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Most cases of visceral leishmaniasis (VL) and human immunodeficiency virus

(HIV) co-infection (VL/HIV) in the Americas occur in Brazil, and the prevalence of

VL/HIV has been increasing since 2019, reaching 19% in 2023. This association

presents a challenge for the management of VL, since both VL and HIV infection

share immunopathogenic characteristics that can reciprocally affect co-infected

patients. Thus, VL may contribute to the immunosuppression and other

immunological disturbances associated with the rapid progression to acquired

immunodeficiency syndrome (AIDS), whereas HIV infection accelerates the

development of active VL and reduces the probability of a successful response

to anti-Leishmania therapy, resulting in an increase in the relapse and lethality

rates of VL. In this synergistic impairment, one of the most critical hallmarks of

VL/HIV co-infection is the enhancement of immunosuppression and intense

chronic immune activation, caused not only by each infection per se, but also by

the cytokine storm and translocation of microbial products. Thus, co-infected

patients present with an impaired effector immune response that may result in

inefficient parasitic control. In addition, the chronic activation environment in VL/

HIV patients may favor progression to early immunosenescence and exhaustion,

worsening the patients’ clinical condition and increasing the frequency of disease

relapse. Herein, we review the immunological parameters associated with the

immunopathogenesis of VL/HIV co-infection that could serve as good

biomarkers of clinical prognosis in terms of relapse and severity of VL.
KEYWORDS

VL/HIV co-infection, visceral leishmaniasis, immune response, cellular activation,
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1516176/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1516176/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1516176/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1516176/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1516176&domain=pdf&date_stamp=2025-03-12
mailto:joannareisoliveira@gmail.com
https://doi.org/10.3389/fimmu.2025.1516176
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1516176
https://www.frontiersin.org/journals/immunology


Silva-Freitas et al. 10.3389/fimmu.2025.1516176
Introduction

The human immunodeficiency virus (HIV)/acquired

immunodeficiency syndrome (AIDS) pandemic over the last

40 years has modified the clinical and epidemiological spectrum of

leishmaniasis. An overlap between the areas of visceral leishmaniasis

(VL) transmission and HIV infection has been clearly observed, with

one-third of HIV cases worldwide occurring in areas at risk of

leishmaniasis transmission (1, 2). Consequently, co-infection of VL

with HIV (VL/HIV) has emerged as an important challenge in VL

control, with VL itself becoming an important opportunistic disease

associated with HIV infection (3). Herein, we carefully explain the

main immunopathogenic mechanisms underlying the association

between visceral leishmaniasis and HIV infection. Moreover, we

also pointed out how the knowledge generated from cross-sectional

and longitudinal studies helped to predict the different clinical

outcomes of these patients, particularly in terms of disease severity

or relapses.
Epidemiology of VL/HIV co-infection

Since the 1980s, when the first case of leishmaniasis associated

with HIV infection was published (4), an increase in the cases of co-

infection has been recorded. In the 1990s, the majority of co-

infection cases were reported in European countries in the

Mediterranean region (Spain, France, Italy, and Portugal), where

1.5% to 9% of individuals with AIDS presented with new cases or

reactivation of infection by viscerotropic species of Leishmania (5).

The prevalence of VL in this population was 500 times higher than

that in the non-HIV-infected population (6).

Subsequently, the advent of combined antiretroviral therapy

(cART) modified this epidemiological scenario, resulting in a

progressive decrease in VL/HIV cases in the Mediterranean basin

and a considerably low incidence in this region (7). Nevertheless, 45

countries worldwide have reported cases of Leishmania/HIV co-

infection, with the visceral form being the most prevalent (3). The

most critical incidence scenario has been reported in some African

countries, such as Sudan and Ethiopia, where 35% of individuals

with VL have HIV co-infection, as well as in the state of Bihar in

India and the countries in Central and South America,

particularly Brazil.

Considering the elevated number of cases of both infections in

Brazil, it is also expected to have the highest incidence of VL/HIV

co-infection in the American continent. This epidemiological

profile can be attributed to the spread of HIV infection to rural

areas, urbanization of the VL vector, or even the evident urban

problem of sharing of contaminated needles by drug users (8). In

addition, some factors related to diagnosis may also be involved in

this highest incidence. Firstly, the greater predisposition to

symptomatic VL between immunosuppressed by HIV infection

can lead to the opening of a VL case, or even to the reactivation of a

latent infection. Moreover, the occurrence of VL/HIV in urban

areas often facilitates the search for medical consultations and a

faster parasitological diagnosis. Finally, it is believed that the
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computerized health notification system, together with the

existence of databases that allow cross-referencing between them,

can allow for better monitoring and notification by surveillance

system. In this way, since 2019, the prevalence of VL/HIV co-

infection has progressively increased, reaching >11% (9), which

may still be underreported due to a reduction in the number of

confirmed cases of VL during the coronavirus disease 2019

pandemic. Therefore, although the prevalence has increased, it is

important to consider that these percentages only reflect cases

showing clinical manifestations of VL; asymptomatic cases may

be diagnosed late, and a significant number of patients with VL do

not undergo serological investigation for HIV (10), indicating that

the actual scenario is even more worrying.

In 2023, approximately 300 new cases of VL/HIV co-infection

were reported to the Brazilian Ministry of Health, accounting for

approximately 19% of the VL cases reported during this period (9).

In line with the simultaneous expansion and geographic overlap of

both infections, most cases of VL/HIV co-infection in Brazil have

been reported in the Northeast, Midwest, and Southeast regions,

especially in the states of Maranhão, Mato Grosso do Sul, andMinas

Gerais, respectively (9). Young adult males aged 20-49 years and

injection drug users are the most affected groups, representing an

ever-expanding exposure category (11). Additionally, in 41% of the

cases, the diagnosis of both infections occurred simultaneously,

with VL being responsible for opening up an HIV/AIDS case (11).

