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Monoclonal antibody therapy using CD38 as a target remains central to managing

human multiple myeloma (MM). CD38 was selected early on as a target for mAb-

mediated therapy for MM, driven by findings from an early Cluster of Differentiation

(CD) Workshop. The first CD38-targeting antibody to be approved yielded strong

trial results, significantly improving survival rates and earning widespread patient

acceptance. However, resistance to the therapy later emerged, complicating

treatment management. Despite CD38’s still central role in MM therapy, too little

attention has been paid to its broader roles–not only as amyelomamarker but also

as an enzyme and adhesion molecule in physiology. This review, a collaborative

effort between basic scientists and clinical experts, explores some of the lesser-

knownmechanisms of antibody action and interactions with CD38 at key stages of

treatment. The review also highlights the relevance of the MM environment,

focusing on the importance of the bone marrow (BM) niche. The goal is to

identify new agents whose unique properties may enhance tumor eradication.

By gaining a deeper understanding of interactions between therapeutic antibodies,

myeloma cells, and the tumor microenvironment (TME), it is hoped that previously

unrecognized vulnerabilities within the disease may be revealed, paving the way to

more effective treatment strategies.
KEYWORDS
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1 Introduction

In vivo therapy based on monoclonal antibodies (mAbs)

represents the natural extension of their widespread use in vitro.

The unique specificity of mAbs is complemented by their

adaptability to industrial production, which forms the basis for an

optimal biopharmaceutical.

The selection of CD38 as a target molecule was a key step in the

design of a mAb-mediated therapy for human multiple myeloma

(MM). This choice was primarily influenced by the main

characteristics of CD38, which were initially identified at an early

Cluster of Differentiation (CD) Workshop as a T-cell activation

antigen. Subsequent research confirmed its high expression in MM

cells. Additionally, the molecule is particularly well conserved within

the Caucasoid population, exhibiting limited genetic polymorphisms.

CD38 is expressed by the majority of MM patients and is

generally maintained during the in vivo development of the disease

(1). Mainly in virtue of these characteristics, CD38 has been adopted

by pharmaceutical companies as an ideal target for antibody-

mediated in vivo therapy of MM, a diagnosis that is becoming

increasingly common worldwide. Since the inception of the project,

attention has predominantly focused on CD38 as a marker, while its

roles as an enzyme and an adhesion molecule have received more

limited consideration (vide infra). The first therapeutic mAb,

Daratumumab–a fully human immunoglobulin (IgG)–delivered

strong trial results and was rapidly approved by the American FDA

for in vivo use, with Janssen as the drug provider. The results obtained

confirmed the effectiveness of CD38 as a target, showing a marked

improvement in survival rates (2). The enthusiasm derived from the

success of clinical applications was matched by its warm acceptance

by patients, as side effects were relatively mild. However, early cases of

resistance to the antibody therapy began to emerge, posing problems

for treatment management.

This review aims to describe some of the lesser-known

mechanisms of action of the antibodies and their interactions

with CD38 at key stages of treatment. Furthermore, we will re-

examine the enzymatic functions of CD38 in the context of the

immune response. Additionally, we will address aspects initially not

considered in detail, such as the role of different families of IgG Fc

receptors (FcRs), which may influence interactions among mAbs,

the environment, and MM cells.

Further structural analysis of the therapeutic antibodies will also be

conducted to identify potential areas for improving their efficacy.

Currently, the number of approved therapeutic reagents is

significantly growing in the last years with Daratumumab and

Isatuximab (from Sanofi) leading the way. Felzartamab (from I-Mab),

already approved for treating membranous nephropathy, is undergoing

trials for additional diseases. For more details, see reference (3).

The final section will focus on the MM environment, with

particular attention to the bone marrow (BM) niche, aiming to

identify new players and leverage their unique properties to

enhance tumor eradication.

