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Immune checkpoint blockade holds promise in hepatocellular carcinoma (HCC)

treatment, but its efficacy remains limited. Dysregulated polyamine metabolism

and its interaction with oncogenic pathways promote tumor progression.

However, the heterogeneity of polyamine metabolism and its effects on the

immune microenvironment and response to immunotherapy in HCC remain

unclear. Here, we aimed to investigate the prognostic and immunotherapeutic

implications of polyamine metabolism in HCC. Based on polyamine-related

genes, HCC patients were categorized into two clusters with distinct survival

outcomes. We developed a polyamine-related signature, termed PAscore, which

was found to be a strong predictor of both poor prognosis and reduced

immunocyte infiltration. Notably, a high PAscore was also associated with

decreased sensitivity to immunotherapy. Within the HCC microenvironment,

malignant cells exhibited polyamine metabolic heterogeneity, those with high

polyamine metabolic activity showed altered hallmark pathway signatures and

increased communication withmyeloid cells. In vitro experiments suggested that

FIRRE, the gene with the greatest impact on the PAscore, significantly

contributed to HCC proliferation and metastasis. This study underscores the

potential of our polyamine-related signature in predicting the prognosis and

immunotherapy response in HCC patients, and also reveals the polyamine

metabolic heterogeneity among HCC cells that influences their crosstalk with

infiltrating myeloid cells.
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1 Introduction

Primary liver cancer is one of the most prevalent malignant

tumors in the digestive system, ranking sixth in incidence among all

malignancies. It has the third highest mortality rate, following lung

and colorectal cancers, and this rate has increased over the past

decade (1, 2). It includes hepatocellular carcinoma (HCC),

intrahepatic cholangiocarcinoma (ICC), and mixed hepatocellular-

cholangiocarcinoma. HCC, which originates from liver cells, is the

most prevalent histological type, accounting for approximately 90%

of all primary cases (3). The primary treatment strategies for liver

cancer include surgical resection, interventional therapy,

radiotherapy, and chemotherapy. In recent years, immunotherapy

that blocks PD-1/PD-L1 and CTLA-4 signals have emerged as a

promising approach that can bring survival benefits for HCC

patients, which makes it a key area of research (4, 5). However,

despite these treatment options, the overall therapeutic outcomes

remain limited, with a five-year survival rate of only about 20%. The

challenges in treating HCC are primarily due to tumor heterogeneity,

low drug response rates or resistance, and the limited availability of

effective drugs targeting key driver mutations (6–8). There is an

urgent need for reliable predictive models to identify high-risk HCC

patients for timely and effective treatment.

The polyamines (putrescine, spermidine and spermine) present

in mammalian cells are essential for cell function and growth. They

are involved in many cellular activities, such as chromatin

structuring, gene regulation, protein and nucleic acid synthesis, cell

differentiation and apoptosis, and intercellular communication (9).

Metabolic reprogramming is a hallmark of cancer, and dysregulated

polyamine metabolism is prevalent in many cancer types. The rate-

limiting enzymes of polyamine biosynthesis, ODC and AMD1, are

direct transcriptional targets of the oncogene MYC (10, 11). The

upregulation of MYC expression, which occurs in nearly all tumor

types due to gene mutations, is closely associated with increased

polyamine biosynthesis (9, 12). Aberrant polyamine metabolism,

whether driving or resulting from oncogenic pathways, impacts

cancer cell survival, contributes to acquired drug resistance, and

alters the tumor microenvironment (13, 14). Targeting tumor

polyamine metabolism is therefore considered a rational strategy

for therapeutic intervention. In HCC, Liu et al. proposed that

polyamines regulate mitochondrial metabolism to influence the

differentiation of macrophages and T cells, thereby promoting the

formation of an immunosuppressive microenvironment (15). To

date, whether HCC exhibits heterogeneity in polyamine

metabolism and the prognostic significance of polyamine

metabolism remain to be elucidated.

In this study, single-cell RNA sequencing data of HCC were

utilized to examine polyamine metabolism activity at the single-cell

level, and bulk transcriptome sequencing data were used to explore

the expression patterns of polyamine-related genes in HCC.

Polyamine-related genes correlated with the overall survival of

HCC patients were identified, and a polyamine metabolism-

related prognostic model, termed PAscore, was established to

predict the tumor microenvironment, clinical outcomes, and

responses to therapies in HCC. This study presents a prognostic

signature based on polyamine homeostasis and highlights the
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potential of targeting polyamine metabolism as a therapeutic

strategy for HCC patients.
2 Materials and methods

2.1 Bulk RNA−seq and clinical
data acquisition

Transcriptomic data in counts and TPM formats, somatic

mutation data in the mutation annotation format, and associated

clinical information for HCC were retrieved from The Cancer

Genome Atlas (TCGA) using the R package ‘TCGAbiolinks’ (16).

This cohort includes 374 tumor samples and 50 normal samples.

Samples with overall survival less than 30 days or lacking complete

survival data were excluded. Gene expression data and clinical

information from an independent HCC cohort, GSE14520, were

downloaded from the Gene Expression Omnibus (GEO) database

to serve as a validation set. This cohort includes 225 tumor samples

and 220 normal samples. Similarly, only patients with

corresponding survival data and survival greater than 30 days

were included in the analysis. For duplicated gene symbols, the

gene with the highest average expression value was retained. The

LICA-FR dataset containing 160 HCC samples was downloaded

from the International Cancer Genome Consortium (ICGC). A

curated list of polyamine-related genes was derived from the

GeneCards database using a relevance score threshold greater

than 1 (Supplementary Table 1).
2.2 Single−cell RNA sequencing analysis

The GSE166635 single-cell transcriptome data for HCC were

collected from Tumor Immune Single-cell Hub (TISCH) database.

