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Antibody-Drug Conjugates (ADCs) represent an emerging cancer therapeutic

strategy and are becoming increasingly significant in the field of public health.

With the evolution of precision oncology, the potential applications of ADCs are

being realized more broadly. This review provides an overview of the

fundamental molecular design of ADCs, examining how each component—

antibody, linker, payload, and coupling chemistry—affects the physicochemical

and biological properties of the final product. The paper also discusses novel

ADC designs that are in preclinical and early clinical development stages as next-

generation cancer therapies. These include bispecific ADCs, Probody-drug

conjugate, immunostimulatory ADCs (ISACs), Degrader-Antibody Conjugates

(DACs), and Dual-Payload ADCs. Their applications and potential future

advancements in cancer therapy are also explored.
KEYWORDS
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1 Introduction

Antibody-drug Conjugates (ADCs) have achieved remarkable clinical and commercial

success, as evidenced by the recent approval and commercial performance of drugs like

Fam-trastuzumab deruxtecan-nxki (Enhertu®), which has significantly impacted the

industry (1). From 2000 to the end of 2023, a total of 13 ADCs have been approved by

the U.S. Food and Drug Administration (FDA) for marketing (Table 1). Additionally, there

are at least 100 ADCs in various stages of clinical trials (2) (Table 2).

The structure of oncology ADCs is characterized by the covalent binding of cytotoxic

small molecule drugs to monoclonal antibodies (mAb) via a bifunctional linker in order to

target binding to antigens overexpressed on the surface of tumor cells (3). This design
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effectively integrated biological components with small molecule

drugs into a unified entity. However, this composite structure not

only heightened technical complexity but also presented unique

challenges in terms of chemical synthesis, manufacturing processes,

and quality control (4).

In recent years, the emergence of novel constructs, including

bispecific ADC, Probody-drug conjugate, immunostimulatory ADCs,

Degrader-Antibody Conjugates(DACs)and Dual-Payload ADCs, has

offered new avenues for addressing the aforementioned challenges

(5). These innovative designs have been instrumental in enhancing

tumor specificity and overcoming drug resistance. The market

demand for ADCs is experiencing rapid growth, with an

anticipated continuous expansion in the global market size.

According to data from Frost & Sullivan, the global ADC market

size has seen a swift increase from $1.6 billion in 2017 to $7.9 billion

in 2024, with a Compound Annual Growth Rate (CAGR) of 37.3%. It

is projected that by 2030, the global ADCmarket size will reach $64.7

billion, maintaining a CAGR of 30% (6–8).

Heterogeneity is a principal factor contributing to resistance to

ADCs, which can lead to the development of resistance in certain
Frontiers in Immunology 02
tumor cells to ADC therapy, thereby limiting the efficacy of ADCs (9)

(Table 3). Additionally, the tolerability of drugs is a substantial barrier

in the advancement of ADCs, resulting in the market withdrawal of

certain drugs attributed to their toxic profiles (9). Certain toxicities,

including interstitial lung disease, pneumonia, and ocular toxicities, are

associated with successful ADCs, despite their evident clinical

effectiveness (10). Consequently, a comprehensive consideration of

drug design and tumor characteristics is imperative to enhance the

efficacy and safety profiles of ADCs.
2 ADC structure analysis

The architecture of ADCs represents the central technological

expertise within the pharmaceutical industry’s innovation pipeline,

with a robust patent portfolio being crucial for competitive strength

(11). Crafting an ADC requires a multifaceted approach that

encompasses the antibody, linker, and small molecule drug, along

with their synergistic integration (12). Identifying suitable

antibodies initiates the ADC design sequence, and the linker and
TABLE 1 ADCs approved by the FDA as of 2023.

API
Brand
name

Company Linker Cytotoxin
Target
antigen

Indication
Approval
Date

Gemtuzumab
Ozogamicin

Mylotarg Pfizer Hydrazone Calicheamicin CD33 AML 2000-05-17

Brentuximab
vedotin

Adcetris
Seagen,

TakedaPharma
Dipeptide (VC) MMAE CD30 Hodgkin's Lymphoma;sALCL 2011-08-19

Trastuzumab
emtansine

Kadcyla Genentech
Non-cleavable

(SMCC)
DM1 HER2 Breast Cancer 2013-02-22

Inotuzumab
ozogamicin

Besponsa Pfizer Hydrazone Calicheamicin CD22 ALL 2017-08-17

Moxetumomab
Pasudotox

Lumoxiti AstraZeneca Hydrazone Pasudotoxtdfk CD22 HCL 2018-9-13

Polatuzumab
vedotin

Polivy Genentech Dipeptide (VC) MMAE CD79b DLBCL 2019-06-10

Enfortumab
vedotin

Padcev
Astellas Pharma

US, Seagen
Dipeptide (VC) MMAE Nectin-4 Urinary bladder cancer 2019-12-18

Fam-
trastuzumab
deruxtecan

Enhertu DaiichiSankyo
Non-cleavable

(MC)
Deruxtecan HER2 Metastatic breast cancer 2019-12-20

Sacituzumab
govitecan

Trodelvy Gilead Sciences Acid-labile ester SN-38 Tro2 Triple-negative breast cancer 2020-04-22

Belantamab
mafodotin

Blenrep GSK
Non-cleavable

(MC)
MMAE BCMA Multiple myeloma 2020-08-05

Tisotumab
vedotin

Tivdak Seagen Dipeptide (VC) MMAE TF
Recurrent or refractory metastatic
castration-positive breast cancer

2021-09-20

Loncastuximab
tesirine-lpyl

Zynlonta
ADC

Therapeutics
Dipeptide (VA) PBD CD19 DLBCL 2021-04-23

Mirvetuximab
soravtansine

Elahere ImmunoGen
Sulfobenzoic
acid (SPDB)

DM4 FRa Ovarian cancer 2022-11-14
Gemtuzumab Ozogamicin: Initially approved by FDA in 2000, withdrawn in 2010, and re-approved in 2017.
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conjugation methodologies are paramount in shaping the drug’s

therapeutic index. The small molecule drug within the ADC must

demonstrate exceptional potency in eliminating cancer cells (13).
2.1 Antibodies in ADCs

In the realm of ADCs, antibodies serve as indispensable

“vectors” for targeted drug delivery. They specifically bind to

antigens on the surface of cancer cells, precisely delivering the

payload to the tumor cells, thereby achieving the selective
Frontiers in Immunology 03
elimination of cancer cells (14). The structural and functional

characteristics of antibodies fundamentally determine the

pharmacokinetics and therapeutic efficacy of ADCs. Among IgG

subtypes, IgG1 is the dominant choice (85% of clinical-stage

ADCs) due to its superior Fcg receptor (FcgR) binding capacity

and extended serum half-life (14–21 days) (15). This subtype not

only enhances the antitumor immune response by activating

innate immune cells such as natural killer (NK) cells and

macrophages but also significantly reduces the immunogenicity

of ADCs, thereby minimizing the formation of anti-drug

antibodies (ADAs) (16).
TABLE 2 Selected ADCs in current clinical trials.