The medical community widely expects that deeper insights

into the interplay between therapeutic antibodies, myeloma cells,

and the tumor microenvironment (TME) will uncover previously
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unrecognized vulnerabilities of the disease, opening new avenues

for treatment.
2 Available evidence

2.1 The CD38 molecule

CD38 is almost ubiquitously expressed, found at varying levels

across most tissues, and present both on the cell surface and within

cytoplasmic compartments. The characterization of CD38 has been

an extensive process, revealing its high expression on the plasma

membranes of both normal cells and malignant myeloma cells.

Although the tissue distribution of CD38 has been widely studied

and described, its functions remain only partially understood.

Initially discovered in connection with the T cell receptor (TCR),

early research was shaped by this association (4). CD38 was first

classified as a signaling molecule, with its cell activation capability

suggesting the existence of a natural ligand, later identified as CD31

(and also hyaluronic acid) (1).

Further analysis of the CD38 sequence revealed a remarkable

homology in amino acid structure with a cytoplasmic adenosine

diphosphate (ADP)-ribosyl cyclase enzyme previously purified

from Aplysia (4), suggesting a potential similar function in

mammals. This hypothesis was confirmed when human CD38

was found to act as an enzyme with NAD+-glycohydrolase

activity, consuming nicotinamide adenine dinucleotide (NAD+)

and producing ADP ribose (ADPR), cyclic ADPR (cADPR) and

nicotinamide (NAM) under neutral conditions, and nicotinic acid

adenine dinucleotide phosphate (NAADP+) at low pH when

consuming phosphorylated NAD+ (NADP+) (4, 5) (vide infra).

2.1.1 Cell surface expression of human CD38
Extracellular CD38 is a type 2 transmembrane molecule,

approximately 46 kDa in size, featuring a short cytoplasmic tail

that grants high mobility within the liquid bilayer, facilitating the

formation of soluble forms of CD38 (6). This flexible anchorage is

complemented by selective localization in specific domains of the

cell membrane, which varies according to lineage (Figure 1). The

properties of membrane-bound CD38 and its interactions with

different surface receptors are summarized in reference (1).

Cell surface expression of CD38 can fluctuate in response to

physiological events, such as cellular activation or pharmacological

interventions. The interaction between therapeutic antibodies and

CD38 on neoplastic cells is inherently dependent on the availability

of molecular targets. Consequently, early strategies to enhance the

efficacy of MM therapies focused on increasing the number of CD38

targets available for antibody binding.

Various approaches and modalities have been employed to

regulate CD38 surface expression on target cells.

2.1.1.1 All-trans retinoic acid (ATRA)

CD38 expression can be modulated both in vitro and in vivo

through the nuclear retinoic acid receptor a (7). ATRA, a vitamin A

derivative approved for in vivo use, has proven effective in enhancing
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CD38 levels in several ex vivo myeloma cell preparations, leading to

improved efficacy of therapeutic antibodies (8). However, its in vivo

efficacy in combination with Daratumumab was called into question

in a clinical trial involving relapsed/refractory (RR) MM patients. In

this trial, CD38 re-expression was too transient to significantly

impact clinical outcomes, at least in the patient cohort studied (9).

2.1.1.2 Histone deacetylases (HDAC)

Another compound investigated for its capacity to regulate CD38

expression is the HDAC inhibitor Panobinostat. Unlike ATRA,

Panobinostat upregulates CD38 expression on myeloma and on

lymphoma cells, while sparing normal cells. When combined with

Daratumumab, Panobinostat boosts antibody-dependent cellular

cytotoxicity (ADCC) in both cell lines and primary MM cells. In

therapy, Panobinostat induces CD38 upregulation, thereby

improving the anti-myeloma effects of Daratumumab (10).

Similarly, Ricolinostat, another HDAC inhibitor, increases CD38

expression on MM cells without affecting normal cells. However,

Ricolinostat does not affect myeloid-derived suppressor cells

(MDSCs), which are depleted by this inhibitor (11).

