded well to immune checkpoint inhibitors (ICIs) showed

higher RNA expression of these chemokines, cDCs, myCAFs, and

iCAFs compared to non-responders. This suggests that certain CAF

subtypes may play a key role in attracting cDCs and improving

responses to immunotherapy (67)

As discussed throughout this review, the interaction between

CAFs and DCs plays a crucial role in the TME across various cancers.

Understanding the distinct characteristics, functional roles, and

cytokine profiles of specific CAF subtypes offer valuable insights

into their contributions to tumor progression. It is reasonable to

suggest that CAFs adopt unique phenotypes depending on the tumor

type, thereby modulating DC activity in distinct ways. From the

analysis, it becomes clear that the CAF phenotypes present in each

tumor type dictates their immunomodulatory roles. In tumors where

iCAFs are dominant, immune suppression is mediated primarily

through cytokine signaling, influencing DC maturation and

functionality. These CAFs are characterized by secretion profiles of

inflammatory cytokines that drive immune evasion. The degree of

CAF heterogeneity complicates the assignment of specific subtype

associations, especially when comprehensive profiling data is lacking.

In the reported breast cancer study using an orthotopic tumor model,

the authors demonstrated that IL-6 and IL-4 secretion by these

stromal cells facilitates tumor progression and immune modulation

(60). Over the past decade, several heterogeneous subsets of CAFs

have been identified, particularly from human breast tumors. Four

distinct subsets have been characterized, each defined by the

expression of a specific range of markers (51). Nevertheless, the

aforementioned study did not provide an extensive characterization

of the CAF subtypes present in the orthotopic breast cancer model.

However, one of the subtypes described by Costa et al. aligns closely

with the reported immune signature and the activated phenotype

associated with the expression of the protein FAP (51). This strongly

suggests that the myCAF population could play a significant role in

this solid tumor.

Similarly, in pancreatic cancer, CAFs facilitate a shift toward a Th2

immune response through the secretion of TSLP in response to TNF-

a and IL-1b, which polarizes DCs toward an immunosuppressive

phenotype (61). Given that these CAFs promote inflammation and an

immunosuppressive response, this aligns with the characteristics of

iCAFs, which are known for secreting pro-inflammatory cytokines

such as IL-6, further emphasizing their role in modulating the

immune microenvironment through cytokine-mediated pathways

that induce tolerogenic DCs. A controversial situation was observed

in primary cultures derived from fresh early-stage prostate carcinoma

(PCa). This study elucidated the role of the PCa-associated stroma,

characterized by a myofibroblastic phenotype, marked by a strong

presence of a-SMA, in contributing to an immunosuppressive

microenvironment. The defined role of this CAFs subtype is linked

to the secretion of cytokines, such as IL-6, which play a pivotal role in

influencing the differentiation of myeloid cells into conventional DCs

exhibiting an immunosuppressive phenotype. Moreover, in prostate

cancer, the secretion of IL-6 by CAFs indicates a predominance of

iCAFs (80).
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The myCAFs subtype engages in direct cell-cell interactions,

physically reshaping TME while further inhibiting immune

activation. In a study utilizing CAFs derived from hepatocellular

carcinoma, the physical contact between CAFs and DCs resulted in

the induction of functional immune tolerance in the DCs (62). This

stromal population, previously classified as myofibroblasts (127), was

shown to recruit DCs through an SDF-1a-dependent mechanism,

subsequently educating them to adopt a tolerogenic phenotype via

IL-6-mediated STAT3 activation. These findings suggest that the

interaction between myCAFs and immune cells is not solely

dependent on physical interactions (62). This direct modulation

type is characteristic of myCAFs, which often exert their influence

via physical interactions rather than solely through soluble factors. In

colorectal and oesophageal cancers, CAFs secrete WNT2, a factor

that inhibits DC differentiation and T cell activation, thereby

facilitating immune evasion (65). This observation, however, does

not fully align with the classification of one CAF subtypes, where low

levels of WNT2 are associated with the iCAF phenotype, while high

levels are linked to the myCAF phenotype (128).