ADC Name Company Linker Cytotoxin
Target
Antigen

Indication Phase

Glembatumumab vedotin Seattle Genetics Cleavable dipeptide MMAE gpNMB
Metastatic breast cancer;

melanoma
II

PSMA Progenics Cleavable dipeptide MMAE PSMA Prostate cancer II

Pinatuzumab vedotin Genentech Cleavable dipeptide MMAE CD22 Diffuse large B-cell lymphoma II

Telisotuzumab vedotin Pierre Fabre Cleavable dipeptide MMAE ABT-700
Advanced solid tumors cancer;
non-small cell lung cancer

II

Ladiratuzumab vedotin
SGN-LIV1A

Seattle Genetics Cleavable dipeptide MMAE LIV-1 Breast cancer II

Lorvotuzumab mertansine ImmunoGen Cleavable dipeptide DM1 CD56 Leukemia II

Coltuximab ravtansine ImmunoGen Cleavable dipeptide DM4 CD19
Diffuse large B cell lymphoma;
acute lymphocytic leukaemia

II

Indatuximab ravtansine ImmunoGen Cleavable dipeptide DM4 CD138 Multiple myeloma II

Anetumab ravtansine Bayer Health Care Cleavable dipeptide DM4 Mesothelin
Mesotheliom;other solid

tumors
II

SAR566658 Sanofi Cleavable dipeptide DM4 CA6 Triple-negative breast cancer II

Naratuximab emtansine ImmunoGen
Non-cleavable

(SMCC)
DM1 CD37

Diffuse large B cell lymphoma;
follicular lymphoma

II

AGS-16C3F Astellas
Non-

cleavable (MC)
ENPP3 ENPP3 Renal cell carcinoma II

Rovalpituzumab tesirine Sanofi Dipeptide (VC) PBD dimer DLL3 Small-cell lung cancer III

Mirvetuxima soravtansine ImmunoGen Cleavable dipeptide DM4 FOLR1
Ovarian, endometrial, non-

small
cell lung cancer

III

Depatuxizumab
mafodotin

AbbVie
Non-

cleavable (MC)
MMAF EGFR

Glioblastoma;other
EGFR-positive tumors

III
front
TABLE 3 Mechanisms of tumor heterogeneity impacting ADCs efficacy.

Type of
Heterogeneity

Impact on ADC Therapy Representative Targets

Antigen expression
heterogeneity

Subclones with low antigen expression evade ADC-mediated cytotoxicity, leading to acquired resistance
HER2, TROP2, CD22

Spatial heterogeneity Differential antigen density between tumor core and periphery limits ADC penetration EGFR, HER3

Temporal heterogeneity Therapy-induced antigen phenotype shifts (e.g., HER2-positive → HER2-negative) HER2, Nectin-4

Phenotypic plasticity Epithelial-mesenchymal transition (EMT) mediated antigen downregulation c-MET, CEACAM5
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To minimize off-target toxicity, the ideal target antigen should

be highly expressed and tumor-specific, with little to no expression

in healthy tissue cells (13). Common target antigens for marketed

ADC drugs, such as CD22, CD33, CD30, and CD79, are highly

expressed on the surface of cancer cells (13). Moreover, the stability

of the antigen is crucial; a stable antigen reduces the likelihood of its

detachment from target cells and subsequent binding to antibodies,

thus avoiding the ineffective clearance of ADCs in the

circulation (17).

An optimal ADC requires sufficient antigen expression on the

surface of cancer cells (ideally greater than 10^5 per cell), with

actual levels typically ranging from 5, 000 to 10^6 per cell (18). The

payload of the drug is equally critical to its therapeutic efficacy.

When selecting antibodies, high affinity and low immunogenicity

are key considerations (19).

In targeted drug development, optimizing absorption efficiency

and circulation time is essential for improving therapeutic efficacy.

Enhancing internalization efficiency through antibody structure

optimization or drug payload refinement is a key focus. However,

excessively high antigen-antibody affinity may limit ADC

penetration into deep tumor tissues due to the Binding Site

Barrier (BSB) effect. To address this challenge, strategies such as

adjusting antibody dose, reducing affinity, or using smaller

antibodies (e.g., single-domain antibodies or scFv) can enhance

ADC penetration (13, 20).

Emerging technologies, including chimeric antibody techniques,

provide innovative solutions to these challenges by improving antibody

properties such as stability and reduced immunogenicity. For instance,

DS-8201a, an ADC targeting HER2, employs a tetrapeptide linker

design that effectively masks the hydrophobicity of the drug molecule

(21). This conjugation technology allows for the delivery of a high

payload of hydrophobic drugs without compromising the

pharmacokinetic properties of the antibody (21, 22). Additionally,

site-specific conjugation can be achieved by incorporating specific

peptide tags into the antibody structure, which are recognized and

modified by enzymes such as transglutaminase, formylglycine-

generating enzyme (FGE), or sortase (23, 24). This approach ensures

efficient drug attachment to predefined sites on the antibody,

preserving both its functional integrity and pharmacokinetic profile.
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Furthermore, chimeric antibody technology enables the design of

smaller antibody constructs, such as single-domain antibodies or

scFv, which can more effectively permeate tumor tissues, thereby

improving drug delivery efficiency (25). Collectively, these

advancements underscore the critical role of antibody engineering

and conjugation technologies in enhancing therapeutic outcomes and

advancing the field of precision medicine.
2.2 Payload in ADCs

Cytotoxic agents are the core payload in ADCs, commonly referred

to as the “payload” (26). These payloads are transformed into potent

cytotoxic drugs upon hydrolysis (26). In the development of anticancer

ADCs, the payloads are primarily categorized into three classes: DNA-

damaging agents, microtubule inhibitors, and topoisomerase inhibitors

(27) (Table 4). When selecting these payloads, considerations beyond

cytotoxicity include a comprehensive assessment of conjugation

properties, solubility, and stability (20). The molecular structure of

the drug should facilitate conjugation with linkers. Moreover, as ADCs

are typically administered intravenously, the solubility and long-term

stability in blood are particularly crucial, directly impacting the

bioavailability and therapeutic efficacy of the drug (28).

Specifically, the solubility of the payload ensures that the ADC

remains in solution during administration and circulation, preventing

aggregation or precipitation that could lead to reduced bioavailability.

The stability of the ADC in blood is also vital, as it prevents premature

release of the payload, which could cause off-target effects and reduce

the therapeutic index. Additionally, the bioavailability of ADCs

administered intravenously is generally high, as this route bypasses

the potential barriers of oral administration, such as first-pass

metabolism and variable absorption (29). However, factors such as

the drug-to-antibody ratio (DAR), linker chemistry, and the molecular

weight of the ADC can influence its pharmacokinetics and,

consequently, its bioavailability (30). For instance, a high DAR may

lead to increased hydrophobicity and potential aggregation, which

could affect the stability and clearance of the ADC in the bloodstream

(29, 30). Therefore, optimizing these factors is essential tomaximize the

therapeutic potential of ADCs.
TABLE 4 Representative small molecular cytotoxic payloads.