2.1.1.3 JAK-STAT signaling pathway

The JAK-STAT pathway can influence CD38 regulation through

its signaling activities. The CD38 gene features an atypical promoter

responsive to retinoids, vitamin D, and various cytokines in

circulating cells. In MM, IL-6 activates the JAK-STAT pathway.

JAK-STAT3 signaling down-regulates CD38 expression, whereas
Frontiers in Immunology 03
JAK-STAT1 signaling promotes its upregulation. Although these

effects are less pronounced than those seen with ATRA, STAT3

inhibitors or STAT1 activators are being explored as promising

candidates for combination therapies with Daratumumab (12).

2.1.1.4 Degradation of CD38 mRNA

Research involving microRNA (miR) has demonstrated that

noncoding RNA can influence CD38 expression, with miR-26a and

miR-140-3p being key candidates for investigation. In MM cells,

miR-26a is downregulated. Using mimics or antisense nucleotides

to inhibit miR-26a can elevate CD38 expression in MM cells with

low surface levels of CD38. Conversely, manipulating these miRs

can enhance CD38 expression via cell effectors (13).

2.1.1.5 Immunomodulatory imide Drugs (IMiDs)

IMiDs are key components of standard myeloma therapy,

especially in combination with mAbs. Their effectiveness is largely

attributed to the significant upregulation of surface CD38, achieved

by degrading Ikaros and Aiolos. This leads to increased CD38

mRNA transcription, which in turn favors surface CD38 expression

and, consequently, improved binding and lytic potential of the

antibody (14).

2.1.1.6 Other potential modulators of CD38
surface expression

Surface levels of CD38 rapidly decline following in vivo

treatment with mAbs, displaying prolonged recovery times that
FIGURE 1

CD38 is localized in specific domains of the cell surfaces containing different receptors, also varying according to the lineage. The links between
CD38 and distinct receptors are confirmed, while functional connections are partially hypothesized. Adapted from (1).
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contradict the expected rapid re-synthesis of the molecule or

mobilization from internal stores (1). This behavior may also vary

according to the normal CD38+ effectors.

These effects may be due to the unique localization of CD38

within specific membrane domains of effector cells. Indeed, CD38

has been implicated in the formation of immune synapses in T

lymphocytes. Early experiments, later confirmed through various

technical approaches, identified two distinct pools of CD38: one on

the cell membrane and another within recycling endosomes (15).

This distribution pattern is also observed in monocytes (16), mature

dendritic cells (15, 17), and NK cells, where CD38 co-localizes with

CD16, a key molecule for their activation (18). Comparable effects

are also noted with CD28H (19).

Overall, these observations indicate that CD38 influences

multiple functional events in NK cells, T lymphocytes, monocytes,

and dendritic cells by interacting with various immune

receptor systems.

2.1.1.7 Antibody-induced CD38 modulation

CD38 expression during antibody therapy can be studied by

examining how the antibody binds the target. The very short

cytoplasmic tail of CD38 allows for flexible movement within the

cell membrane. At 37°C, therapeutic antibody binding increases the

molecule’s ability to float within the membrane and - as known

from traditional immunology - the antigen/antibody complex tends

to accumulate at one pole of the cell. This polar aggregation is also

known as “capping” (20). The consequence is that antibody ligation

is followed by the release of microvesicles (MVs) containing

membrane rafts with CD38 and the bound antibody, thereby

reducing surface levels of CD38 (21). This mechanism may

contribute to antibody refractoriness. Polar aggregation is most

pronounced when therapeutic antibodies are presented to the target

as being bound by a FcR present on normal effector cells. In vitro

models using polyclonal anti-human IgG mimic the so-called

“armed mAb” scenario observed in vivo. First, polar aggregation

induced by an armed mAb results in a significant re-distribution of

CD38 on the membrane and a marked reduction in its expression.