In lung cancer, CAFs derived from freshly resected tissue have

been shown to secrete immunosuppressive cytokines such as IL-6,

TGF-b, and IL-10, which contribute to the immune suppression

observed in the tumor microenvironment. This suppression is

mediated through both paracrine signaling and direct cell-cell

contact mechanisms (63, 64). The validation of the specific CAF

subpopulation involved in this process remains crucial. In this context,

the molecular signatures of inflammatory iCAFs are particularly

important, as they play a central role in inducing tolerogenic DC

phenotypes. The capacity of CAFs to mediate immune suppression

strongly correlates with the iCAF phenotype (41), reinforcing the idea

that iCAFs are primary contributors to the generation of immune

tolerance within lung cancer microenvironment.However, in head and

neck cancer, a notable exception arises. Here, CAFs secrete

chemokines like CCL8 and CXCL5, attracting cDCs into the tumor

microenvironment (67). This recruitment potentially boosts

antitumor immunity and improves responses to immune

checkpoint inhibitors (ICIs), suggesting that, contrary to their

typical immunosuppressive roles in other cancers, CAFs in this

setting may facilitate immune activation, highlighting a distinct

functional shift in their role within this specific tumor

microenvironment. This underscores the potential of modulating

CAF activity to promote immune-stimulatory roles, which is a

crucial objective in the advancement of future cancer therapies.

In conclusion, the interaction between CAFs and DCs plays a

critical role in shaping the immune landscape of the tumor

microenvironment. The gene profile of distinct CAF subtypes

contributes to their functional diversity, exerting immunomodulatory

effects that vary depending on the cancer type. The inherent

heterogeneity and plasticity of fibroblasts enable them to dynamically

transition between immunosuppressive and immune-stimulatory roles,

depending on the tumor context. While these correlations are

speculative, they are grounded in current biological and molecular

knowledge and aim to provide a conceptual basis for future studies.

Experimental validation will be essential to confirm or refute these

associations and to clarify their therapeutic relevance. As highlighted in
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presents promising opportunities to enhance the efficacy of

immunotherapies and to develop more effective cancer treatments.
6 Clinical translation of DC- and CAFs
based immunotherapies

DC-based immunotherapies have been extensively studied for

their ability to elicit robust anti-tumor immune responses. The most

widely used therapeutic strategy involves ex vivo differentiation of

autologous monocytes into DCs (mo-DCs), followed by antigen

loading with tumor-associated (TAAs) or tumor-specific antigens

(TSAs), maturation, and reinfusion into the patient (129, 130). This

process aims to stimulate and enhance the activity of effector

immune cells, thereby promoting the elimination of tumors.

Naturally occurring DCs are also employed in these therapies,

albeit to a lesser extent than mo-DCs (131). Preliminary results

indicate that these regimens are generally safe and well-tolerated,

with the most common adverse events being mild to moderate

(grade 1 to 2) symptoms. These often include flu-like effects that

resolve quickly, such as fever, fatigue, and chills, as well as localized

reactions at the injection site (131).

Numerous clinical trials have evaluated DC vaccines across several

tumor types, including melanoma, glioblastoma, prostate, lung, and

ovarian cancers (132–134). These studies primarily employed

autologous monocyte-derived DCs (moDCs), with antigen-loading

strategies based on peptides (135), tumor lysates (136) or RNA (137).

Sipuleucel-T (Provenge®) remains the only FDA-approved DC-based

immunotherapy to date, for castration-resistant prostate cancer (138),

although its clinical impact has been modest.

To enhance therapeutic outcomes, recent strategies explore

combination therapies involving immune checkpoint inhibitors

(ICIs), adoptive T cell transfer (ACT), and neoantigen-based

targeting (139, 140). Additionally, the use of naturally occurring

DC subsets, such as cDC1, cDC2, and pDCs, is gaining interest due

to their superior antigen-presenting capabilities compared to

moDCs (26, 141). Clinical trials are also investigating in vivo DC

activation and genetically engineered DCs.