Data processing was conducted using the ‘Seurat’ R package,

following the procedures described in the package tutorial. Briefly,

cells with < 500 or > 7,500 expressed genes, as well as those with

mitochondrial gene expression > 15%, were excluded. After cell

quality control, the raw counts were log-normalized and scaled,

and principal component analysis (PCA) was performed using

highly variable genes. Cell clustering was performed by selecting

the first 15 components and employing the Louvain algorithm,

followed by dimensionality reduction and visualization using

unified manifold approximation and projection (UMAP). We then

annotated each cell cluster using the annotations provided with the

downloaded dataset. For the sub-clustering of malignant cells, the raw

data of malignant cells were extracted and the procedures mentioned

above were repeated.
2.3 GSVA analysis of pathway activity and
cell–cell communication analysis

For pathway activity analysis, the ‘GSVA’ R package was

employed to evaluate the enrichment of relevant gene sets using

normalized gene expression data from each sub-cluster of
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malignant cells. The gene sets used for Gene Set Variation Analysis

(GSVA), including the reactome metabolism of polyamines gene set

and the hallmark gene sets, were retrieved from the Molecular

Signatures Database (MSigDB, https://www.gsea-msigdb.org/gsea/

msigdb). Cell-cell communications were analyzed using the

‘CellChat’ package, with the number of ligand-receptor pairs and

communication intensity evaluated based on normalized gene

expression data.
2.4 Identification of differentially expressed
genes and prognostic genes

The counts format of the bulk RNA-seq expression matrix

was used to identify differentially expressed genes (DEGs)

between HCC and normal liver tissues using the ‘limma’ R

package. Unless otherwise indicated, the threshold for DEGs

was set at an absolute log2FC > 1 and a false discovery rate <

0.05. These DEGs and polyamine-related genes were intersected

to obtain polyamine-related DEGs. Univariate Cox regression

was utilized to identify polyamine-related DEGs associated with

overall survival.
2.5 Consensus clustering based on
polyamine-related prognostic genes

According to the univariate Cox regression analysis, the top 12

ranked genes based on hazard ratio were used as features for

clustering of HCC patients. Consensus clustering was performed

by using the ‘ConsensusClusterPlus’ R package. The optimal

number of clusters was determined by cumulative distribution

function curve and consensus matrix heatmap.
2.6 Functional enrichment analysis

Genes differentially expressed between HCC and normal liver

tissues were functionally annotated using the ‘clusterProfiler’ R

package by evaluating the enrichment of Gene Ontology (GO)

terms, including biological processes, cellular components, and

molecular functions. GO terms with an adjusted P value < 0.05

were considered significantly enriched.
2.7 Construction and validation of a
polyamine-related signature

To establish a polyamine metabolism-based signature,

univariate Cox regression analysis was first performed for

feature gene selection (univariate P < 0.05). The Least Absolute

Shrinkage and Selection Operator (LASSO) regression analysis

with 10-fold cross-validation was then conducted to eliminate

overfitting genes. Subsequently, multivariate Cox regression

analysis using the stepwise method (with both forward and
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backward steps) was performed, and then a polyamine scoring

signature termed PAscore was constructed. The PAscore was

calculated as the sum of the product of each feature gene’s

expression and its corresponding regression coefficient. The

TCGA HCC dataset was randomly divided into training and

validation cohorts in a 1:1 ratio for model development

and validation. Patients were categorized into PAscore-high and

PAscore-low groups based on the median PAscore. To assess the

independent prognostic significance of PAscore, Cox proportional

hazards regression analysis was performed, adjusting for potential

confounding factors, including age, gender, tumor stage, and

grade. Samples with missing data for any of these clinical

covariates were excluded from the analysis.
2.8 Immune infiltration analysis

For quantification of immune cell infiltration, three different

algorithms were employed: the Estimation of Stromal and

Immune cells in Malignant Tumor tissues using Expression data

(ESTIMATE) algorithm, the Cell-type Identification by Estimating

Relative Subsets of RNA Transcripts (CIBERSORT) algorithm, and

single-sample gene set enrichment analysis (ssGSEA).
2.9 Prediction of response to
immunotherapy and traditional drugs

The Tumor Immune Dysfunction and Exclusion (TIDE)

computational method was utilized to predict the response of

HCC patients with different PAscores to immune checkpoint

inhibitors, including anti-PD-1 and anti-CTLA4. A higher TIDE

score indicates reduced responsiveness to immunotherapy (17).

Additionally, the stemness score file named “StemnessScores_

RNAexp_20170127.2.tsv” was downloaded to analyze cancer stem

cell index involved in therapy resistance. The ‘oncoPredict’ R

package was employed for drug sensitivity prediction. The

necessary training sets were obtained from the Genomics of Drug

Sensitivity in Cancer (GDSC) database via oncoPredict’s Open

Science Framework (18). Drug sensitivity scores were calculated

using the calcPhenotype function.
2.10 Cell culture and RNA interference

The human HCC cell lines HepG2 and Huh7 was originally

from ATCC and stocked in our laboratory. Cell line authentication

was performed before use via short tandem repeats sequencing.