In contrast, latent VL has also been reported in HIV-infected

individuals, who show a higher risk of VL relapse, especially

when CD4+ T-lymphocyte absolute counts reach levels < 200

cells/mm3, making them possible reservoirs for the parasite (12).

Then, one important factor is that Leishmania and HIV

infection reinforce each other, posing significant clinical and

public health problems. It is worth noting that important socio-

demographic issues also permeate this association at Brazil. Social

vulnerability places VL/HIV patients in conditions of malnutrition

and exposure to factors that may favor the development of

symptomatic VL. On the other hand, patients who commonly

come from rural areas experience geographical limitations and

mobility difficulties that can make difficult their access to effective

treatment and clinical monitoring offered at reference centers in

urban areas. Therefore, providing strategies that go beyond the

currently recommended protocols, particularly with regard to

predicting prognosis, can contribute to long-term clinical

improvement, resulting in quality of life for the patient and lower

costs for the healthcare system.
Evidence for VL as an HIV/AIDS-
related disease

Although it is not yet considered an AIDS-defining disease, VL

may contribute to the immunosuppression and other

immunological disturbances associated with rapid progression to

AIDS (13–16). However, HIV co-infection has been shown to

accelerate the development of active VL and reduce the

probability of a successful response to leishmanial therapy,
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increasing the VL lethality rate and enhancing the predisposition to

VL relapse by 3-5 times in comparison with that in HIV-negative

individuals (10, 12, 17). In this context, Leishmania/HIV co-

infection represents a major challenge for management of VL,

since both infections share immunopathogenic characteristics that

can reciprocally affect co-infected patients.

VL immunopathogenesis is characterized by systemic involvement,

since the amastigote forms of L. (L.) infantum and L. (L.) donovani

show marked tropism for mononuclear phagocytic cells of the spleen,

liver, bone marrow, and lymph nodes. This leads to impaired host

immune defense mechanisms because of a shift in the production of

myeloid and lymphoid cells in the bone marrow as a result of intense

parasitism and destruction of mononuclear cells and the consequent

attempts to replace them. In laboratory assessments, classic

pancytopenia is characterized mainly by neutropenia, lymphopenia,

anemia, and thrombocytopenia (18–21). Lymphopenia may be caused

by deviations in the production of T-lymphocyte progenitors and by

thymic atrophy as a result of undernutrition and parasitism (22–24).

Additionally, activation-induced cell death in the periphery may be

associated with lymphopenia. More recently, CD4+ T-cell depletion has

been suggested to be caused by pathogenic changes in the spleen due to

advanced white pulp disorganization and splenic depletion of CD4+ T

cells by apoptosis and pyroptosis secondary to HIV and parasite

infection (25). Independent of the mechanisms involved, all of them

can contribute to the impairment of a specific immune response

against the parasite, characterizing VL as an immunosuppressive

disease (Figure 1).

Indeed, the evolution of active VL is characterized by specific

immunosuppression for parasite antigens since the delayed-type

hypersensitivity test (Montenegro test) shows negative results,

unlike in individuals with asymptomatic or subclinical disease

(26–28). In addition, patients with active VL show a decrease in

the proliferative capacity of helper T cells when stimulated in vitro

with antigens of the parasite and also a decrease in the production of

specific cytokines such as interleukin (IL)-2 and interferon (IFN)-g,
alongside an increase of IL-10 (26, 27, 29, 30).

Absolute CD4+ T-cell counts play a key role in the prognosis of

VL in terms of immunosuppression and immunological

reconstitution. Patients with VL show lower CD4+ T-cell counts

than healthy individuals. Although the CD4+ T-cell counts recover

during the remission phase, they do not reach normal levels (31). A

recent study of our group showed that this CD4+ T-cell depletion is

associated with the clinical prognosis. Patients with non-relapsed

VL showed a significant increase in the number of these cells shortly

after treatment, which was not observed in patients with relapse

(32). Although this evidence indicates the importance of evaluating

this parameter in clinical practice, it is not routinely assessed in

patients with non-HIV VL.

Paradoxically, VL immunopathogenesis evolves with an intense

degree of activation of the immune system. Our group

demonstrated that patients with active VL present high

percentages of activated T lymphocytes, which remain elevated

even after clinical remission (31). However, when these cells were

stimulated with Leishmania antigens, the percentage of activated

cells was lower than that of lymphocytes from individuals in clinical
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remission, corroborating the specific immunosuppressive profile of

the active phase of VL (33). Additionally, other studies have

suggested that VL is characterized by an exacerbated systemic

inflammatory response mediated by inflammatory cytokines such

as IL-8, tumor necrosis factor (TNF), and IL-6, especially in active

disease (34, 35). This inflammatory and activated status has been

associated with multiple organ failure, showing similarities with the

findings observed in sepsis, malaria, and other inflammatory

diseases (36, 37).

Similar immunopathogenic aspects have been observed in

patients with HIV infection. CD4+ T lymphocytes play a central

role in the acquired immune responses against HIV. As the

infection progresses, the continuous loss of these cells, especially

to levels below 200 cells/mm3, favors opportunistic infections such

as tuberculosis or VL (38, 39).

The persistence of the anti-HIV immune response, in addition

to factors that go beyond viral antigens, leads to chronic immune

activation (40–42). High levels of pro-inflammatory cytokines, such

as TNF, IL-6, and IL-1b, and chemokines, such as regulated on

activation, normal T-cell expressed and secreted (RANTES),

macrophage inflammatory protein (MIP)-1a, MIP-1b, and

chemokine ligand 13 (CXCL13) have also been directly

implicated in this process (43–47).

Since Leishmania sp. and HIV infect the same target cells and

thus compromise the same immune compartments, they can be

reasonably expected to cause reciprocal impairment of the effector

immune response and, consequently, of the control of each

pathogen (48). The immunological alterations observed in VL

and HIV/AIDS can synergistically affect co-infected patients.

Therefore, one of the most critical hallmarks of VL/HIV co-

infection is severe immunosuppression and intense chronic

immune activation (Figure 1), especially that caused by a cytokine

storm, such that VL results in worsening of the clinical condition of

patients co-infected with HIV.