DC vaccines are currently being evaluated in tumors with poor

responsiveness to other immunotherapies, such as glioblastoma and

immune-cold cancers (142, 143). While these vaccines generally

exhibit favorable safety profiles (144), therapeutic efficacy varies

widely due to patient heterogeneity, differences in immune

competence, and antigen presentation dynamics (145).

In parallel, CAFs are being explored as targets for immunotherapy.

Three main therapeutic strategies are under investigation: CAF

depletion, functional inhibition, and phenotype reprogramming.

Among the CAF targets, fibroblast activation protein (FAP) is the

most extensively studied. Agents such as talabostat and sibrotuzumab

showed early promise in preclinical models (146), but failed to yield

significant clinical benefits in trials as monotherapy (147). More

recently, radiolabeled FAP inhibitors (FAPI) have demonstrated

selective tumor targeting and encouraging early clinical outcomes

(148, 149).
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Beyond FAP, other CAF-associated proteins like PDGFRa/b
and FSP-1 are under investigation. Imatinib (a tyrosine kinase

inhibitor targeting PDGFR) has shown potential in combination

regimens, while niclosamide (an FSP-1 inhibitor) is currently being

tested in clinical trials (149, 150). Reprogramming strategies, such

as the use of vitamin A or D to modulate TGF-b signaling, offer

alternative avenues to inhibit CAF-mediated immunosuppression

without inducing adverse pro-tumorigenic effects (151).

Multitargeted agents such as Nintedanib, which inhibits

VEGFR, FGFR, and PDGFR, are also being evaluated for their

ability to modulate CAF functions and improve responses to

chemotherapy and immunotherapy in cancers like NSCLC (152).

Although CAF-targeted therapies have not yet achieved consistent

clinical success, their integration into combination regimens and

ongoing refinement of preclinical models offer a promising path

forward (149).
7 Addressing key research gaps

A substantial body of scientific evidence positions CAFs as

pivotal players in tumor progression. An insightful review titled

“Accessories to the Crime” illustrates how CAFs are not merely

passive components of the TME; rather, they actively collaborate

with tumors in adopting each hallmark characteristic that defines

cancer as a disease of high morbidity and mortality (5).

The advent of immunotherapy has revolutionized cancer

treatment, leading to significant improvements in survival rates for

many patients (153, 154). This paradigm shift is particularly evident

in tumors classified as immunologically “hot”which are characterized

by a robust immune cell infiltration and an active immune response

against the tumor. Immunotherapy leverages the body’s immune

system to identify and attack cancer cells, with immune checkpoint

inhibitors (ICIs) being one of the most promising and widely studied

classes of these therapies (155). ICIs function by targeting specific

regulatory pathways that cancer cells exploit to evade immune

detection. By inhibiting these pathways, ICIs can reinvigorate

exhausted T-cells, enhancing their ability to recognize and destroy

cancer cells. Clinical trials have demonstrated the efficacy of ICIs in

various malignancies, including melanoma, non-small cell lung

cancer, and renal cell carcinoma, resulting in durable responses and

prolonged survival for a subset of patients (156). However, the

effectiveness of ICIs is not universal; they tend to yield limited

results in certain tumor types, particularly those where CAFs are

predominant, such as PDAC (157). In these tumors, the

immunosuppressive environment created by CAFs presents a

significant barrier to the success of ICI therapies.

CAFs not only physically obstruct immune cell infiltration but

also secrete a variety of cytokines and growth factors that further

promote immune suppression (40). Consequently, the question

arises: while existing therapeutic strategies targeting CAFs are

beginning to emerge (158), how can we enhance and refine these

approaches to more effectively overcome the challenges posed by

CAFs in cancer therapy?
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In this review, we focus on the detailed analysis of how CAFs

can modulate the phenotype and functionality of DCs. These cells

play a crucial role in both immunotherapy and tumor immunology,

acting as intermediaries between innate and adaptive immune

responses. DCs are key players in orchestrating immediate and

long-lasting protective immune effects, whether endogenous or

induced, against tumors (22, 24). The critical involvement of

CAFs in inducing a tolerogenic program within DC populations

raises important questions about their potential implications in the

therapeutic failures observed with DCs-based vaccination strategies.