Cells were maintained in Dulbecco’s modified Eagle’s medium

(DMEM) supplemented with 10% fetal bovine serum, under a

humidified atmosphere of 5% CO2 at 37 °C. Small interfering

RNA (siRNA) against FIRRE was purchased from GenePharma

(Shanghai, China), and sequences were as follows: si-FIRRE-1, 5’-

CCAUGUACACCAUCAUCAATT-3’; si-FIRRE-2, 5’- GCCUAGG

ACCUUUGUG-GUATT-3’.
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2.11 RNA extraction and quantitative real-
time PCR

Total RNA was extracted using RNAiso Plus (TaKaRa)

following the manufacturer’s instructions. Complementary DNA

(cDNA) was synthesized via reverse transcription with the

PrimeScript™ RT reagent Kit (RR047A, TaKaRa). For

quantification of gene expression, real-time quantitative PCR was

performed on the Roche LightCycler 480 System using TB Green

Premix Ex Taq II reagent (RR820A, TaKaRa). Relative gene

expression was analyzed by the 2−DDCT formula. Primer sequences

for FIRRE were as follows: forward, 5’-CTGTGACCTCGCT

TCACTTCT-3’; reverse, 5’- GTGGCAAAGAGCAGAAGATAG-3’.
2.12 Cell proliferation and migration assays

HepG2 cells with FIRRE knockdown were seeded into 96-well

plates at a density of 2,000 cells per well and incubated overnight.

Cell proliferation was evaluated using CCK-8 (Apexbio, USA),

measuring absorbance at 450 nm every 24 hours. To evaluate

migration ability, 24-well transwell chambers with 8 mm pores

(Corning, USA) were utilized. Serum-free medium was added to

the upper wells, and medium containing 10% fetal bovine serum

was placed in the lower wells. Ten thousand HepG2 cells were

seeded in the upper wells and incubated for 48 hours. Migrated cells

were then fixed with 4% paraformaldehyde (Beyotime, China) and

stained using crystal violet (Beyotime, China).
2.13 Statistical analysis

All statistical analyses were performed using R software (version

4.3.1). Group comparisons were conducted using either the two-

tailed Student’s t-test or the Wilcoxon test. Survival analysis was

carried out using the Kaplan-Meier estimator and the log-rank test.

Pearson correlation analysis was used to assess relationships

between variables. Differences were considered statistically

significant at P < 0.05, unless otherwise indicated.
3 Results

3.1 Genetic and transcriptional landscape
of polyamine-related genes in HCC

We collected a comprehensive set of 348 polyamine-related

genes and analyzed their mutation landscape in HCC patients.

Notably, among the top 20 most frequently mutated genes shown in

Figure 1A, three are polyamine-related genes (TP53, CTNNB1,

ALB), each exhibiting a mutation frequency greater than 10%.

Copy number variation (CNV) is a common event in polyamine-

related genes, with gain CNVs generally occurring at a higher

frequency than loss CNVs. For instance, the gain CNV frequency
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in MCL1 is as high as 20%, while the loss CNV frequency is less

than 5% (Figure 1B). Furthermore, a polyamine gene network was

constructed to depict the comprehensive interactions and

associations of polyamine-related genes, as well as their

prognostic significance for HCC. Notably, the majority of these

polyamine-related genes act as risk factors for the survival of HCC

patients (Figure 1C).

To gain insights into the role of polyamine metabolism in HCC,

we analyzed the expression differences of polyamine-related genes

between HCC and normal liver tissues using TCGA cohort. We

identified 103 differentially expressed polyamine-related genes in

HCC, with 30 genes significantly upregulated and 73 downregulated

(Figure 1D; Supplementary Table 2). Gene Ontology (GO)

functional analysis revealed that the upregulated genes are

primarily involved in DNA ligation, organelle fission, and protein

kinase regulator activity (Figure 1E; Supplementary Table 3). In

contrast, the downregulated genes are associated with amino acid

metabolic processes, response to nutrient levels, and pyridoxal

phosphate binding (Figure 1F; Supplementary Table 4). These

results indicate an altered polyamine metabolism profile in HCC.
3.2 Identification of HCC subtypes based
on polyamine metabolism

To identify the polyamine-related risk genes in HCC, we

performed a univariate Cox regression analysis, and the top-

ranked genes based on hazard ratios were presented in Figure 2A.

Given the inter-tumor heterogeneity, we hypothesized that

variations in polyamine metabolism activity among patients

could, to some extent, account for the differences in prognosis.

These top-ranked genes were used as feature genes for consensus

clustering, which effectively stratified HCC patients into two

distinct clusters (Figures 2B, C). The Kaplan–Meier survival

analysis revealed significant differences in survival between the

two clusters, with Cluster A exhibiting a markedly shorter overall

survival time (Figure 2D). We next used another HCC cohort to

evaluate the utility of these top-ranked polyamine-related risk genes

for patient clustering and high-risk patient identification. We next

utilized an additional HCC cohort, GSE14520, to assess the

effectiveness of these top-ranked polyamine-related risk genes in

patient stratification and the identification of high-risk individuals.