Indeed, the chronic stimulation observed in VL can increase

viral replication and latent provirus expression, resulting in faster

progression to AIDS (49). Leishmania spp. can augment viral

replication by inducing cellular activation and an inflammatory

microenvironment, which in turn increases the susceptibility of

target cells to infection (50–52). Indeed, the lipophosphoglycan

(LPG) molecule presenting on the parasite’s surface activates the

transcription factor nuclear factor (NF)-ƙB, increasing TNF

production (53, 54). However, the role of LPG in the Leishmania-

HIV interaction is still controversial because LPG also inhibits viral

entry into monocyte-derived macrophages (MDMs) in the early

phase of infection, resulting in reduced viral replication (55).

L. infantum-infected human dendritic cells co-cultured with

autologous CD4+ T lymphocytes show increased viral replication,

probably through the secretion of cytokines such as IL-6 and TNF

(51). Accordingly, VL/HIV co-infected patients present with high

levels of TNF and IL-6, even with the use of cART and anti-

Leishmania treatment, which may be associated with high viremia

and progressive loss of CD4+ T lymphocytes (56–58).

In addition to influencing the viral load of patients co-infected with

HIV, VL can potentiate the depletion of CD4+ T lymphocytes (59).
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Low absolute counts of CD4+ T lymphocytes have been observed in

VL/HIV-co-infected patients during the VL active phase and clinical

remission despite cART (60, 61). Notably, these counts were lower

than those observed in individuals with HIV mono-infection (61).

Takele et al. also reported low counts of CD4+ T cells in the active

phase in co-infected patients and suggested that these low counts may

be associated with low production of antigen-specific IFN-g in this

phase (62), further confirming that such impairments can predispose

individuals to disease recurrence. Thus, VL and its immunopathogenic

consequences can aggravate the immunodeficiency caused by HIV, not

only enhancing the degree of immune activation in VL/HIV co-

infected patients (61), but also worsening CD4+ T-cell depletion.

Simultaneously, the HIV-induced disorganization of the

immune system and the depletion of the pool of specific T

lymphocytes severely compromise the mechanisms of parasite
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control, contributing to a higher parasite load and progression of

VL. Indeed, HIV-infected patients, especially those with CD4+ T-

lymphocyte counts < 200 cells/mm3, are at a high risk of

progression to symptomatic VL (12, 15, 58, 60, 63, 64). In this

scenario, VL/HIV patients are more susceptible to the development

of unusual clinical manifestations and/or dissemination of VL to

atypical sites (skin, gastrointestinal tract, adrenal glands,

cerebrospinal fluid, respiratory tract, cardiac and renal tissues,

etc.) (65–67).

Furthermore, although clinical remission of VL is commonly

achieved after anti-Leishmania treatment, parasitemia appears to

persist, even if intermittently (50). This leads to a condition called

“chronically active VL,” which is associated with immunological

impairment and may explain the higher susceptibility of patients

with VL/HIV co-infection to multiple VL relapses (12).
FIGURE 1

Immunopathogenesis of visceral leishmaniasis in HIV-infected individuals: Chronic immune activation and its implications for the immune
impairment of VL/HIV co-infection (1) Co-infection with L. infantum/L. donovani and HIV is characterized by simultaneous systemic involvement of
organs such as lymph nodes and thymus, in addition to parasitism of the bone marrow, spleen and liver (2). The intense parasitism of monocytes and
macrophages by the protozoan culminates in changes in the production of myeloid and lymphoid progenitors by the bone marrow. In an attempt to
recover the parasitized cells, there is a shift in favor of this lineage, which can lead to a laboratorial profile of erythropenia, neutropenia,
thrombocytopenia and lymphopenia. In VL/HIV co-infection, the drop in absolute counts of peripheral CD4 T lymphocytes is enhanced by infection
and concomitant thymic impairment by HIV and the protozoan. (3a) In parallel with immunosuppression, co-infection occurs with high cellular
activation, characterized by activated T lymphocytes, high production of inflammatory cytokines (cytokine storm) and (3b) polyclonal activation of B
lymphocytes, which culminates in hyperglobulinemia (4). In addition to parasite and viral antigens, the translocation of microbial products has been
identified as an important cofactor for increasing levels of systemic activation (5). As a result of this persistent activation, activation-induced cell
death (AICD), worsening of lymphopenia and an impairment of the cellular immune response specific to the parasite is observed, which may favor
relapses (6). The maintenance of this scenario can result in the exhaustion of primary immune resources (thymus and bone marrow) and the inability
of lymphocytic repopulation. This process results in the deterioration of the responsive capacity to parasitic stimuli, favoring the accumulation of
exhausted and/or terminally differentiated cells and the low diversity of the lymphocyte repertoire. SASP, Senescence-Associated Secretory
Phenotype. Dashed lines indicate direct damage caused by pathogens. Source: The author. Created with BioRender.com.
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Additionally, the greater treatment resistance and more frequent

occurrence of therapeutic failure in these patients may be related to

parasitic persistence after specific therapies (49). Thus, although

both infections share similar immunological characteristics, co-

infected patients may not present the same clinical and laboratory

profiles as HIV or Leishmania-infected individuals.
Post-cART immune reconstitution in
patients with VL/HIV co-infection

Although cART has undoubtedly contributed to reducing the

incidence of opportunistic infections in HIV patients, it does not

seem to restore the immune response in patients with VL/HIV co-

infection. Indeed, antiretrovirals from the protease inhibitor (PI)

class have shown direct inhibitory effects on the evolutionary forms

of L. (L.) major, L. (L.) amazonensis, L. (V.) braziliensis and L. (L.)

infantum in vitro (49, 68). Moreover, the leishmanicidal activity

observed in L. major promastigote forms has been attributed to

proteasome inhibition (69). Also, PIs appear to inhibit the

replication of promastigote forms, the proliferation of amastigotes

within macrophages and prevent the development of lesions in

infected mice (70). Interestingly, when an L. infantum strain was

isolated from co-infected patients undergoing cART, no inhibitory

effect of PIs was observed (71). Thus, while the beneficial effects of

cART on the virus and, experimentally, on the parasite are

indisputable, co-infected patients present VL relapse, suggesting

that immune response impairment plays a key role in the

clinical prognosis.