Second, molecules accumulating at the pole tend to be extruded

through protrusions in the myeloma membrane and eventually

released into biological fluids as MVs. These MVs carry not only

CD38, but also CD39, CD73 and CD203a ectoenzymes, inhibitory

complement receptors CD55 and CD59, the checkpoint inhibitor

PD-L1, and the myeloma differentiation marker CD138 (21). The

fate of these MVs is determined by specific constraints such as

environmental conditions, molecular composition, or cellular

interactions. Deriving from cell membranes, they are able to cross

vessels and tissues, interacting with monocytes and MDSC (both

rich in high affinity FcRs), T lymphocytes, and NK cells, the latter

expressing CD16 (low affinity FcR), where they are internalized and

release their cargo. These interactions may partially explain the

development of antibody refractoriness and resistance.

In addition to reducing surface CD38, antibody-induced

modulation may involve two other mechanisms: i) signal

transduction that activates intracellular signaling pathways, and

ii) cargo transfer. MVs can carry a variety of molecular components,

among which coding genes (DNA), non-coding RNAs (ncRNAs),
Frontiers in Immunology 04
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(miRNAs)], proteins (including enzymes, structural proteins and

signaling molecules) nucleotides and other metabolites.

NK cells, in particular, show a marked and sustained decrease in

surface CD38 following antibody treatment. Studies with

Isatuximab have demonstrated that the cell population appears to

be initially activated but is then modulated by the action of a gene

set involved in the control of the cell cycle. This was confirmed

through molecular analysis of the content of NK cells (22). As a

result, NK cells tend to have a modified phenotype and lose surface

CD38 while retaining partial cytotoxic activity (23).
2.2 The IgG Fc receptors

Another important aspect to explore in detail is the structure of the

therapeutic antibody itself. As an IgG, the antibody has two main

functional domains. In addition to the domain responsible for binding

the specific epitope [i.e., monovalent Fab or bivalent F(ab’)2], the

second domain (i.e., Fc) interacts with cell surface receptors (i.e., IgG

FcRs) with varying affinities and specificities. The interactions between

the Fc region of the therapeutic IgG and FcRs on surrounding effector

cells are particularly relevant in the MM environment. Most effector

cells express different FcRs, while only the MM cells are FcR-negative.

The signals triggered by the antibody in normal effectors, which

are predominantly CD38+ and FcR+, are one of the most important

findings obtained from in vivo MM therapy. FcR-mediated

functions control a broad array of antibody-driven therapeutic

mechanisms, including complement-dependent cytotoxicity

(CDC), antibody-dependent cell cytotoxicity (ADCC), antibody-

dependent cell phagocytosis (ADCP), and the induction of cell

death by apoptosis. These cytotoxic activities have been extensively

analyzed in references (2, 24, 25)

Paiva et al. analyzed the effects of Isatuximab, the second anti-

CD38 reagent approved by the FDA, on NK cells, which express

CD16, a low affinity FcR (22). By using Fc blockers, they

demonstrated that NK cell activation is significantly influenced by

transmembrane signaling mediated through antibody ligation. The

ability of CD38 to transduce signals aligns with early observations of

the CD38 molecule (1) and supports the hypothesis that a number

of the therapeutic effects, at least in the case of Daratumumab, is

reliant on extracellular signaling channeled by CD38. A recent

version of Isatuximab with an improved Fc domain, for increased

affinity for CD16 and CD32, has recently been tested (26).

Overall, these results suggest that some of the therapeutic

actions of the antibody are mediated by direct signaling through

the CD38 molecule, without the effects driven by FcRs, at least in

the NK cells tested in vitro. The potential influence of the

FCGR3AF158V polymorphism, which affects FcRs binding to the

Fc fragment of antibodies and is more prevalent among patients

with MM and MGUS, remains to be investigated (27).