Consistent with our previous findings, patients were successfully

grouped into two clusters (Supplementary Figures 1A, B), and

Cluster A had a significantly poorer prognosis (Figure 2E). These

results suggest that the polyamine-related risk genes we selected are

potent in identifying high-risk HCC patients.

Next, the ESTIMATE algorithm was employed to gain insights

into the differences in the tumor immune microenvironment

between the stratified patient groups. The stromal score and

ESTIMATE score showed no significant differences between

Cluster A and Cluster B, while the immune score was lower in

Cluster B (Figure 2F). Additionally, GSVA was conducted to assess

KEGG pathways activity in each patient within the TCGA cohort.
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Our analysis revealed that patients in Cluster A exhibited increased

pathway activity in cell cycle, DNA replication, and major DNA

damage repair mechanisms, including homologous recombination,

non-homologous end joining, base excision repair, mismatch

repair, and nucleotide excision repair (Figure 2G). These

biological processes are intimately linked to cancer progression

and resistance to chemotherapies. Consistently in the GSE14520

cohort, patients in Cluster B showed enrichment of DNA repair and

classical oncogenic signaling pathways, such as glycolysis, PI3K-

AKT-mTOR signaling, and WNT-b-catenin signaling. Consistently

in the GSE14520 cohort, patients in Cluster B showed enrichment

in DNA repair. Classical oncogenic signaling pathways, such as

glycolysis, PI3K-AKT-mTOR signaling, and WNT-b-catenin
signaling, were also enriched in Cluster B (Figure 2H). Taken

together, these findings indicate that the polyamine-related risk

genes we identified can serve as feature genes for identifying high-

risk HCC patients, who exhibit increased oncogenic activities

within their tumor niche.
Frontiers in Immunology 05
3.3 Establishment and validation of a
polyamine metabolism-based
prognostic signature

Given the impact of polyamine-related genes on oncogenic

signaling pathways and the survival of HCC patients, a prognostic

model was developed based on the differential expression profiles

between patient clusters stratified by polyamine metabolism. For

model construction and validation, the TCGA-LIHC cohort was

randomly divided into a training set and a test set. We identified 821

DEGs (absolute log2(FC) > 2, adjust P value < 0.05) between the two

clusters in the TCGA cohort, of which 165 were found to be

correlated with patient survival through univariate Cox regression

analysis. These survival-related genes were narrowed down to 5

through LASSO regression analysis (Figures 3A, B). Further

multivariate Cox regression analysis gave rise to the development

of a polyamine-related prognostic signature, termed PAscore, which

was derived from the expression of four genes: FIRRE, CLEC3B,
FIGURE 1

Genetic and transcriptional alterations of polyamine-related genes in HCC. (A) Mutation frequency and types of the top 20 most frequently mutated
genes in HCC patients from the TCGA cohort. (B) The CNV frequency of top 30 polyamine-related genes. The orange circles represent gain-of-
function mutations, the blue circles represent loss-of-function mutations. (C) Correlation among the polyamine-related genes in HCC. (D) Volcano
plot showing differentially expressed polyamine-related genes between HCC and normal liver tissues, with normal liver tissues as control. (E, F) Gene
Ontology (GO) analysis showing the enriched biological processes (BP), cellular components (CC), and molecular functions (MF) of upregulated
(E) and downregulated (F) polyamine-related genes in HCC.
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BACE2, and ADH1C. The weight coefficients for these genes are

shown in Figure 3C. Genes with a negative coefficient, thereby

contributing negatively to the PAscore, are labeled as protective.

According to the CIBERSORT algorithm, the expression of the

hazardous gene FIRRE is negatively associated with the infiltration

of gamma delta T cells (gd T cells) and naive B cells, while BACE2

expression shows a negative correlation with the infiltration of CD8

T cells and gd T cells. In contrast, the protective gene CLEC3B is

positively associated with the abundance of multiple immune cells,

including resting memory CD4 T cells, gd T cells, M1 macrophages,

and naive B cells (Figure 3D).

To visualize the relationship between clusters and PAscore

subgroups, a Sankey diagram was used, showing that all patients

in Cluster A were classified into the high PAscore group
Frontiers in Immunology 06
(Figure 3E). PAscore is negatively correlated with infiltrated M1-

polarized macrophages (Figure 3F), which possess tumor-killing

effects, in contrast to M2-polarized macrophages that promote

polyamine production and support tumor growth (19).

Furthermore, a comparison between the high PAscore group and

the low PAscore group revealed that the infiltration levels of

activated B cells, activated CD8 T cells, neutrophils, natural killer

cells, and type 1 T helper cells were all significantly lower in the high

PAscore group (Figures 3G, H). Consistent with the results

observed in the TCGA LIHC dataset, high-PAscore patients in

the LICA-FR dataset also exhibited reduced infiltration of activated

CD8 T cells, eosinophils, and type 1 T helper cells (Supplementary

Figure 2). These results indicate that the tumor microenvironment

in the high PAscore group exhibits lower immune activity.
FIGURE 2

Consensus Clustering in HCC based on specific prognostic polyamine-related genes. (A) Forest plot of the top ranked polyamine-related risk genes
according to univariate Cox regression analysis. (B) Consensus matrix heatmap reflecting the optimal categorization of HCC into two clusters in the
TCGA cohort. (C) Plot of the cumulative distribution function of the consensus matrix for different k values. (D) Kaplan-Meier curves for overall
survival in the two clusters of the TCGA cohort. n = 27 for Cluster A, and n = 271 for Cluster (B, E) Kaplan-Meier curves for overall survival in the two
clusters of the GSE14520 cohort. n = 70 for Cluster A, and n = 151 for Cluster (B, F) Violin plots showing the stromal and immune scores of the two
clusters of the TCGA cohort. Two-tailed t test was used for two-way comparisons. (G) Heatmap displaying the GSVA enrichment analysis results
between the two TCGA HCC clusters. (F) Differences in pathway activities between the two clusters of the GSE14520 cohort according to the GSVA
analysis. *P < 0.05.
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3.4 The association of PAscore
with patient prognosis and
clinicopathologic characteristics