Unlike other opportunistic diseases associated with HIV, post-

cART immune reconstitution is still severely impaired in VL/HIV

co-infection, as shown by low CD4+ T-cell counts even in patients

with an undetectable HIV viral load and clinical remission after

treatment of VL (49, 60, 61).

This persistent immunosuppression in patients with VL/HIV

co-infection corroborates the fact that few studies have reported the

occurrence of VL in association with immune reconstitution

inflammatory syndrome (IRIS), which is most frequently

observed in post-kala-azar dermal leishmaniasis (PKDL) (72–75),

followed by tegumentary leishmaniasis and uveitis (76, 77). IRIS is

characterized by a transient, but sometimes severe, local and

systemic inflammatory response directed against a known

condition (e.g., opportunistic pathogens or autoimmune diseases)

in HIV-infected patients shortly after cART initiation due to the

improvement in CD4+ T-cell counts (78). The primary treatment of

VL in cases of concomitant HIV diagnosis preceding cART (11)

should reduce the available antigenic load to stimulate the pool of

specific cells post-cART reconstitution, thereby reducing the risk of

IRIS, similar to the findings observed in tuberculosis/HIV co-

infection (79, 80).

In the context of VL relapse, the CD4+ T-lymphocyte count is

one of the most common parameters for predicting the clinical

evolution of patients with VL/HIV co-infection (12). Through

prospective follow-up, we demonstrated that co-infected patients
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who developed several episodes of VL showed low CD4+ T-

lymphocyte counts for up to 12 months after treatment, while

patients presenting with a single episode of VL showed a significant

gain in these cells after anti-Leishmania treatment (15).

Interestingly, both relapsed and non-relapsed groups were

undergoing cART and showed viral suppression (15), suggesting

that the cART does not seem to be able to prevent frequent relapses,

especially the visceral form of the disease (12).

In this scenario, the maintenance of anti-Leishmania treatment

using secondary prophylaxis could hypothetically be effective in

reducing disease relapse in patients with VL/HIV co-infection (12,

81). Therefore, after specific anti-Leishmania therapy, these patients

remained on a prophylactic regimen to avoid new active episodes of

the disease. According to the Brazilian Ministry of Health,

secondary prophylaxis should be administered when a patient

with VL/HIV co-infection shows absolute CD4⁺ T-lymphocyte

counts lower than 350 cells/mm3, and commonly involves

administration of liposomal amphotericin B at a dose of 3–5 mg/

kg every two weeks (11).

However, in most cases of VL/HIV co-infection, these specific

therapeutic regimens control the parasite load in the peripheral

blood within a short time period, and patients still show recurrence

of active disease (82–84). A recent study conducted in a Brazilian

referral hospital found that VL relapses occurred in 36.4% of the

patients with VL/HIV co-infection receiving secondary prophylaxis

(85). The absence of immune reconstitution in relapsed patients

was noted even in patients receiving secondary prophylaxis (15).

Thus, other factors, in addition to the virus and the parasite itself,

could contribute to the poor clinical prognosis of patients with VL/

HIV co-infection. Finally, additional studies are necessary to

confirm the effectiveness of secondary prophylaxis in severely

immunocompromised patients.
Immune activation and inflammatory
status in patients with VL/HIV
co-infection

In patients with VL/HIV co-infection, chronic immune

activation and severe immunosuppression may be potentiated

(13, 58, 61, 86), which is an important cofactor in immunological

impairment (15, 16, 87). In addition to favoring VL relapse, the

degree of immune activation and inflammatory status may be

associated with the occurrence of atypical manifestations of VL,

such as cutaneous dissemination or PKDL (67, 88), or even

progression to severe VL in co-infected patients (58) as well as in

patients without HIV infection (37).

We had shown for the first time that patients with VL/HIV co-

infection in VL clinical remission present with high percentages of

CD8+ T cells expressing CD38 (61). Furthermore, these activated T

cells were associated with low counts of CD4+ T lymphocytes

regardless of the use of cART, undetectable viral loads, or clinical

remission of VL due to anti-Leishmania treatment (61). This

cellular activation status was later confirmed in patients with VL/
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HIV co-infection in the active phase of VL, when patients already

had a low or undetectable parasite load combined with effective

viral control (13). Subsequently, other studies confirmed high

percentages of activated CD8+ T lymphocytes (CD38+HLA-DR+)

in Brazilian or Spanish co-infected patients with asymptomatic VL

(86) or previous history of VL relapses (87), respectively.

The presence of high serum cytokine levels has also been

investigated as a predictor of the clinical progression of VL (37,

58, 89–91). Indeed, similar to T-cell activation, the plasma levels of

pro-inflammatory cytokines (IFN-g, IL-6, IL-8, TNF, and MIP-1b)
were higher in patients with VL/HIV co-infection than in those

with HIV or VL mono-infection and healthy individuals (13). More

recently, IFN-g and TNF levels have been correlated with severity

and death as well as clinical findings such as vomiting and dyspnea

in patients with VL/HIV co-infection (58).

In this scenario, long-term follow-up of one patient with VL/

HIV co-infection who presented with VL relapse with cutaneous

manifestations three months post-therapy showed that this episode

was associated with an increase in T-cell activation (67). These data

provide the first evidence of a relationship between immune

activation and VL relapse. Subsequently, in the cohort evaluated

up to 12 months post-treatment, patients with non-relapsing and

relapsing VL/HIV showed similar levels of activation of CD4+ and

CD8+ T cells (CD38+HLA-DR+ expression) in the active phase of

VL, but only those with non-relapsing VL/HIV showed a long-term

reduction in these percentages post-treatment (15). Patients with

relapsing VL/HIV also showed persistently higher levels of pro-

inflammatory cytokines (IL-8, TNF, IFN-g, IL-6, IL-1b, and others)

and IL-10 than those with non-relapsing VL/HIV, who tended to

show gradual reductions in the levels of these cytokines after

treatment (16).