2.2.1 Neonatal IgG Fc receptor
The Neonatal IgG Fc Receptor (FcRn) was characterized years

ago frommaternal milk. The roles of FcRn are distinct from those of

receptors binding the Fc domains of different classes of
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immunoglobulins. Its primary functions identified so far are related

to the metabolism of circulating IgG, including therapeutic

monoclonal IgG, and albumin. These molecules are internalized

into cytoplasmic compartments and then into endosomes. Similar

internal processing occurs for antibodies, which are eventually

extruded and released into biological fluids at neutral pH. This

step is crucial for regulating the stability of therapeutic antibodies

and directly determining their in vivo half-life (28).

FcRn also differs from other FcRs in terms of structure,

regulation, and tissue distribution. FcRn are heterodimers

composed of heavy and light molecular weight chains (29). The

light chain consists of b2-microglobulin (b2m), a monomorphic

component also shared with HLA Class I molecules. The heavy

chain is encoded by the Fcϒ receptor and transporter (FCGRT)

gene, located on chromosome 19q13.3. Although reminiscent of

HLA-controlled products, suggesting potential yet unidentified

functions, FcRn is not capable of presenting peptides. Its known

ligands include IgG, albumin, and pan-echovirus. Upregulation of

FcRn is primarily associated with stimulation via tumor necrosis

factor (TNF), while other pathways have been identified in non-

human models. Down-regulation is primarily achieved through

JAK/STAT1 signaling mediated by interferon g.
Among immune cells, FcRn is expressed by monocytes,

macrophages, dendritic cells, and neutrophils, and is present at

low levels in B lymphocytes but not detectable on T lymphocytes

and NK cells. FcRn maintains the tissue distribution of IgG by

virtue of its ability to mediate transcytosis, transporting IgG across

polarized endothelial and some epithelial cells (30).

FcRn serves multiple active and passive roles in immunity. Its

passive functions include recycling and transcytosis, which protect

monomeric IgG from degradation and facilitate its transport across

external cell membranes. Its active functions are more varied, linked

to the involvement of IgG in triggering various immune responses.

These physiological characteristics can be leveraged to enhance the

persistence of IgG and albumin in the circulation.

To date, a comprehensive analysis of FcRn’s influence has not

been conducted in the context of the anti-CD38 antibodies approved

for in vivo use, whose Fc regions are not modified. Only Nguyen et al.

have analyzed the in vivo dynamics of Isatuximab (31, 32).
2.3 CD38-controlled cellular activities and
metabolic adaptation during MM

2.3.1 CD38 as an enzyme
CD38 has been studied in MM therapy primarily due to its

function as an ectoenzyme. Initially, the mechanisms of action of this

enzyme were considered paradoxical because CD38 is predominantly

localized on the cell surface, yet its final products are utilized within

cytoplasmic compartments. Only recently has CD38 been described

within the cytoplasm and internal organelles (5).

The amino acid sequence of the CD38 enzyme is highly

conserved throughout evolution, indicating that its enzymatic

function is likely its original role. Functions related to immunity

and cell biology were probably acquired over its long evolutionary
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duplication and the emergence of the CD157 gene. CD157

encodes a molecule that differs significantly in structure and

tissue distribution, retaining only some of the enzymatic

functions attributed to CD38 (33).

The primary substrate of CD38 is NAD+, a key molecule in energy

production and signaling. NAD+ plays a crucial role in a broad network

of metabolic enzymes, such as nicotinamide phosphoribosyltransferase

(NAMPT), nicotinate phosphorybosiltransferase (NAPRT), Sirtuins,

and Sterile a-Toll/interleukin receptor (TIR), as well as the recently

identified TIR motif- containing 1 (SARM1) (3).

CD38 is overexpressed by malignant plasma cells, significantly

affecting i) the enzymatic reactions of CD38 within the BM niche, ii)

the types of CD38-associated ectonucleotidases (e.g., CD203a,

CD73, TRAP) involved in adenosine (ADO) production, and iii)

the environmental metabolic conditions (e.g., pH, oxygen levels)

within the BM niche (33). While the role of CD38’s enzymatic

activity in MM therapy resistance is hypothesized, it has not yet

been confirmed (34).