Category Structure Mechanism of Action

Microtubule inhibitors

MMAE Inhibits microtubule polymerization, blocks mitosis

MMAF Inhibits microtubule polymerization

DM1 Inhibits microtubule assembly (maytansinoid derivative)

DM4 Inhibits microtubule assembly (maytansinoid derivative)

DNA damaging agents

Calicheamicin Induces DNA double strand breaks via radical generation

PBD DNA minor groove crosslinking (pyrrolobenzodiazepine dimer)

Duocarmycin DNA alkylation

Topoisomerase inhibitors
SN-38 Topoisomerase I inhibitor

DXd Topoisomerase I inhibitor
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The DAR is a key quality attribute of ADCs, representing the

average number of small molecule drugs conjugated per antibody

(31). The DAR value significantly influences the pharmacokinetics,

efficacy, and toxicity profile of ADCs (32). Lower DAR values (eg., 2

to 4) contribute to more stable drug distribution and prolonged

therapeutic effects, while higher DAR values may lead to excessive

drug accumulation in healthy tissues, triggering stronger toxic

reactions (33). The ideal DAR must balance the anticancer

potency of the ADC with its safety.

Due to the lysosomal barrier and the complexity of the tumor

microenvironment, the number of cytotoxic payloads that can

effectively reach their target sites is limited. However, payloads

with low IC50 values are often considered ideal candidates for

efficient ADCs. For DNA-damaging agents, IC50 values typically

range in the picomolar range, while microtubule inhibitors tend to

exhibit potency in the nanomolar range (34). For example, the IC50

values of Duocarmycin and Pyrrolobenzodiazepines are reported to

be 1-10 pM and 0.1-1 pM, respectively, demonstrating potent

tumor cell-killing effects (35). In addition, Calicheamicins and

Exatecans, two well-established DNA-damaging agents, have IC50

values in the range of 0.1-1 nM and 1-10 nM, respectively, and show

significant therapeutic potential (35). However, despite the

impressive preclinical efficacy of these highly potent agents, their

clinical development must proceed with caution, as some picomolar

agents have been discontinued during clinical trials due to severe

adverse effects (4).

The development of ADCs is contingent upon the selection of

highly potent payloads, precise control of DAR, and the application

of site-specific conjugation technologies. These critical factors

collectively dictate the therapeutic efficacy and safety profiles of

ADCs. With ongoing technological advancements, the field of

ADCs is poised to unveil a new generation of highly effective,

low-toxicity drugs, offering renewed hope for cancer therapeutics.
2.3 Linkers in ADCs

Linkers play an indispensable role in ADCs, covalently binding

cytotoxic payloads to mAbs to ensure drug stability in the

bloodstream and effective release upon reaching tumor cells (36).

The design of linkers must balance stability with drug release

efficiency to maximize therapeutic efficacy and minimize

side effects.

Linkers can be categorized into two main classes: cleavable

(degradable) and non-cleavable (stable) (37). Cleavable linkers

exploit the unique environmental conditions of tumor cells, such

as low pH, proteolytic activity, or a reductive environment, to

trigger drug release (38). These linkers are stable under normal

physiological conditions but undergo cleavage in the acidic or

reductive environment specific to tumor cells, thereby releasing

the cytotoxic drug (39). Common examples of cleavable linkers

include acid-sensitive, protease-sensitive, and glutathione-sensitive

linkers. For instance, hydrazone bonds, disulfide bonds, and peptide

linkers are typical cleavable linkers (40). While these linkers
Frontiers in Immunology 05
effectively release drugs, they may possess certain instabilities,

leading to premature drug release before reaching tumor cells and

increasing the risk of off-target toxicity (37). The bystander effect, a

phenomenon where the cytotoxic payload released from ADCs can

affect neighboring tumor cells, even those that do not express the

target antigen, thereby enhancing the overall therapeutic efficacy, is

particularly relevant here (41). This effect is more effectively

harnessed when the linker design ensures optimal drug release

within the tumor microenvironment.

Non-cleavable linkers (stable linkers) are resistant to hydrolysis

in the bloodstream and typically require degradation within the

lysosomes of cells, thus having a longer half-life in the bloodstream

and reducing the risk of off-target toxicity (41). Common stable

linkers include thioether.

To overcome these limitations, scientists have developed

various innovative approaches. For example, the use of fully

alkylated interchain disulfide bond technology can enhance the

stability of ADCs and reduce unnecessary drug release (42).

Additionally, the THIOMAB80 technology introduces specific

amino acid residues into antibodies through engineering methods

to optimize linker conjugation and stability (43, 45). Non-natural

reactive amino acid conjugation techniques and engineered

enzyme-mediated conjugation are also employed to achieve

precise conjugation, thereby enhancing the targeting and efficacy

of ADCs (28).

In the development of ADCs, selecting the appropriate linker

remains a critical challenge. The ideal linker should remain stable in

the bloodstream while rapidly and effectively releasing the payload

within tumor cells (18). As ADC technology continues to advance,

the design and optimization of linkers will continue to drive the

development of new ADC drugs, thereby improving therapeutic

outcomes and reducing adverse effects.
3 Mechanism of action of ADCs

ADCs represent a transformative therapeutic modality in

oncology, integrating the precision of mAbs, the controlled release of

cytotoxic payloads, and the potency of chemotherapeutic agents to

achieve selective tumor eradication. The mAb component,

characterized by its nanomolar binding affinity for tumor-specific

antigens, facilitates prolonged systemic circulation and targeted

tumor accumulation while minimizing off-target effects on healthy

tissues (28, 37, 46). Upon binding to tumor-specific antigens, the ADC-

antigen complex is internalized via clathrin or caveolin-mediated

endocytosis, forming early endosomes. These endosomes

subsequently acidify and mature into lysosomes, where the acidic

environment and proteolytic enzymes trigger payload release (47–49).

The released cytotoxic payload exerts its antitumor effects through

two primary mechanisms. Microtubule disrupting agents, such as

auristatins, bind to b-tubulin, destabilizing microtubule dynamics

and arresting mitosis, ultimately leading to mitotic catastrophe.

Conversely, DNA damaging-agents, such as calicheamicin, induce

double strand breaks or DNA crosslinking, activating p53-dependent
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apoptosis through the intrinsic mitochondrial pathway (28). A

distinctive feature of ADCs is the bystander effect, wherein

hydrophobic payloads diffuse into adjacent antigen - negative tumor

cells, thereby overcoming spatial heterogeneity in antigen expression

and enhancing therapeutic efficacy (50, 51) (Figure 1).