Kaplan-Meier survival analysis in the training set revealed that

patients with higher PAscore had significantly worse overall

survival, and similar results were observed in the test set

(Figures 4A, B). When the training and test sets were combined

for analysis, a high PA score effectively predicts poor prognosis

(HR = 3.09, logrank P < 0.001) (Figure 4C). The ROC curves and

their AUC values for 1-year, 3-year, and 5-year survival in the

training, test, and combined sets are presented in Figures 4D–F. The

AUC values for 1-, 3-, and 5-year survival were 0.778, 0.805, and

0.806 in the training set, and 0.640, 0.607, and 0.586 in the test set,
Frontiers in Immunology 07
respectively. These results demonstrate the reliable predictive ability

of our prognostic signature. In addition, the expression patterns of

the four genes used in the prognostic signature were shown in the

heatmaps (Figures 4G–I). Patients in the high PAscore group

exhibited increased expression of the hazardous genes FIRRE and

BACE2, but lower expression of the protective genes ADH1C

and CLEC3B.

The relationship between PAscore and the clinicopathologic

features of HCC patients was then evaluated. The tumor stage,

grade, and TNM classification for patients stratified by PAscore

were presented in Figure 5A. Among the clinicopathologic

characteristics analyzed, PAscore emerged as an independent

factor associated with poor prognosis (Figure 5B). Furthermore,

the proportion of patients with a T3 or T4 pathologic stage was
FIGURE 3

Construction of PAscore prognostic signature. (A) LASSO coefficient profiles of the prognostic DEGs in the LASSO-COX regression. (B) Cross-
validation and the optimal log(l) value selection of LASSO regression. (C) Multivariate Cox coefficients of the four genes in the prognostic signature.
(D) Heatmap showing the correlation between feature gene expression and immune cell infiltration degrees based on the CIBERSORT algorithm.
(E) Sankey diagram showing the relationship between clusters, PAscore groups, and survival status in HCC patients of the TCGA cohort. (F) Negative
correlation of PAscore with M1 macrophage infiltration. (G) Boxplot reflecting differences in the infiltration levels of 23 immune cell types within the
HCC microenvironment between high- and low-PAscore groups in the TCGA LIHC cohort. Two-tailed t test was used for two-way comparisons.
(H) Heatmap of tumor-infiltrating immune cell populations in high- and low-PAscore groups, based on CIBERSORT, ESTIMATE, and ssGSEA
algorithms. *P < 0.05; **P < 0.01; ***P < 0.001. n = 141 for the low-PAscore group, n = 157 for the high-PAscore group.
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significantly higher in the high PAscore group compared to the low

PAscore group, while the proportion of patients with stage III-IV

was slightly lower in the high PAscore group (Figures 5C, D). There

was no significant difference in the proportion of patients with high

tumor grades between the two PAscore groups, and fewer male

patients were in the high PAscore group (Figures 5E, F).
3.5 Heterogeneity in polyamine
metabolism within the tumor cells of the
HCC microenvironment

Intratumor heterogeneity, an essential property of cancers, is

crucial to malignant phenotypes and significantly influences

treatment response (20). We analyzed the polyamine metabolic

activity of malignant cells using single-cell RNA sequencing data

from two HCC patients. A total of 22,330 cells, including immune

cells, malignant cells, and stromal cells, were annotated into eleven

distinct cell types that represent the composition of the HCC

ecosystem, consisting of fibroblasts, endothelial cells, epithelial cells,

malignant cells, macrophages, monocytes, DCs, mast cells, B cells, T
Frontiers in Immunology 08
cells (Figures 6A, B). Specific markers for each cell type were shown in

Figure 6C. Reclustering the 4,205 malignant cells revealed 6 clusters

(Figure 6D). GSVA analysis of the hallmark pathway gene signatures

revealed that these 6 clusters could be further clustered into two

subgroups. Remarkably, Subgroup 2 (Clusters 0, 2, 3, 4) exhibited

significantly higher polyamine metabolism activity compared to

Subgroup 1 (Clusters 1, 5) (Figures 6E–G). Furthermore, cells in

Subgroup 2 exhibited increased activity in oxidative phosphorylation,

glycolysis, DNA repair, angiogenesis, and MYC targets, while

showing reduced activity in the interferon alpha response,

apoptosis, and p53 pathway (Figure 6E). These findings underscore

the polyamine metabolic heterogeneity among malignant cells and

the positive correlation between polyamine metabolic activity and

oncogenic signaling pathway activity at the single-cell level.