At its core, there is an expectation of significant success from

dendritic cell (DC)-based therapeutic approaches, given the

essential role of DCs in the immune response (131, 159). DCs are

frequently utilized in clinical trials due to their status as premier

antigen-presenting cells, making them an ideal vehicle for antigen

administration. However, despite these encouraging results and the

absence of high-grade adverse events, the clinical application of

therapeutic vaccines based on DCs differentiated from autologous

monocytes of cancer patients, as well as those derived from

naturally occurring DCs, has not demonstrated a significant

improvement in survival outcomes across various tumor types

(160). This failure is strongly associated with the dysfunction,

immunosuppression, and tolerogenic phenotype exhibited by

their precursors, as well as the DCs that differentiate from them

(161–166). This is in stark contrast to DCs derived from healthy

donors, which generally exhibit more effective immunogenic

profiles. Naturally occurring DCs, while also employed in

therapeutic settings, face similar challenges related to their

functionality in the tumor microenvironment (131). Thus, we are

compelled to ask: can we reverse the tolerogenic state of both mo-

DCs and naturally occurring DCs derived from cancer patients to

apply them safely and effectively in a therapeutic vaccine?

Numerous signals inherent to the TME have been identified as

capable of inducing tolerogenicity (167, 168). Our hypothesis posits

that these signals are enriched in the presence of tumors with high

CAF levels. As current therapeutic strategies primarily focus on

tumor removal, the residual presence of CAFs may facilitate the

persistence of immunosuppression following tumor excision.

Moreover, it is crucial to note that immunosuppression in

cancer patients has been reported to be systemic (169). Therefore,

when reconsidering the development of DC- vaccines,

understanding the signals and events involved in this process is

fundamental for developing therapeutic strategies that counteract

these unwanted effects. The significance of CAFs in these processes

cannot be overstated, particularly given the limited options

currently available to target them effectively. may further aid in

this endeavor. A preliminary report supports this idea,

demonstrating that the use of anti-fibrotic (tranilast) agents as an

anti-CAF strategy (170) shows promise in enhancing the efficacy of

DC vaccines by targeting the immune TME. Notably, immunization

of mice with DCs transfected with fibroblast activation protein

(FAP) mRNA led to significant antitumor responses, highlighting

FAP as a potential tumor rejection antigen in a variety of

cancers (171).
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On the other hand, restoring the immunogenicity of DCs emerges

as a crucial goal for achieving therapeutic success. Our research team is

fervently dedicated to investigating this critical issue, with a particular

focus on the induction of immunogenic tumor cell death (ICD) as a

promising mechanism to enhance both tumor adjuvanticity and

antigenicity (172–176). By leveraging this approach, we aim to

generate a robust immune response that not only activates effector

immune cells but also effectively counteracts the immunosuppressive

effects induced by TME, in particular by CAFs (177–179). The concept

of ICD in cancer involves not only the elimination of tumor cells but

also the exposure and release of tumor antigens, which are crucial for

enhancing antigenicity, which represents the ability of these antigens

to provoke an immune response. This process facilitates the

recognition of tumor antigens by the immune system, thereby

promoting a more vigorous and effective anti-tumor response.

Furthermore, the adjuvanticity of the induced tumor cell death is

essential, as it amplifies the immune response by creating a more

favorable environment for immune cell activation and proliferation

(86). In terms of DC-vaccination protocols, this approach could

represent a better source of antigens/adjuvants for stimulation,

thereby counteracting the patient’s inherent immunosuppression

(172). By enhancing both antigenicity and adjuvanticity, this

strategy holds the potential to mitigate the immunosuppression

exerted by the tumor microenvironment, ultimately leading to

improved therapeutic outcomes. In this context, Berzaghi’s work

highlights how IR, which was previously linked to ICD (172),

partially reversed the immunosuppressive effects exerted by CAFs

on DCs. Their study shows that while CAFs typically induce a

tolerogenic phenotype in DCs, certain radiation protocols disrupt

this effect, improving DC functionality and reducing the expression of

key immunosuppressive markers (64). This finding suggests that ICD-

inducing therapies like radiation could effectively counteract the

suppressive influence of CAFs, enhancing immune activation and

leading to more effective cancer immunotherapies.