The coordinated mechanism of action encompassing antigen

recognition, lysosomal processing, and cross-cell cytotoxicity results

in robust tumor eradication with reduced systemic exposure. This

integration of biological targeting and chemical precision positions

ADCs as a pivotal advancement in precision oncology, offering a

paradigm shift in the treatment of heterogeneous tumors while

maintaining a favorable therapeutic index (52).
4 Challenges facing ADCs

ADCs have emerged as a transformative modality in oncology

therapeutics. However, their clinical translation necessitates

resolution of multifaceted challenges across pharmacokinetics,

structural design, and translational processes.
4.1 Pharmacokinetic complexity

The dynamic pharmacokinetic (PK) behavior of ADCs presents

significant clinical hurdles. In vivo transformations generate

heterogeneous species including intact ADCs, naked antibodies,

and free cytotoxic payloads, with temporal variations in their
Frontiers in Immunology 06
relative proportions. This complexity impedes the establishment

of reliable dose-response relationships and complicates PK

modeling, ultimately affecting both therapeutic predictability and

drug development efficiency (53).
4.2 Payload release control and toxicity

Premature payload dissociation remains a critical safety

bottleneck. Covalent linkage instability, particularly in conventional

lysine/cysteine conjugation systems, leads to systemic release of

cytotoxic agents. Such off-target release correlates strongly with

dose-limiting hematotoxicity and organ damage (54). Recent

studies reveal that approximately 40% of ADC-related adverse

events originate from suboptimal linker stability (55), underscoring

the urgent need for spatiotemporally controlled release mechanisms.
4.3 Resistance mechanisms

ADC resistance develops through three primary pathways: (1)

antigen-mediated mechanisms including target downregulation and

epitope masking; (2) intracellular processing defects such as impaired

lysosomal acidification; and (3) payload-specific adaptations like drug

efflux pump activation. While combinatorial regimens and next-

generation payloads show preclinical promise, their clinical validation

rates remain below 30% in phase II trials (53, 56), highlighting

fundamental gaps in resistance biology understanding.
FIGURE 1

Illustrates the mechanism of action of ADCs.
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4.4 Target antigen heterogeneity

Temporal-spatial heterogeneity in tumor antigen expression

creates dual therapeutic challenges. First, inter-patient variability (e.g.,

2-5 log differences in HER2 expression across breast cancer subtypes)

requires population-level stratification. Second, intra-tumor clonal

evolution demands real-time adaptation of targeting strategies. To

address this multidimensional heterogeneity, emerging approaches

combine two critical parameters: quantitative antigen density

thresholds (>5, 000 receptors/cell to ensure effective internalization),

and bystander-effect optimization. This dual strategy enhances

therapeutic efficacy through complementary mechanisms - while

antigen thresholds guarantee sufficient drug uptake in high-

expression cells, the bystander effect extends cytotoxicity to

neighboring cancer cells with lower antigen expression (56).
4.5 Structural optimization challenges

Two critical parameters govern ADC efficacy-toxicity balance:

The DAR and conjugation homogeneity. While DAR values

exceeding 4 enhance payload delivery, they concurrently increase

plasma clearance rates by 60-80% through accelerated macrophage

uptake (53). Parallel improvements in site-specific conjugation

technologies (e.g., engineered cysteine residues achieving >95%

homogeneity) and stable linker chemistries (e.g., sulfatase-

cleavable systems) are essential for next-generation constructs (55).
4.6 Manufacturing and clinical translation
barriers

The intricate tripartite structure of ADCs imposes stringent

Chemistry, Manufacturing, and Controls (CMC) requirements. Key

production challenges include maintaining conjugation efficiency

within ±5% batch variability and ensuring payload stability during

lyophilization processes. These technical hurdles contribute to

development costs exceeding $500 million per approved ADC,

with 67% of clinical-stage candidates failing due to inadequate

therapeutic indices (53, 54, 57). CMC directly addresses

therapeutic index challenges by optimizing critical quality

attributes including DAR uniformity, minimizing premature

payload release (reducing off-target toxicity), and maintaining

antibody specificity (preserving target engagement) (53). Through

rigorous process controls in conjugation chemistry, formulation

stabilization strategies, and advanced analytics for characterization,

CMC ensures product consistency that enhances the safety efficacy

balance required for clinical success (57).
4.7 Target homogenization and market
viability

Current ADC development exhibits concerning target

redundancy, with 43% of clinical candidates targeting HER2 or
Frontiers in Immunology 07
TROP2 (12). This concentration creates therapeutic duplication

(e.g., 8 anti-HER2 ADCs in phase III trials) while neglecting

emerging targets like CLDN6 and PTK7. Such market saturation

risks diminishing commercial returns and stifling innovation in

target discovery.

Innovative engineering strategies are reshaping ADC

development trajectories. Bispecific platforms (e.g., HER2xCD3

dual-targeting ADCs) demonstrate 3.2-fold improved tumor

selectivity in primate models (5), while conditionally activated

prodrug linkers reduce systemic toxicity by 89%. Concurrent

advances in companion diagnostics, particularly circulating tumor

DNA-based antigen monitoring, may enable real-time therapeutic

adaptation, positioning ADCs as precision oncology cornerstones.
5 Future directions in ADCs

5.1 Improving ADC domains

5.1.1 Antibody
The selection of antibodies is crucial for the development and

efficacy of ADCs. Humanized and fully human mAbs have become

the most commonly used types in ADC development due to their

excellent properties, such as low immunogenicity, long half-life, and

potent immune response capabilities (58, 59). However, the success of

ADCs also depends on the careful selection of antigens that are highly

expressed in tumor cells and minimally expressed in normal tissues.

Many successful ADC targets, such as HER2 and TROP2, are also

expressed in certain normal tissues, which can lead to target-

dependent and off-target toxicity reactions, potentially resulting in

the suspension or premature termination of clinical trials (60). To

mitigate these challenges, strategic antibody engineering approaches

such as truncation (removal of non-essential antibody domains) and

clipping (controlled proteolytic processing of specific regions) are

increasingly employed to refine target specificity. For instance, Fc

domain truncation eliminates Fc-mediated interactions with immune

cells in normal tissues, thereby reducing nonspecific uptake and

cytokine release syndrome risks. Conversely, Fab region clipping can

optimize antigen-binding fragment geometry for enhanced epitope

discrimination between tumor-associated antigens and their

physiological counterparts (61). These structural modifications

work synergistically with glycosylation engineering and other post

translational optimizations to create “tumor-selective” antibody

architectures that minimize off target binding while maintaining

payload delivery precision to malignant cells (16).

To further enhance the therapeutic efficacy of antibodies,

researchers have been modifying the Fc region of antibodies to

augment their cytotoxic activity (19). These modifications can be

categorized into two main approaches: structural engineering of the

Fc region and glycan remodeling. Structural engineering includes site-

directed mutagenesis and asymmetrical engineering (62). Site-directed

mutagenesis, such as the S239D/I332E mutations in the Fc region, has

been shown to significantly improve binding to FcgR IIIa, leading to

enhanced ADCC (63). These mutations have been incorporated into

anti-CD19/CD40 antibodies, demonstrating improved treatment
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efficacy in preclinical and clinical studies. Asymmetrical engineering of

the Fc region to create heterodimers of different heavy chains has also

been shown to yield more stable antibodies with improved ADCC

functionality, and this approach has been used in the development of

bispecific antibodies for cancer therapy (64–66).

Glycan remodeling involves techniques such as afucosylation

and oxidation-based glycan remodeling. Afucosylation, which

removes fucose from the Fc region, has been demonstrated to

significantly enhance binding to FcgR IIIa, leading to higher levels

of ADCC both in vitro and in vivo (63). The POTELLIGENT®

technology, licensed by Kyowa Hakko Kirin Co., uses FUT8

knockout CHO cells to generate afucosylated antibodies (67).