Ligand-receptor-mediated intercellular communication landscape

was shown in Figure 6H. Compared to Subgroup 1, Subgroup 2 cells

showed increased crosstalk with myeloid cells. Notably, the

communication between Subgroup 2 cells and myeloid cells was

stronger than that with other cell types (Figures 6I, J). The PROS1-

AXL, EDA-EDA2R, C3-(ITGAX+ITGB2), IL17A-(IL17RA+IL17RC),

TGFA-EGFR, and NPPC-NPR2 ligand-receptor interactions primarily
FIGURE 4

High PAscore indicates poor prognosis. (A–C) Kaplan-Meier curves for overall survival in TCGA HCC patients with high- and low-PAscore in the
training (A), test (B), and combined (C) sets. (D–F) Time-dependent receiver operating characteristic curves of the PAscore signature for predicting
1-, 3-, and 5-year survival of HCC patients across the training (D), test (E), and combined (F) sets. (G-I) PAscore distribution and expression heatmap
of the four signature genes in high and low PAscore groups across the training (G), test (H), and combined (I) sets.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1516332
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Pan et al. 10.3389/fimmu.2025.1516332
mediate the increased crosstalk between Subgroup 2 cells and myeloid

cells. Meanwhile, MDK-NCL, MIF-(CD74+CXCR4), and NPPC-

NPR2 contribute to the enhanced communication between Subgroup

2 cells and T cells (Supplementary Figure 3). These distinct ligand-

receptor interaction profiles may underlie the varying immune evasion

capacities of Subgroup 1 and Subgroup 2 cells. For example, the

PROS1-AXL pathway mediates the interaction between MICA+

tumor cells and MMP9+ macrophages, to facilitate tumor immune

escape in advancedHCC (21). TheMDK-NCL signal is associated with

suppressed immune activity in endometrial carcinoma (22). Further

investigation is needed to determine whether the communication

between tumor cells and myeloid cells affects polyamine metabolism

and malignant phenotypes in tumor cells.
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3.6 Higher PAscore is associated with
reduced sensitivity to immunotherapy and
other antitumor drugs

To explore the clinical application of our polyamine-related

signature in predicting drug response, we analyzed the relationship

between the PAscore and sensitivity to immune checkpoint

inhibitors and other commonly used antitumor drugs. Our

analysis revealed that patients with higher PAscores exhibited

elevated TIDE scores (Figure 7A), suggesting that immune

checkpoint inhibitors are likely less effective in these individuals.

Accumulating evidence demonstrates that cancer stem cells

contribute to therapy resistance (23, 24), and a significant positive
FIGURE 5

Relationship between PAscore and the clinicopathologic features of HCC patients. (A) A band chart of PAscore and clinical features of HCC patients.
(B) Forest plot showing prognostic significance of age, gender, tumor stage, T and PAscore based on Cox regression analysis. (C) The proportion of
patients with different T classifications (T1 + T2 vs. T3 + T4) in the high- and low-PAscore groups. (D) The proportion of male and female patients in
the high- and low-PAscore groups. (E) The distribution of patients with distinct tumor grades in different PAscore groups. (F) The distribution of
patients with distinct tumor stages in different PAscore groups.
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association (R = 0.3, P < 0.001) was observed between the PAscore

and CSC index (Figure 7B). We utilized the oncoPredict package to

estimate the differences in drug sensitivity between high and low

PAscore groups. Patients with a higher PAscore exhibited greater

resistance to drugs such as 5-fluorouracil, lapatinib, and crizotinib

(Figure 7C). However, a higher PAscore was associated with
Frontiers in Immunology 10
increased sensitivity to sorafenib, oxaliplatin, and gemcitabine

(Figure 7D), suggesting that patients with a higher PAscore might

derive greater benefit from these drugs. These results suggest that

the polyamine-related signature has the potential to predict

response to immunotherapy and other antitumor drugs in

HCC patients.
FIGURE 6

Single-cell RNA sequencing analysis reveals the heterogeneity of polyamine metabolism in HCC cells and varying interactions with tumor-infiltrating
immune cells. (A) t-SNE plot showing immune cells, stromal cells, and malignant cells within the HCC microenvironment. (B) t-SNE plot of the
eleven cell types. (C) Dot plot of the expression levels of marker genes in the major cell types. (D) t-SNE plot of 4,205 malignant cells grouped into
six distinct clusters. (E) Heatmap of the GSVA scores of the hallmark pathway gene signatures in the six clusters of malignant cells. (F) t-SNE plot
color-coded for polyamine metabolic activity in different malignant cell clusters that are categorized into two subgroups based on polyamine
metabolic activity levels. (G) Ridge plot showing the distribution of GSVA scores for polyamine metabolism in Subgroup 1 and Subgroup 2.
(H) Overall ligand-receptor-based communication strength among different cell types. (I) Ligand-receptor communications from Subgroup 2
malignant cells to other cell types. (J) Signal identification through comparative analysis of ligand-receptor pair-mediated communication
probabilities between malignant cell subgroups and non-malignant cell types. Mal_Sub_1, Subgroup 1 malignant cells; Mal_Sub_2, Subgroup 2
malignant cells.
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3.7 Knockdown of FIRRE, a constitutive
gene of polyamine-related signature,
impairs HCC cell proliferation
and migration

Given the significant influence of FIRRE on the PAscore, as

indicated by its high coefficient within the PAscore signature,

FIRRE was selected for further analysis. Knockdown of FIRRE

was achieved using small interfering RNA (Figure 8A). The CCK8

assay demonstrated that FIRRE knockdown significantly reduced

the proliferation of HepG2 cells (Figure 8B). Additionally, silencing

FIRRE markedly diminished the migration capacity of HCC cells, as

revealed by the transwell assay (Figures 8C, D). These findings

suggest that polyamine-related signature plays a critical role in the

regulation of HCC cell proliferation and migration.
4 Discussion

Dysregulated polyamine metabolism is common in cancers,

increased intracellular polyamine pools contribute to tumor

proliferation and immune evasion (14, 25). Therefore, targeting

polyamine metabolism has been identified as a promising

therapeutic strategy. Studies have increasingly highlighted the

significant role of polyamines in the progression of HCC. For

instance, spermine has been shown to promote HCC progression

by establishing immune privilege, achieved through the

maintenance of N-glycosylation and stability of PD-L1 (26).