Since patients with relapsing VL/HIV show a high inflammatory

status even under effective anti-Leishmania treatment and cART, L.

infantum infection can be plausibly considered to not be the sole

factor responsible for enhancing immune activation in HIV-

infected individuals.
Microbial translocation as an
additional factor influencing immune
activation in VL/HIV co-infection

Microbial translocation from the intestinal lumen to the

bloodstream, a phenomenon known to occur in HIV infection

(92–94) and already evidenced in VL (31, 90), could constitute

another important cofactor for maintaining a high degree of

activation in VL/HIV patients (Figure 1). In HIV or simian

immunodeficiency virus (SIV) infections, damage to the intestinal

barrier, characterized by the death of enterocytes resulting in

increased permeability, can be mediated by viral replication itself.

Indirect mechanisms such as massive destruction of memory

CD4+CCR5+ T cells present in the intestinal mucosa and/or loss

of IL-17-producing cells may also contribute to this damage, since
Frontiers in Immunology 06
they are crucial in the response to bacterial antigens through the

neutrophil infiltration, and maintenance of intestinal homeostasis

(92, 93, 95–99). As a result, HIV-infected patients present

symptoms characteristic of enteropathy, such as diarrhea,

malabsorption, inflammatory infiltrates, villus atrophy, and crypt

hyperplasia in the mucous tissue (100). Thus, this evidence favors

the translocation of bacterial products into systemic circulation

(100), constituting one of the main immunopathogenic

mechanisms associated with HIV infection (93, 101, 102).

The following molecules have become hallmarks of chronic

immune stimulation due to microbial translocation: intestinal fatty

acid binding protein (I-FABP) (103), lipopolysaccharide (LPS) from

gram-negative bacteria, and soluble receptor CD14 (sCD14) (92,

104, 105). Bacterial components stimulate the cells involved in

innate immunity through Toll-like receptor (TLR) ligands (106).

LPS, for example, binds to its receptor CD14 and the TLR4-MD2

complex, culminating in the activation of the transcriptional factor

NF-kB and the production of inflammatory cytokines such as IL-6,

IL-1b, TNF, and IFN type-I. As mentioned previously, these

cytokines contribute to the persistent local and systemic immune

activation observed during the chronic phase of HIV infection,

resulting in a vicious circle. Moreover, elevated LPS levels have been

linked to high indices of immune activation in CD8+ T cells in HIV-

infected patients (92, 104, 107).

Amastigote forms observed in the mucosa-associated lymphoid

tissue (MALT) of patients with VL (108, 109) can lead to intestinal

damage. Translocation of microbial products, which is implied by

increased plasma levels of LPS, its sCD14 receptor, and I-FABP, has

been observed in patients with active VL (31). Such elevated LPS

levels are correlated with T-cell activation and high levels of pro-

inflammatory cytokines such as macrophage migration inhibitory

factor (MIF) and IL-8 (31). In patients with VL/HIV, LPS levels are

positively correlated with sCD14 levels, specifically in patients with

low CD4+ counts (<200 cells/mL) (58), as well as with the

percentages of activated CD8+ T lymphocytes and IL-6 and IL-8

levels (13). The levels of these molecules have also been shown to be

significantly increased in patients with previous VL in comparison

with those showing an immunodiscordant response to cART (IDR;

CD4 count < 200 cells/mL) without VL (87). In this context, a recent

study showed that sCD14 is the only independent predictor of

disease severity and death in VL/HIV co-infection (58).

Furthermore, the levels of other soluble factors associated with

microbial translocation and intestinal damage, such as MIF and I-

FABP, have also been shown to be elevated in patients with VL/

HIV, both in the active phase and in remission (13).

In terms of relapse, high levels of sCD14 were found in relapsing

VL/HIV patients even at 12 months post-treatment, while the levels

in non-relapsing patients decreased immediately after treatment

(15). Interestingly, sCD14 levels negatively correlated with the

absolute counts of CD4+ T cells, corroborating the profile of T-

cell activation (CD38+HLA-DR+) in these groups (15).

This phenomenon was recently demonstrated in an elegant VL

experimental model study (110), in which intestinal dysbiosis was

induced in mice and hamsters by long-term treatment with broad-
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spectrum antibiotics (110). Weight loss, splenomegaly, and

hepatomegaly were significantly less severe in the antibiotic-

treated infected hamsters than in untreated animals (110),

suggesting that pathobionts contribute to disease progression.

Using a different approach, our group observed that infected

golden hamsters show intestinal changes and evidence of bacterial

translocation by increased plasma levels of LPS (111). Moreover, we

verified that in comparison with untreated infected animals,

infected animals treated with antimonial and amikacin showed

significant reductions in the levels of LPS and activated

CD4+CD25+ T cells at 60 days post-infection (dpi), as well as an

increase in the percentage of CD4+ T cells at 120 dpi (111). These

results provide empirical evidence for the benefits of combining VL

treatment with antibiotics in affected patients.

These findings also reinforce the idea that microbial

translocation can contribute to the maintenance of an intense

degree of cellular activation and pro-inflammatory response, and

can, therefore, directly influence the impairment of the immune

response necessary for parasite control (112) (Figure 1). In other

words, microbial translocation may be an additional mechanism

associated with clinical outcomes such as the severity and relapse of

VL in patients co-infected with HIV.