Examples of afucosylated antibodies include mogamulizumab

(anti-CCR4 antibody), which has shown superior efficacy in

clinical trials and is now approved for the treatment of certain

blood cancers (68). Oxidation-based glycan remodeling, such as

periodate oxidation, can generate aldehyde groups on the Fc region,

enabling site-specific conjugation of cytotoxic payloads (69). This

technique has been used in the development of ADCs to enhance

their therapeutic potential.

These modifications not only enhance the cytotoxic activity of

antibodies but also improve their therapeutic potential in

cancer treatment.

5.1.2 Payload
In recent years, the introduction of novel payloads such as

immunomodulators and targeted protein degraders has opened

new directions for the development of ADCs.

Immunomodulators, including certain immune checkpoint

inhibitors (such as PD-1 and CTLA-4 inhibitors), have been

incorporated into ADCs designs to enhance immune responses

within the tumor microenvironment (70, 71). For instance, the

immunosuppressive agent Voclosporin (Lupkynis) has received

FDA approval for the treatment of systemic lupus erythematosus.

Voclosporin modulates immune responses by inhibiting calcineurin

to reduce T-cell activation (72, 73).

Targeted protein degraders, including molecular glue and

proteolysis-targeting chimeras (PROTACs), are a class of drugs

that induce the degradation of target proteins by recruiting the E3

ubiquitin ligase system (74). For example, the molecular glue BI-

3802, targeting BCL6, has shown potential in treating B-cell related

cancers by inducing BCL6 degradation (71). Furthermore,

CelMoDs, a class of IKZF1/3 degraders developed by Bristol-

Myers Squibb (such as CC-92480, CC-220, and CC-99282), have

entered clinical studies for the treatment of relapsed or refractory

multiple myeloma (RRMM) (75).

In the research and application of ADCs, the hydrophobicity of

the toxin is a critical factor affecting its efficacy and side effects and

is closely related to the “bystander effect” (46). Hydrophobic toxin

molecules, such as MMAE, can diffuse passively into neighboring

tumor cells, producing a bystander effect that enhances the broad

cytotoxic effect of ADCs on antigen-expression heterogeneous

tumors (76). However, when toxin molecules are overly
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hydrophobic, they may aggregate in vivo, be phagocytosed, or

undergo nonspecific binding, increasing off-target toxicity (76).

To mitigate the side effects of highly hydrophobic toxins,

researchers have proposed a strategy of introducing hydrophobicity-

masking groups on toxin molecules, such as polyethylene glycol (PEG)

or polyglutamic acid (77). These masking groups increase the

solubility of ADCs and reduce nonspecific interactions with normal

tissues, thereby alleviating side effects caused by highly hydrophobic

toxins, such as aggregate formation, rapid clearance, and potential

immunogenicity (78). This strategy allows ADCs to maintain favorable

pharmacokinetic properties and lower off-target toxicity even at high

DAR, thereby further enhancing therapeutic efficacy (79, 80).

5.1.3 Linkers
The design and construction of linkers are vital for enhancing

the efficacy and safety of ADCs. Traditional random conjugation

methods often result in product heterogeneity, which can impact

the consistency of pharmacokinetics and efficacy, and may lead to

drug aggregation, off target toxicity, and structural instability (50,

51, 53). To address these challenges, site-specific conjugation

has emerged as a revolutionary approach in bioconjugation

chemistry (44). This method enhances therapeutic consistency

and optimizes structure-function relationships by precisely

targeting reactive sites on biomolecules such as antibodies and

proteins (44, 57, 81).

Techniques employed for site specific conjugation include the

use of engineered cysteine residues, unnatural amino acids,

enzymatic methods, or affinity guided peptides (44). These

techniques achieve positional control, minimizing product

heterogeneity and preserving critical epitope-binding regions. For

instance, site specific ADCs using engineered cysteines have

demonstrated superior pharmacokinetic profiles and reduced

aggregation propensity compared to lysine-conjugated counterparts

(53). Similarly, the incorporation of non-natural amino acids enables

bioorthogonal click chemistry conjugation, which has been validated

in tumor-targeting nanocarriers (82).

Recent innovations in enzymatic conjugation have further

enhanced specificity through sequence recognition motifs. For

example, microbial transglutaminase (mTG) mediated conjugation

enables site-specific drug attachment at glutamine residues without

antibody sequence modification, achieving DAR homogeneity and

reduced aggregation (DAR 2-4 with <10% variability) (83). This

approach, combined with Diels Alder chemistry, forms carbon-

carbon bonds between linkers and antibodies, significantly

improving in vivo stability compared to traditional maleimide-

thiol conjugations (84). Moreover, dual conjugation strategies (e.g.,

attaching both cytotoxic drugs and immune modulators to a single

antibody) are emerging as a frontier, leveraging orthogonal

conjugation sites (e.g., engineered cysteines and glycan-modified

residues) to broaden therapeutic applications (85, 86). This level of

precision is crucial for next generation ADCs and bispecific

antibodies, where payload stoichiometry directly impacts the

therapeutic index and off-target toxicity (5).
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In-depth exploration and optimization of linker design and

construction strategies are crucial for improving drug efficacy and

minimizing toxicity. Research teams have developed novel linker

technologies, such as dendrimeric dimeric linker technology, to

create ADCs with high DAR (87). This technology reduces non-

specific interactions between the antibody and the toxin, enhances

drug stability, and improves drug delivery efficiency, ensuring more

precise delivery of the toxin to the tumor target (88, 89).

Additionally, researchers have developed lysosomal enzyme-

degradable linkers, such as ValCit-PABC and AlaAlaAsn-PABC-

MMAE (90). These linkers are designed to release the toxin

specifically within the lysosomes of tumor cells, thereby reducing

drug toxicity. However, challenges such as premature cleavage in

mouse plasma due to Ces1C enzyme degradation have been

addressed by introducing acidic amino acids at specific positions

to enhance linker stability (90).

In summary, precise linker design strategies, including selecting

appropriate linker types, optimizing stability and adaptability, and

improving in vivo stability, are driving ADCs research toward

enhanced efficacy, reduced toxicity, and increased specificity (40).

As the diversity of tumor types, targets, and drug types continues to

expand, customized linker design strategies are becoming

increasingly important for optimizing ADCs efficacy and safety

(40). Research is also focusing on linker stability within the tumor

microenvironment, particularly in acidic conditions, offering new

hope and potential solutions for cancer therapy (12).
5.2 Novel ADCs

5.2.1 Biepitopic and bispecific ADCs
To overcome resistance to single-target ADCs, researchers are

investigating novel approaches. Biepitopic antibodies, which attach

to two separate epitopes on the same antigen, have emerged as an

effective strategy to surpass the limitations of single-target ADCs

(91). This improved stability profile and tumor targeting efficiency

directly translate to enhanced therapeutic efficacy. Mechanistically,

the preserved structural integrity of site specific conjugates
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minimizes premature payload release in circulation, thereby

maintaining cytotoxic concentrations at tumor sites to prevent

subtherapeutic exposure that drives resistance (92). Emerging

clinical evidence further demonstrates that ADCs with DAR

homogenization achieved through site-specific conjugation exhibit

significantly reduced multidrug resistance protein 1 (MDR1)-

mediated drug efflux compared to their heterogeneous

counterparts (93).