Hitherto in HCC, the effect of polyamine metabolism on

regula t ing the immune landscape within the tumor

microenvironment and its influence on the response to
Frontiers in Immunology 11
immunotherapy have remained largely unknown, and the

predictive significance of polyamine metabolic activity in patients’

prognosis requires further assessment.

In this study, we identified polyamine-related genes correlated

with overall survival in HCC patients. Based on the top-ranked

polyamine-related prognostic genes, HCC patients could be

categorized into two distinct clusters, each differing in specific

cellular signaling activity. Cluster A was characterized by a worse

prognosis and elevated activities in DNA damage repair, DNA

replication, and cell cycle processes. These findings were

corroborated by analyses of an independent HCC cohort, where

Cluster A also exhibited shorter overall survival and heightened DNA

repair capacities. The rapid proliferation of tumor cells relies on

efficient DNA replication and fluent cell cycle progression, which are,

in part, dependent on polyamine abundance (27, 28). Studies have

revealed the biological function of polyamines in protecting DNA

from single-strand breaks and promoting homology-directed repair

of DNA double-strand break (29, 30). In HCC patients, enhanced

DNA repair capability is correlated with worse survival (31).

Consistent with these findings, our results here further underscore

the involvement of polyamines in single- and double-strand DNA

break repair. Oncogenic signaling pathways, such as Wnt/b-catenin
and PI3K/AKT/mTOR, were enriched in Cluster A, supporting the

notion of crosstalk between polyamine metabolism and oncogenic

signaling (32).

Based on DEGs between Cluster A and Cluster B, we developed

a polyamine-related signature, termed PAscore, comprising four

genes: FIRRE, CLEC3B, BACE2, and ADH1C. The PAscore

signature effectively serves as a prognostic marker that indicates

poor overall survival and reduced responsiveness to immune

checkpoint blockade. It also reflects lower infiltration of specific
FIGURE 7

PAscore signature is positively associated with reduced sensitivity to immunotherapy in HCC. (A) Comparison of TIDE scores between high- and
low-PAscore patients. (B) Correlation between PAscore and cancer stem cell index. (C) Reduced sensitivity to 5-fluorouracil, lapatinib, and crizotinib
in patients with higher PAscore. (D) Increased sensitivity to sorafenib, oxaliplatin, and gemcitabine in patients with higher PAscore. ***, P < 0.001.
(A, C, D) Two-tailed t test was used for two-way comparisons.
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immune cell types, including activated CD8 T cells, natural killer

cells, activated B cells, and neutrophils. The reduced presence of

tumor-infiltrating lymphocytes aligns with previous findings that

polyamines are involved in suppressing clonal deletion of B cells

and that optimal induction of cytolytic T lymphocytes depends on

elevated polyamine levels (33, 34).

Among the four genes in the PAscore signature, the long non-

coding RNA FIRRE has the highest coefficient, indicating its

significant impact on the PAscore. Like ornithine decarboxylase

(ODC), the rate-limiting enzyme in polyamine biosynthesis, FIRRE

is also transcriptionally activated by MYC (10, 35). Although there

is no direct evidence indicating that FIRRE regulates polyamine

metabolism, inhibition of tumor glycolysis has been shown to

reduce both ODC expression and polyamine levels (36), and

FIRRE has been found to enhance glycolytic activity by

promoting the transcription of the glycolytic enzyme PFKFB4

(37). These findings suggest that FIRRE may indirectly influence

polyamine metabolism. Additionally, FIRRE has been shown to

regulate the expression of immunomodulatory genes, such as

VCAM1 and TNF-a (38), indicating its role in modulating the

tumor immune microenvironment. Our in vitro experiments

showed that FIRRE knockdown significantly inhibited the

proliferation and metastasis of HCC cells, corroborating the

previously reported pro-tumor effects of FIRRE (37, 39). BACE2

is a b-secretase protein that is overexpressed in cancers. In ocular

melanoma, BACE2 has been found to mediate intracellular calcium

release from the endoplasmic reticulum and support tumor

progression by regulating the expression of TMEM38B, a cation
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channel protein in the endoplasmic reticulum membrane (40). Our

prognostic signature indicates that BACE2 has an adverse effect on

the prognosis of HCC patients. Notably, intracellular calcium

content regulates polyamine transport (41), suggesting that

BACE2 may be involved in polyamine metabolism, although

further experimental investigations are needed. CLEC3B and

ADH1C are indicators of a better prognosis for HCC patients

according to the PAscore signature, which is consistent with

previous studies (42, 43). CLEC3B is a secreted protein that can

suppress angiogenesis through exosome-mediated inhibition of

VEGF (44).