Several mechanisms underlying the activated immune status may

directly affect the effector function of T lymphocytes, either

quantitatively or qualitatively. Thus, similar to the enhanced degree

of activation in a VL/HIV association scenario, the immunological

consequences of this process may also be intensified. This hypothesis is

based on the fact that each infection commonly involves a process of

chronic failure of the immune system, which has been well-

characterized in HIV infection and more recently in VL.
Immunological consequences of
chronic immune activation and its
influence on the immunopathogenesis
of VL/HIV co-infection

The deterioration of immune competence that occurs with

aging is a natural process that results from successive moments of

cellular activation. This process partially explains the increased

morbidity and mortality among elderly individuals without

pathological immunodeficiencies (113). Similarly, the intense

immune activation in HIV infection has been shown to result in

faster progression to immunological aging (114). Consequently,

these individuals exhibit severe and early immunological

impairments that usually manifest only in the elderly population

(114). This process, called immunosenescence, can be clonal, with

the functional loss of virus-specific clones, and/or global, with the

exhaustion of central immune compartments such as the thymus

and bone marrow (115).

Pro-inflammatory cytokines, such as TNF, IL-1b and IL-6, are

secreted in response to various infections and tissue damage, and

their secretion constitutes a complex initial cascade associated with
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pathogen destruction and tissue repair, which acts as the natural

response to these stressful situations. However, in patients with VL

or HIV infection, excessive production and/or accumulation of

these mediators results in severe immunological damage. This

process, which is known as inflammaging, is characterized by the

hyperregulation of anti-stress responses and the production of pro-

inflammatory cytokines (113). The combination of inflammaging

with immunosenescence has been described to aggravate the degree

of immunodeficiency in HIV infection (116, 117).

Immunosenescence is characterized by the presence of

numerous clones of terminally differentiated CD4+ and CD8+ T

cells (118). CD57+ T cells (118–120) and telomere shortening (114,

118) are widely used to define replicative senescence. In addition to

the loss of replicative capacity, CD57+ T cells exhibit increased

susceptibility to activation-induced cell death (119, 121).

Depending on the specificity lost as a consequence of HIV

infection (114–116, 122–125), patients may show loss of viral

load control, faster progression to AIDS, and impairment of the

immune response to other pathogens, such as Leishmania spp.,

which would be critical in the context of VL/HIV co-infection.

VL/HIV patients with and without active disease show higher

percentages of senescent T cells, mainly of the CD8+ T-cell

subpopulation (15, 86, 87), in comparison with patients showing

HIV mono-infection, reinforcing the augmented chronically

activated immune status in this association (61, 67). Despite these

findings, few studies have investigated the degree of

immunosenescence in VL and its consequences for the clinical

outcomes of the disease.

Cellular exhaustion, which has also been explored in both

infections, is phenotypically characterized by the expression of

inhibitory molecules such as programmed cell death protein 1

(PD-1), cytotoxic T-lymphocyte–associated antigen 4 (CTLA-4),

lymphocyte-activation gene 3 (LAG-3), and T-cell immunoglobulin

and mucin domain-containing protein 3 (TIM-3). Both PD-1 and

CTLA-4 negatively regulate T-cell activation and are characteristic

markers of T-cell anergy/exhaustion during chronic infections

(126). Similar to replicative senescence, but in a reversible

manner, immune exhaustion results in decreased cytokine-

production capacity (IL-2, TNF, and IFN-g), as well as reduced

proliferative capacity (126, 127).

Similar to HIV infection (123, 128–130), the high degree of

cellular activation in VL may worsen the clinical condition of these

patients by contributing to their exhaustion status. This

phenomenon has been identified in human VL (126), canine VL

(131, 132), and experimental VL (133) by increasing the phenotypic

expression of PD-1 and CTLA-4, particularly in CD8+ T

lymphocytes. In addition, specific functional impairment due to

decreased proliferative capacity and IFN-Ɣ production in response

to L. infantum antigens has been described (134). However, PD-1/

PD-L1 pathway (PD-1 ligand) blockade can reverse this scenario,

increasing the proliferative capacity against the specific antigen,

restoring the Th1 response, and allowing the production of IFN-g
and increasing cytotoxic activity (133, 135). Thus, blocking these

inhibitory molecules may be a promising therapeutic strategy to
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partially restore the immunological status of chronically

infected individuals.

Although few studies have evaluated the role of these inhibitors

in VL/HIV co-infection, Ethiopian VL/HIV patients, even under

cART, showed high levels of T-cell immunoreceptor with Ig and

ITIM domains (TIGIT) and PD1 on CD8-positive and CD8-

negative T cells, along with reduced T-cell functionality as a

result of the lower frequency of IFN-g+ on TIGIT+ T cells (136).

Similarly, the impaired specific production of IFN-g seen in patients

with VL/HIV co-infection may be related to the low CD4+ T-cell

counts and the persistent activation/inflammation and exhaustion

of T cells (33). In addition to elucidating the pathogenic

mechanisms, future studies should aim to better explore the role

of these molecules as possible predictors of VL severity and relapse.

The consequences of immune activation may not be limited to the

loss of specific T-cell clones and phenotypic characteristics.

Considering their oligoclonal and senescent state, these “terminally

differentiated” cells are unlikely to be replaced by a pool of new naive T

cells capable of responding to infection (137, 138). In this scenario, the

exhaustion of primary immune resources is considered an important

cofactor for the maintenance of this immunosenescent state in chronic

infections such as HIV. Indeed, HIV-positive patients show impaired

bone marrow function with loss of lymphocytic progenitors and

thymic atrophy, leading to changes in immunological homeostasis

and an inability to reconstitute the T and B cell compartments (139–

142). This entire process can culminate in an imbalance between the

specific immune response and residual viremia, resulting in the

appearance and/or reappearance of other pathologies that

characterize AIDS.