Biepitopic ADCs offer a new method in cancer treatment by

allowing a single antibody to engage two different epitopes on an

antigen present on cancer cells. This configuration boosts binding

affinity, especially in cancer cells with low HER2 levels, and

increases drug delivery efficiency (94) (Table 5). For example,

biepitopic ADCs targeting two distinct HER2 epitopes can form

receptor-antibody complexes on the cell surface, facilitating

endocytosis and lysosomal trafficking while decreasing antigen

expression (47, 95–97).

To assess the performance of biepitopic ADCs, scientists have

created novel tetravalent bispecific antibodies (BsAbs) targeting

cMet/EGFR and cMet/HER2 (98). These BsAbs link antibodies that

induce rapid internalization and degradation of Met with single-

chain variable fragments targeting EGFR or HER2 (99, 100).

Furthermore, combining HER2 with other targets like B7-H3 and

B7-H4 holds promise for broader therapeutic applications (101).

For instance, a HER2×CD63 bispecific ADCs demonstrated

increased cytotoxicity in HER2-positive tumors, highlighting the

potential for more precise targeting.

Addressing the resistance challenges of single-target ADCs,

scientists have turned to bispecific antibodies as a primary

strategy. Their ability to target two antigens not only improves

therapeutic outcomes but also diminishes the risk of resistance.

SI-B001, a bispecific antibody against EGFR and HER3, has

been linked with a novel AC linker and the topoisomerase I

inhibitor ED04 to form the BsADC BL-B01D1, which has a DAR

of approximately 8. This conjugate improves targeting precision

and safety (102). BL-B01D1 specifically targets EGFR-dependent

tumors and mitigates HER3-related resistance through dual-target

crosslinking and internalization (103). Phase I trials, particularly in
TABLE 5 Bispecific ADCs at AACR 2024.

Target pair Asset lD Company Format Cytotoxin Additional tech Stage

EGFR×B7H3 IBI3001 Innovent 1+1 Topo Fc silentSynaffi×SS Preclinical

Nectin4×TROP2 VBC103 VelaVigo 2+1 Topo / Preclinical

EGFR×MET PRO1286 Profound 1+1 Topo / Preclinical

HER2×TROP2 BI0-201 BiOneCure 2+2 (Fab/ScFv) Topo / Discovery

EGFR× HER3 BCG019 Biocytogen 1+1 Topo Common LC Discovery

HER3×MUC1 DM002 Biocytogen 1+1 Topo Common LC Preclinical

EGFR×HER3 PM1300 Biotheus 1+1 Topo / Discovery

HER3×MET BCG022 Biocytogen 1+1 Topo / Discovery

(Continued)
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patients with EGFR-mutated non-small cell lung cancer (NSCLC),

reported a 63.2% objective response rate (ORR), demonstrating its

effectiveness against multidrug resistance (104).

Currently, BsADC development focuses on targets like HER2,

cMet, and EGFR, with increasing interest in other targets such as

B7-H3 and B7-H4. Additionally, the bispecific approach shows

potential for targeting antigens with low expression or poor

internalization (105). Advances in non-IgG-like bispecific

antibodies are addressing half-life challenges, thereby enhancing

cancer therapy precision (106). Moreover, the creation of trispecific

and multifunctional antibodies offers promising strategies to

overcome receptor redundancy and tumor heterogeneity, paving

the way for personalized treatments (18).

5.2.2 Probody-drug conjugate
Traditional ADCs targeting receptors are often expressed not only

on cancer cells but also on certain non-malignant tissues, which is

commonly associated with inescapable targeted non-tumoral toxicity,

leading to dose reduction or treatment interruption (5). To address this

issue, a new class of ADC designs featuring conditionally active

antibodies, commonly referred to as Probodies, has been developed (5).

This concept is inspired by small molecule prodrugs, where the

toxin is delivered to the body in an inactive form and is converted to

its active form in the circulatory system or specific organs, thereby

improving drug stability and specificity (107).

Probodies are engineered by fusing a self-masking moiety to the

N-terminus of an IgG molecule through a cleavable spacer or are

designed to exhibit reduced binding affinity under pH-dependent

conditions (5, 107). Upon reaching the tumor microenvironment,

the masking moiety of Probodies is either removed or undergoes a

conformational change due to the presence of proteases and acidic

conditions, thereby restoring the antibody’s affinity and triggering

the release of the cytotoxic payload (107).

Probody technology encompasses a class of recombinant antibody-

based therapeutics that are activated through proteolytic cleavage.

These constructs consist of three principal components: a

monoclonal antibody with anticancer activity or a fragment of its

variable region, a masking peptide attached to the N-terminus of the
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light chain that obscures the antibody’s Fab region from antigen

binding, and a peptide linker (spacer) susceptible to enzymatic

cleavage, which connects the peptide to the antibody (107, 108)

(Figure 2). Probody therapeutics can be produced using conventional

recombinant antibody manufacturing techniques. The mechanism of

action of Probody relies on the differential protease activity between

normal and tumor tissues, thereby confining the drug’s activity

predominantly to the tumor microenvironment and minimizing

activity in normal tissues (109). In normal tissues, the Probody

maintains its intact structure, and due to the presence of the

masking peptide, the antibody is unable to bind antigens, resulting in

an extended half-life (110). Upon reaching the tumor

microenvironment, proteases cleave the linker, releasing the masking

peptide and exposing the antibody’s Fab region for antigen binding

(109) (Figure 2).

A significant advantage of Probody technology is its theoretical

applicability to a broad range of antibody-based drugs (111). This

technology has been successfully applied to various antibody types

for therapeutic purposes, including immunomodulatory factors and

immune checkpoint inhibitors (e.g., anti-PD-L1), ADCs (anti-

CD71, anti-CD166, anti-EGFR), and T-cell bispecific antibodies

(anti-EGFR-CD3) (112, 113).

Early research identified a peptide sequence (LSGRSDNH)

susceptible to cleavage by multiple proteases, which exhibits low

activity in non-malignant tissues but is upregulated in the

microenvironment of various human cancers (114). Preclinical

animal studies demonstrated a roughly tenfold increase in

therapeutic index upon the introduction of a masking group.

Building on this innovation, researchers have developed several

pioneering Probody-drug conjugates, currently in the preclinical

phase, including CX-2051, praluzatamab ravtansine (formerly CX-

2009), NCT03149549, NCT04596150, and CX-2029 (108, 112,

113, 115).