HCC is characterized by metabolic heterogeneity, which can be

used to stratify patients (45). Our analysis of single-cell RNA

sequencing data of HCC revealed polyamine metabolic heterogeneity

among malignant cells, which could be categorized into two subgroups

based on polyamine metabolic activity, with each subgroup exhibiting

distinct hallmark pathway activities. For instance, the subgroup with

increased polyamine metabolic flux showed enhanced activity in

angiogenesis, DNA repair, MYC targets, PI3K/AKT/mTOR

signaling, and glycolysis. These single-cell-based analyses of crosstalk

between polyamine metabolism and oncogenic signaling are supported

by previous research (12, 30, 46–48). High polyamine pools in tumors

trigger an immunosuppressive microenvironment. Studies in

melanoma and breast cancer mouse models revealed that reduced

tumor polyamine abundance partially mitigated immunosuppression

by decreasing the survival of tumor-associated myeloid cells (49). Our

analysis indicated increased communication between HCC cells with

high polyamine metabolic activity and myeloid cells, which reflects a
FIGURE 8

Polyamine-related signature impairs HCC cell proliferation and migration. (A) qRT-PCR analysis of FIRRE expression, a key gene in the polyamine-
related signature, in HepG2 cells following siRNA transfection. (B) CCK8 assay assessing the proliferation capacity of HepG2 (left) and Huh7 (right)
cells after FIRRE knockdown. (C) Transwell assay evaluating the migration ability of HepG2 cells after FIRRE knockdown. (D) Relative quantification of
the number of migrated cells in the transwell assay. **P < 0.01, ***P < 0.001, scale bar, 200 µm. Two-tailed t test was used for two-
way comparisons.
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similar scenario within the HCC environment where polyamines

facilitate the interaction between malignant cells and myeloid cells to

contribute to the development of a tumor-permissive niche.

Polyamines function as crucial regulators not only in

fundamental cellular metabolism but also in immune regulation

within the tumor microenvironment. Polyamines influence the

differentiation of CD4+ T cells and the cytotoxic function of

CD8+ T cells. For example, in glioblastoma, cancer cell-derived

spermidine has been shown to decrease the tumor-infiltrating

number of CD8+ T cells and impair their cytotoxic activity

through altering their cytokine profile (50). Tumor-derived

polyamines also favor M2 macrophages to support tumor growth,

paracrine secretion of polyamines by M2 macrophages has been

found to suppress the activity of T cells and dendritic cells in the

tumor microenvironment (51, 52). Targeting polyamine synthesis

with difluoromethylornithine (DFMO), an irreversible ODC

inhibitor, has demonstrated significant improvements in overall

survival in high-risk neuroblastoma patients (53). In addition to

DFMO, AMXT-1501 dicaprate, a polyamine transport inhibitor

that prevents uptake of extracellular polyamines, is also being

investigated as a therapeutic approach targeting the polyamine

pathway. A clinical trial has been initiated to assess the intra-

tumoral extracellular metabolic impact of DFMO and AMXT 1501

in patients with diffuse or high-grade glioma (NCT05717153).

These collectively highlight the potential of polyamine-blocking

therapies as a promising therapeutic strategy for cancer treatment.

There are certain limitations in our study. Firstly, while the

prognostic significance of the polyamine-related signature was

validated, further validation of its predictive value for survival and

immunotherapy efficacy in a larger HCC cohort would enhance

the reliability of this signature. Secondly, while we identified four

signature genes and experimentally investigated the role of FIRRE

in regulating the proliferation and migration of HCC cells,

further research is necessary to elucidate the potential functions

and underlying mechanisms of these four genes in HCC

progression. Lastly, although our study revealed increased

crosstalk between HCC cells with enhanced polyamine

metabolic activity and myeloid cells, additional studies are

required to uncover the molecular mechanisms driving this

crosstalk and its consequences.

In summary, we present a polyamine-related signature that

predicts prognosis, immune landscape, and immunotherapy

response in HCC. We highlight polyamine metabolic

heterogeneity among HCC cells, which is associated with distinct

hallmark pathway signatures. Additionally, we demonstrate that,

compared to other cell types within the HCC microenvironment,

communication between malignant cells with high polyamine

metabolic activity and myeloid cells is more active. Targeting

polyamine metabolism and this enhanced crosstalk may offer

more effective combination immunotherapy strategies.
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SUPPLEMENTARY FIGURE 1

Consensus Clustering in HCCGSE14520 dataset based on specific prognostic

polyamine-related genes. (A) Consensus matrix heatmap reflecting the
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optimal categorization of HCC into two clusters in GSE14520 cohort. (B) Plot
of the cumulative distribution function of the consensus matrix for different k

values in GSE14520 cohort.

SUPPLEMENTARY FIGURE 2

Boxplot illustrating the differences in the infiltration levels of 23 immune cell
types within the HCCmicroenvironment between the high- and low-PAscore
Frontiers in Immunology 14
groups in the ICGC LICA-FR cohort. *, P < 0.05; **, P < 0.01; ***, P < 0.001. n =
80 for both groups. Two-tailed t test was used for two-way comparisons.

SUPPLEMENTARY FIGURE 3

Ligand-receptor interactions that mediate the distinct crosstalk between

malignant cells (Subgroup 1 and Subgroup 2) and other cell types within
the tumor microenvironment.
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