The thymus plays a central role in the generation of new T cells

and immune reconstitution (139, 143, 144). Infection and death of

thymocytes and thymic stromal cells by HIV, infection

of hematopoietic stem cells, accelerated thymic atrophy, effects of

pro-inflammatory cytokines (TNF), and intense degree of activation

are among the factors involved in the impaired thymic function

(143, 145–148). Recent thymic emigrants (RTE), newly generated T

cells exported from the thymus to the periphery, can be identified by

quantification of signal joint T-cell receptor (TCR) rearrangement

excision circles (sjTREC) by real-time polymerase chain reaction

(139). This assay involves quantification of episomal DNA that is

generated during the rearrangement process of TCR genes (139)

and is present mainly in cells that express TCR-ab (Tab cells)

(139). In addition, the CD31 molecule (PECAM-1) has also been

commonly used for evaluating RTE by flow cytometry. This is

because the sjTREC content is higher in naive CD4+ T cells

expressing CD31, and the decline of these CD31+CD4+ T cells

and TRECs levels occurs with aging (149).

Both HIV-infected humans and SIV-infected monkeys show a

decrease in TREC content in naive peripheral blood T cells (139,

150–155). This decrease in thymic output is correlated with low

immunological reconstitution and, consequently, low CD4+ T-cell

counts (156, 157), possible loss of viremia control (158), and poor

clinical prognosis in HIV infections.
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However, the role of the thymus in the immunopathogenesis of VL

has not yet been fully explored. Protein malnutrition in L. infantum-

infected mice significantly alters the thymic microenvironment

(22, 159). Atrophy, hypocellularity, and changes in the migration

patterns of T-lymphocyte subpopulations were observed, in addition

to reductions in the cortical area and intrathymic proliferation

(22, 159). More recently, amastigote forms were found in the thymus

of L. infantum-infected dogs (23).

Patients with VL may present with multifactorial injury of the

T-lymphocyte lineage (1): impairment of progenitors in the bone

marrow by parasitism (2), natural thymic involution that occurs

with aging, and (3) thymic dysfunction induced by malnutrition, as

well as the consequences of the infection itself, such as cellular

activation (Figure 1).

Consequently, in the context of VL/HIV co-infection,

simultaneous thymic impairment may contribute to the severity

of this association. We demonstrated, for the first time, that patients

with VL/HIV co-infection had lower levels of sjTRECs than those

with HIV mono-infection, even under undetectable viral loads (16).

Interestingly, patients with relapsing VL/HIV co-infection showed

low levels of sjTRECs throughout the prospective follow-up period,

whereas those with non-relapsing VL/HIV co-infection showed a

significant increase at 10 months post-treatment (16), suggesting

that thymic impairment may be related to the clinical outcome of

VL in patients with HIV co-infection.

Disturbances in the T-lymphocyte repertoire are another

qualitative consequence of immunosenescence. After thymic

rearrangement, maturation, and selection, T cells migrate to the

periphery. Thus, disorders of thymic function profoundly affect

the diversity of the T-lymphocyte repertoire and, consequently, the

capacity to respond to a variety of antigens (160). Assessments of

TCR diversity are currently based on flow-cytometry and next-

generation sequencing studies of the families that constitute the

variable region of the b chain (Vb). Disturbances in the Vb
repertoire have been related to the immunopathogenesis of

several diseases, such as cancer (161, 162), Chagas disease (163,

164), HIV/AIDS (165–167), and leishmaniasis (16, 168, 169).

Studies on American Tegumentary Leishmaniasis (ATL) showed

expansion of the Vb12 and Vb22 families and contraction of Vb2 in
L. braziliensis-infected patients (169). Moreover, a decrease in

CD8+Vb14+ T cells in the lymph nodes has been observed (168),

in contrast to the augmentation of this family in the lesions of L.

guyanensis-infected patients (170), indicating the migration of these

cells among immune compartments (170).

In relation to VL/HIV co-infection, unprecedentedly, our group

demonstrated the occurrence of significant disorders of the Vb
repertoire (16). In this study, in comparison with healthy

individuals, patients with relapsing VL/HIV co-infection showed

a more heterogeneous Vb repertoire mobilization profile

throughout the follow-up period, especially in the CD8+ T cells,

in terms of expansion and retraction of Vb families. In contrast,

patients with non-relapsing VL/HIV co-infection presented a

profile with significant changes, although specific to certain
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families. The Vb3 and Vb18 families were less expressed in CD8+ T

cells from patients with relapsing VL/HIV co-infection and

expanded among patients with non-relapsing VL/HIV co-

infection, especially in the active phase of the disease. Despite
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these findings, no characteristic profile of the dynamics of the

TCRVb repertoire in terms of clonality was observed in this

study, making it impossible to associate it with clinical outcomes

in terms of relapses (16).
FIGURE 2

Both infections share immunopathogenic characteristics that can reciprocally impair the immune response to pathogens. Visceral leishmaniasis can
contribute to the decrease in CD4 T lymphocytes, worsening immunosuppression, increasing viral replication and the cellular activation degree,
which in turn may favor progression to AIDS. On the other hand, HIV infection and its consequences for the immune response can increase the
parasite load, the resistance to the treatment, dissemination of VL for atypical sites and favor the severity and relapses of the disease. Microbial
translocation, immunosenescence and the exhaustion degree may act as key cofactors of the process that culminates in the collapse of the immune
response in co-infected patients. Source: The author. BioRender.com.
TABLE 1 Potential biomarkers related to severity, death or relapses of VL in HIV co-infected patients.

Immunopathogenic
mechanism

Biomarkers Relapses Severity and Death

Immune activation

Cytokine storm 16 58

CD38 and HLA-DR on T cells 15, 67 –

Parasite load 175 –

Anti-Leishmania IgG3 15 –

Soluble CD14 15 58

Deficient immune reconstitution

CD4+ T cells absolute counts 12, 15, 62, 178-184 184

sjTREC 16 –

Vb disturbances 16 –

Immunosuppression
Antigen-specific IFN-g 62 –

Anergy/Exhaustion 62, 136 –
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Finally, although barely investigated, these results point to profound

disturbances in the immune compartments due to associations between

two parasites whose effects are progressively potentialized as a result of

sharing very similar immunopathological mechanisms. Thus, prompt

diagnosis and treatment of both diseases can certainly prevent more

severe consequences of VL/HIV co-infection.
Relapses of VL in patients with or
without HIV co-infection:
potential biomarkers

According to the Brazilian Ministry of Health, VL relapses are

characterized by resurgence of symptoms within 12 months of

clinical cure (11). As described by Cota et al., relapses present

clinically with the reappearance of fever, worsening cytopenia, or an

increase in splenomegaly after successful drug treatment (82, 171).