Furthermore, the tumor microenvironment (TME) typically

exhibits acidity (pH 6.0-6.8), in contrast to the neutral pH of

normal tissues (7.3-7.4), providing a basis for the conditional

activation of ADCs (5). Consequently, the introduction of weakly

basic histidine into the antibody-binding region has become a
TABLE 5 Continued

Target pair Asset lD Company Format Cytotoxin Additional tech Stage

PTK7×TROP2 BCG033 Biocytogen 2+2 Topo Common LC Discovery

Axl×PD-L1 CPBT0976 Celon 2+2(VHH) MMAE / Discovery

5T4×MUC1 BCG016 Biocytogen 1+1 MMAE Common LC Discovery

EGFR×PTK7 BCG017 Biocytogen 1+1 MMAE Common LC Discovery

FRa×MUC1 BCG023 Biocytogen 1+1 MMAE Common LC Discovery

EGFR×TROP2 DXC024 Hangzhou 1+1 (hybrid) Tubulysin / Discovery

EGFR×MUC1 DXC025 Hangzhou 1+1(hybrid) Tubulysin ConjuAll SS Discovery

CD20×CD22 LCB36 LigaChem 1+1 Masked PBD ConjuAll SS Preclinical

EGFR×MET VBC101 VelaVigo 2(bip) +1 MMAE or Topo Common LC Discovery
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common strategy to achieve pH-dependent activation. A variety of

pH-dependent ADCs have been developed, targeting EGFR, HER2,

AXL175, and ROR2, among others (116, 117).

For instance, the EGFR-targeting Probody-drug conjugate HTI-

1511, based on the microtubule inhibitory agent MMAE, has shown

promising preclinical data (118). This conjugate exhibits over ten

times greater binding affinity to EGFR at pH 6.0-6.5 compared to

pH 7.4 and maintains binding capability comparable to cetuximab

in EGFR-expressing A431 xenografts (118). Moreover, in

cetuximab-resistant PDX models and mouse models harboring

KRAS or BRAF mutations, HTI-1511 significantly inhibited and

even reversed tumor growth. In cynomolgus monkey studies, HTI-

1511 demonstrated good tolerability at doses up to 8 mg/kg,

suggesting favorable clinical safety (118).

However, since 2018, the clinical development of HTI-1511

appears to have stalled, possibly due to potential competition in the

EGFR ADC field, technical challenges in scaling up production, and

shifts in corporate strategic focus (5).

As an example of a novel Probody-drug conjugate responsive to

the TME, researchers have developed a pH-dependent Probody-

drug conjugate based on a mechanism known as protein-associated

chemical switch (PAC). The complementarity-determining regions

of these Probody-drug conjugates are designed to interact with

abundant ions, including sodium chloride, bicarbonate, and
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hydrogen sulfide (119). At a pH of approximately 7.4, the

negatively charged forms of these molecules exist at sufficient

concentrations to inhibit antigen binding through interactions

with positively charged complementarity-determining regions

(119). However, in the more acidic TME, the concentration of

these ions decreases, enabling ion concentration-dependent

activation of target binding.

5.2.3 Immune receptor agonists
Over the past decade, cancer immunotherapy has made

significant strides, sparking renewed interest in this field (5).

Damage-associated molecular patterns (DAMPs) released by

tumor cells can trigger innate immune activation. In this context,

immune adjuvant molecules, by interacting with pattern

recognition receptors (PRRs), have become a focal point in cancer

drug development (5). The combination of ADCs with PRR

agonists is regarded as a promising strategy for locally activating

the innate immune system.

Compared to traditional ADCs, immunostimulatory ADCs

possess several potential advantages. Firstly, they can target a

variety of tumor-associated DAMPs, thereby promoting antitumor

immune responses (120). Secondly, immunostimulatory ADCs not

only activate antigen-presenting cells (APCs) but may also stimulate

other tumor-infiltrating immune cells, such as T cells. Additionally,
FIGURE 2

The structure and mechanism of Probody-drug conjugate. (A) The structure of Probody-drug conjugate. (B) the mechanism of action of Probody-
drug conjugate.
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they can elicit immune memory effects, providing durable antitumor

action and reducing the risk of recurrence (120).

The design concept of immunostimulatory ADCs is to deliver

immune agonists, such as Toll-like receptor 7/8 (TLR7/8) agonists

or stimulator of interferon genes (STING) agonists, to the tumor

microenvironment via antibodies, thus avoiding the toxicity issues

that may arise from systemic administration of traditional immune

agonists (121) (Figure 3).

In immunostimulatory ADCs, TLR7/8 and STING agonists

enhance innate immune responses, thereby promoting adaptive

immune responses (122). TLR7 and TLR8, as conserved innate

immune molecules, play a significant role in the tumor

microenvironment (121). They activate NF-kB through MyD88-

dependent signaling pathways and promote the secretion of various

cytokines and chemokines, such as interleukin-6 (IL-6), tumor

necrosis factor-a (TNF-a), interleukin-12 (IL-12), and CXC motif

ligands 9 and 10 (CXCL9, CXCL10), which enhance the infiltration

and activation of antitumor lymphocytes (123). Concurrently,

STING agonists initiate type I interferon signaling pathways,

further enhancing T cell adaptive immune responses and

bolstering the immune system’s ability to recognize and attack

tumors (124).

Immunostimulatory ADCs typically combine TLR7/8 and

STING agonists to synergistically enhance immune effects (125).

For instance, nanovaccines based on these two agonists have been

shown to elicit a broader cytokine response, such as interferon-g
(IFN-g), IL-2, and interleukin-12, which further strengthens the

anticancer effect (126, 127). This combinatorial strategy not only
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reshapes the tumor microenvironment but also improves the

response rate to cancer therapy, helping to address some of the

challenges faced by traditional ADC drugs.

Immunostimulatory ADCs can convert “cold tumors” into “hot

tumors” that are sensitive to immunotherapy by activating the

innate immune system to enhance adaptive immune responses,

thereby improving antitumor effects (128). The latest preclinical

studies have shown that immunostimulatory ADCs can effectively

promote immune cell infiltration in various tumor models and

increase the tumor’s response to immune checkpoint inhibitors

(129). However, these drugs also face challenges, such as the

potential for severe side effects due to systemic nonspecific

immune responses (129). Therefore, optimizing the design of

immunostimulatory ADCs and the selection of linkers has

become one of the important directions in current research.

Additionally, the combination of immunostimulatory ADCs

with other immunotherapies is actively being explored. For

example, the combination of immunostimulatory ADCs with

immune checkpoint inhibitors (ICIs) may further enhance

antitumor activity, especially in solid tumors. Recent research has

focused on identifying new checkpoint targets, such as TIGIT, TIM-

3, and LAG-3, to overcome resistance mechanisms faced by current

therapies (130). Researchers hope to improve treatment outcomes

by developing mAbs targeting these new targets, providing new

treatment options for cancer patients.

The combination of ICIs with chemotherapy, targeted therapy,

and anti-angiogenic drugs has shown significant efficacy in various

solid tumors (131). For instance, in clinical trials, the combination
FIGURE 3

The mechanism of stimulator of interferon genes.
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of PD-1 inhibitors with anti-angiogenic agents, radiotherapy, or

chemotherapy has improved treatment outcomes (131). This

combination therapy not only increases overall survival and

objective response rates but also demonstrates potential

synergistic effects in certain tumor types.

Although immunostimulatory ADCs are still in the early

stages of development and have not yet received FDA approval,

they have made positive progress in preclinical studies, with

several companies are advancing related drugs into clinical trials

(132, 133). With a deeper understanding of the mechanisms of

immunostimulatory ADCs and advancements in technology, these

drugs are expected to play a significant role in cancer treatment.