Despite the potential of this strategy, there remains much to

uncover in this field. We need to deepen our understanding of the

intricate interactions between tumor cells, immune cells, and CAFs.

Additionally, the mechanisms by which optimal ICD can be induced

and maintained within the tumor microenvironment are still not fully

elucidated. Our ongoing research aims to address these gaps, exploring

various modalities and treatments that could synergistically enhance

the immune response while diminishing the immunosuppressive

barriers posed by CAFs. Ultimately, we seek to identify innovative

therapeutic strategies that can be translated into clinical applications,

paving the way for more effective cancer treatments.
8 Conclusion

The dynamic interactions between CAFs and DCs play a pivotal

role in shaping the TME and influencing immune responses. CAFs

exert a profound immunosuppressive effect on DCs, impairing their

ability to initiate effective antitumor immunity by disrupting

antigen presentation and promoting tolerogenic phenotypes.
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A comprehensive characterization of CAF subtypes in tumor-

specific contexts will provide a more nuanced understanding of how

these interactions influence immune modulation, paving the way

for the development of cluster-specific therapeutic strategies.

Additionally, resolving the mechanisms that determine whether

CAFs promote immune tolerance or immune activation will help

identify optimal therapeutic windows for targeting CAFs in

combination with immunotherapies.

To move the field forward, a clear research agenda is needed,

one that focuses on: (i) defining the tumor-specific functional

impact of distinct CAF subtypes on DC phenotype and function;

(ii) identifying the signaling pathways that mediate CAF-DC

crosstalk; (iii) understanding how these interactions influence the

efficacy of DC-based and combinatorial immunotherapies; and (iv)

prioritizing therapeutic targets capable of reprogramming the CAF-

DC axis toward immunostimulatory outcomes. Advancing this

agenda will contribute to the development of more precise and

effective immunotherapeutic strategies, ultimately improving

patient outcomes.
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J, et al. Dendritic cells in cancer immunology and immunotherapy. Cancers (Basel).
(2024) 16:981. doi: 10.3390/CANCERS16050981

24. Murphy TL, Murphy KM. Dendritic cells in cancer immunology. Cell Mol
Immunol. (2022) 19:3–13. doi: 10.1038/S41423-021-00741-5

25. Heras-Murillo I, Adán-Barrientos I, Galán M, Wculek SK, Sancho D. Dendritic
cells as orchestrators of anticancer immunity and immunotherapy. Nat Rev Clin Oncol.
(2024) 21:257–77. doi: 10.1038/S41571-024-00859-1

26. Del Prete A, Salvi V, Soriani A, Laffranchi M, Sozio F, Bosisio D, et al. Dendritic
cell subsets in cancer immunity and tumor antigen sensing. Cell Mol Immunol. (2023)
20:432–47. doi: 10.1038/S41423-023-00990-6

27. Calmeiro J, Carrascal MA, Tavares AR, Ferreira DA, Gomes C, Falcão A, et al.
Dendritic cell vaccines for cancer immunotherapy: the role of human conventional type
1 d end r i t i c c e l l s . Pha rma c eu t i c s . ( 2 0 2 0 ) 1 2 : 1 58 . d o i : 1 0 . 3 3 90 /
PHARMACEUTICS12020158

28. Saito Y, Komori S, Kotani T, Murata Y, Matozaki T. The role of type-2
conventional dendritic cells in the regulation of tumor immunity. Cancers (Basel).
(2022) 14:1976. doi: 10.3390/CANCERS14081976

29. Zhou B, Lawrence T, Liang Y. The role of plasmacytoid dendritic cells in cancers.
Front Immunol. (2021) 12:749190. doi: 10.3389/FIMMU.2021.749190
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