Relapse is a very common outcome among immunosuppressed

patients, such as those co-infected with HIV and transplant

recipients (15, 16, 172, 173), although its incidence is also

increasing among individuals without other comorbidities (32).

Horrillo et al. described treatment failures and reported that the

prevalence of VL relapse was 12%, with the relapses being associated

with a lack of adequate prophylaxis in patients co-infected with HIV

and liposomal amphotericin B doses lower than 21 mg/kg in patients

without HIV (174). Abongomera et al. described data from an

Ethiopian cohort of patients with VL/HIV co-infection, in which

35% of the individuals showed relapse. cART is associated with a

lower risk of relapse, whereas high parasite loads are associated with

disease recurrence (175). Similarly, other studies have demonstrated

that the blood parasite load (176), male sex, extremes of age (<5 and

>45 years), and a slight decrease in splenomegaly (177) are risk factors

for relapse in patients with VL without HIV. A recent study

demonstrated that, in addition to HIV infection, factors such as

thrombocytopenia, lower limb edema, and secondary pneumonia

were independently associated with relapse (173).

Several studies have already shown that low CD4+ T

lymphocyte counts during the active phase of VL or even the

absence of an increase in this subpopulation after treatment can

be considered a predictive factor for VL relapse in HIV-infected

patients (178–184). In this way, previous studies by our group have

demonstrated that the number of VL episodes is inversely

correlated with the CD4+ T-cell count and sjTREC level in

patients with VL/HIV co-infection (15, 16) and could be a useful

immunological biomarker for disease relapse. Interestingly, patients

with relapsing VL without a history of HIV also maintained low

CD4 T-cell counts post-treatment (32). These studies reinforce the

relationship between the degree of immunological reconstitution

and different clinical outcomes of the disease.

Bhattacharyya et al. showed that high levels of anti-SLA (soluble

Leishmania antigen) immunoglobulin (Ig)G1 at 6 months post-

treatment were associated with treatment failure and relapse (185),

demonstrating the importance of IgG1 in determining the clinical

status of patients with VL, without HIV. These findings were confirmed
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by subsequent studies that demonstrated the possibility of using IgG1

anti-rK39 antibodies as biomarkers for VL relapse (186, 187). Similarly,

Mondal et al. demonstrated the potential of quantifying serum IgG

anti-rK39 antibodies to determine VL prognosis (188). Corroborating

these data, our group demonstrated that patients with several episodes

of VL showed high levels of anti-SLA immunoglobulins, especially

IgG3, even 12 months post-treatment and independent of the HIV

serological status (15, 32). These studies point to IgG3 as a possible

biomarker of relapse, and indicate that a reduction in its serum levels

may be related to the clinical remission of VL.

In conclusion, despite the considerable prevalence of VL relapse in

patients co-infected with HIV and, more recently, in immunocompetent

patients, official protocols for recognizing patients susceptible to relapses

are lacking, and their therapeutic management is not well-defined. This

scenario, combined with the fact that available treatments are scarce,

have significant toxicity, and pose a high cost to the health system,

highlight the need to investigate the reactivation-related immunological

mechanisms that can help predict the clinical prognosis of these patients

(Figure 2). Finally, microbial translocation (sCD14), exhaustion (PD-1/

TIGIT)- and senescence (TREC)-associated markers along with

immune activation profile (IgG1/IgG3 and CD38/HLA-DR) deserve

to be better investigated as underlying determinants of relapse or

chronicity of VL in patients with HIV co-infection, in addition to

being evaluated using algorithms to validate them as prognostic

biomarkers (Figure 1, Table 1). Finally, the cross-sectional studies on

VL/HIV conducted to date have provided evidence of the global

immunological impairment experienced by these patients. However,

prospective multicenter studies are crucial to investigate which

immunological parameters can be good predictors of prognosis in

terms of VL relapse and/or severity in patients with VL/HIV

co-infection.
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Glossary
VL visceral leishmaniasis
Frontiers in Immunol
HIV human immunodeficiency virus
VL/HIV visceral leishmaniasis and human immunodeficiency virus

co-infection
AIDS acquired immunodeficiency syndrome
cART combined antiretroviral therapy
CD cluster of differentiation
IL interleukin
IFN interferon
TNF tumor necrosis factor
RANTES normal T-cell expressed and secreted
MIP macrophage inflammatory protein
CXCL chemokine ligand
NF nuclear factor
MDM monocyte-derived macrophages
PI protease inhibitor
IRIS immune reconstitution inflammatory syndrome
PKDL post-kala-azar dermal leishmaniasis
HLA Human Leucocyte Antigen
SIV simian immunodeficiency virus
CCR chemokine receptor
ogy 16
I-FABP intestinal fatty-acid binding protein
LPS lipopolysaccharide
sCD14 soluble receptor CD14
TLR Toll-like receptor
MALT mucosa-associated lymphoid tissue
MIF macrophage migration inhibitory factor
PD-1 programmed cell death protein 1
CTLA-4 cytotoxic T-lymphocyte–associated antigen 4
LAG-3 lymphocyte-activation gene 3
TIM-3 T-cell immunoglobulin and mucin domain-containing

protein 3
PD-L1 programmed cell death protein 1 ligant
TIGIT T-cell immunoreceptor with Ig and ITIM domains
RTE Recent thymic emigrants
TCR T-cell receptor
sjTREC signal joint TCR rearrangement excision circles
PECAM-1 platelet endothelial cell adhesion molecule 1
Vb variable region of the b
ATL American Tegumentary Leishmaniasis
Ig immunoglobulin
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