5.2.4 Degradative-antibody conjugates
Degradative-Antibody conjugates (DACs) represent an

emerging drug delivery strategy that combines the advantages of

ADCs and protein degraders, aiming to target and degrade specific

disease-associated proteins (134) (Figure 4). DACs hold significant

potential for application in cancer therapy.

The fundamental principle of DACs involves mAbs that first

recognize and bind to tumor-associated antigens, subsequently

delivering degradative agent molecules into the target cells (135).

Intracellularly, the linker is cleaved under specific conditions to release

the degradative agent molecules, such as proteolysis-targeting
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chimeras (PROTACs) or molecular glues (135) (Figure 4). These

degradative agents induce ubiquitination of the target proteins via E3

ubiquitin ligases, leading to proteasomal degradation. Unlike

traditional ADCs, DACs utilize protein degraders as payloads

instead of cytotoxic drugs (74). Consequently, DACs can more

precisely target specific proteins, reducing toxic effects on normal

cells. Moreover, protein degraders typically have a lower bioavailability

requirement, allowingDACs to deliver these molecules in vivowithout

relying on high bioavailability (136).

In recent years, researchers have developed various targeted

intracellular protein degraders, including Proteolysis Targeting

Chimeras (PROTACs), Proteolysis Targeting Antibodies (PROTABs),

and Lysosome Targeting Chimeras (LYTACs) (137, 138). These

technologies provide novel strategies for the degradation of cell

surface and membrane proteins, expanding the therapeutic potential

beyond traditional small molecule inhibitors and mAbs. While DACs

primarily focus on delivering cytotoxic payloads to cancer cells, these

protein degradation technologies complement DACs by offering

alternative mechanisms to eliminate target proteins, particularly those

that are undruggable or resistant to conventional therapies (135). For

instance, PROTACs and PROTABs leverage the ubiquitin proteasome

system to degrade intracellular proteins, while LYTACs exploit the

endolysosomal pathway to degrade extracellular and membrane

proteins (137, 138). This complementary approach broadens the
FIGURE 4

The structure and mechanism of Degradative-Antibody conjugate. (A) The structure of Degradative-Antibody conjugate. (B) the mechanism of
action of Degradative-Antibody conjugate. (C) The structure of Proteolysis Targeting Chimeras.
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scope of therapeutic strategies for cancer treatment, addressing targets

that may not be effectively targeted by DACs alone.

In summary, antibody-directed protein degraders represent a

groundbreaking technology with the potential to offer unique

therapeutic options for cancer patients. However, most of these

drugs are still in the early preclinical development stages and

require further medicinal chemistry research and preclinical

evaluation to ensure their safety and efficacy (139).
5.2.5 Dual-payload ADCs
Most solid tumors are composed of heterogeneous cancer cell

subpopulations, each with distinct gene expression profiles and

varying sensitivities to drugs with different mechanisms of action

(140). Consequently, combination therapies involving multiple

drugs with diverse modes of action are frequently utilized in

clinical practice. Dual-Payload ADCs hold the potential to act as

single agents, capable of eliciting additive or synergistic effects, and

overcoming drug resistance in patients with treatment-refractory

tumors while offering a straightforward dosing regimen (140, 141).

In 2017, a method for producing Dual-payload ADCs using

branched chemical linkers containing two orthogonally masked

cysteine residues was reported (141). This innovative approach

enabled the homogeneous coupling of both MMAE and

monomethyl auristatin F (MMAF) to anti-CD30 antibodies at a

DAR of 16 (142, 143). The Dual-Payload ADCs demonstrated

potent activity in a mouse xenograft model of mesenchymal large

cell lymphoma (ALCL) expressing CD30+MDRn (141). This dual

payload strategy has the potential to act as a single agent, triggering

additive or synergistic effects, and overcoming drug resistance in

patients with treatment-refractory tumors while maintaining a

straightforward dosing regimen.

Dual-Payload ADCs have been further explored for their clinical

potential as they combine two different payload classes, moving beyond

ADCs loaded with cytotoxic agents such as MMAE and MMAF. For

instance, the combination of asterlin with TLR agonists conjugated to

anti-FolRa antibodies has demonstrated synergistic anti-tumor activity

and immune memory in mouse models (141, 144).

However, not all studies testing Dual-Payload ADCs have

demonstrated meaningful synergistic effects, particularly those

involving different payload classes (145–147). For example,

investigators developed an anti-HER2 ADCs equipped with

MMAE plus SG3457, an ultrapotent PBD dimer capable of

damaging DNA via crosslinking (145). Likewise, a HER2-targeted

ADCs equipped with MMAF and the highly potent topoisomerase

II inhibitor PNU-15968 was developed (146). Despite both of these

ADCs being capable of exerting dual mechanisms of action, neither

agent demonstrated an improvement in vitro potency when

compared with their corresponding single-drug ADCs.

These findings highlight the importance of selecting payloads

with appropriate mechanisms of action, ensuring balanced potency

between the two payloads selected and optimizing DARs to achieve

optimal therapeutic outcomes. Efforts to fully understand and

maximize the potential of Dual-Payload ADCs are still in the

early stages of exploration.
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ADCs have emerged as a transformative therapeutic modality in

oncology, combining the precision of mAbs with the potency of

payload to deliver targeted therapy. Over the past decade,

significant advancements in ADCs design, conjugation

technologies, and payload selection have driven their clinical

success and commercialization (38, 148).

The structural optimization of ADCs, including advancements

in antibody engineering, linker chemistry, and payload design, has

been pivotal in enhancing their therapeutic index. Site-specific

conjugation technologies have improved homogeneity and

stability, while innovative payloads, such as immunomodulators

and protein degraders, have expanded the therapeutic potential of

ADCs. Novel ADCs designs, including bispecific ADCs,

immunostimulatory ADCs, DACs, and Dual-Payload ADCs, are

addressing challenges such as tumor heterogeneity, drug resistance,

and off-target toxicity (5). These next-generation ADCs hold

promise for overcoming limitations of traditional therapies and

improving outcomes in refractory cancers.

Despite these advancements, ADCs continue to face significant

challenges in clinical translation. Issues such as complex

pharmacokinetics, payload release control, and the emergence of

resistance mechanisms necessitate further innovation (149). The

development of spatially and temporally controlled release mechanisms,

improved linker stability, and strategies to mitigate antigen heterogeneity

are critical areas of research. Additionally, the high manufacturing costs

and technical hurdles associated with ADCs production require

optimization to ensure broader accessibility and affordability.

Looking ahead, the integration of ADCs with emerging therapeutic

modalities, such as immune checkpoint inhibitors and targeted protein

degraders, is expected to enhance their efficacy and overcome resistance.

The continued evolution of ADCs technologies, coupled with advances

in companion diagnostics and precision medicine, positions ADCs as a

cornerstone of next-generation cancer therapy. As the field progresses,

ADCs are poised to play an increasingly important role in the treatment

of heterogeneous and refractory cancers, offering new hope for patients

with limited therapeutic options.
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