2.3.2 CD38 and extracellular NAD+ metabolism
Nucleotides have a second life as intercellular communicators

and signal transducers in the BM niche (35).

NAD+ metabolism is governed by cell surface ectoenzymes,

which work together to disassemble extracellular and intracellular

nucleotides extruded from cells via active channeling mechanisms or

by microvesicles (MVs). CD38 is the principal extracellular NAD+-

consuming enzyme. In fact, CD38 knockout mice exhibit significant

increases in both extra- and intracellular NAD+ levels (36, 37).

Because of its ability to use NAD+ as a substrate, CD38 has been

hypothesized to act as a metabolic sensor, limiting the duration of

NAD+ half-life and signaling in the extracellular compartment.

Besides serving as a substrate for CD38, NAD+ may also function as

a cytokine, eliciting rapid functional responses mediated by specific

purinergic type 2 (P2) receptors (34, 38).

The products of NAD+ disassembly mediated by extracellular

CD38, namely ADPR and NAM, may undergo further metabolic

transformations [(e.g., to adenosine monophosphate (AMP) or

adenosine (ADO)], particularly when co-expressed with other

ectonucleotidases in certain pathological environments, such as the

bone marrow (BM) niche (13). This niche is a seemingly closed

system where MM cells are in direct contact with other cellular

components, all expressing a range of surface enzymes. The plasma

assures contact among the different cells, allowing the storage and

exchange of substrates and final reaction products. In addition to

CD38, ectoenzymes present in the niche (whether surface or

soluble molecules) include CD39 (ectonucleoside triphosphate

diphosphohydrolase-1), CD73 (ecto-5′-nucleotidase), and CD203a

(ectonucleotide pyrophosphatase/phosphodiesterase-1). CD39 and

CD73 run the canonical pathway of ADO production starting from

ATP. CD203a, also known as Plasma Cell-1 (PC-1), was the first

surface marker identified on plasma cells and is an enzyme that also

uses ATP as a substrate (39). Recent reports suggest that CD38 can

use phosphorylated NAD+ (NADP+) as a substrate and, in the

presence of CD203a and CD73 under low pH conditions, produce
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ADO as a final product (40). Lowering environmental pH is one of

the strategies employed by MM cells to alter their metabolism and

promote immune evasion. In line with this, the canonical pathway of

ADO production (CD39/CD73) operates at a very low rate in these

conditions (40).

A key question is whether the products of the CD38-dependent

chain of ectoenzymes play a role in physiology and especially in

pathology. The MM niche provides an ideal model to explore this.

ADO levels in BM plasma samples from MM patients were

compared with those from patients with precursor forms of

monoclonal gammopathy of undetermined significance (MGUS)

and smoldering MM (SMM). The catabolism of NAD+, ADPR, and

AMP to ADO was higher in samples from patients with severe MM

than in those with MGUS and SMM (41).

These experiments lead to several key conclusions. First, ADO

is produced in the BM niches where MM cells grow; second, ADO

predominantly derives from the non-canonical pathway mediated

by CD38/CD203a/CD73; third, disease severity is directly

correlated with ADO levels, which are higher in patients with

more severe prognoses. These observations highlight the presence

of metabolic modifications within the MM niche that may facilitate

immune evasion strategies (41).

The high level of ADO detected in the BM niche may contribute

to the overall anergic state observed in MM patients. Relevant to

this review is the link between NAD+ levels and T cell-mediated

responses against tumors, an area that has gained increasing

attention with the recent development of pharmacological

inhibitors targeting CD38’s enzymatic activities (42). Several

small-molecule inhibitors, such as 78C, suppress the enzymatic

activity of CD38, thereby reducing NAD+ consumption (42).

However, these compounds have not yet been used clinically due

to potential off-target effects. In contrast, inhibition of CD38

exoenzymatic activity using the Ab68 mAb reduced the

production of ADPR (43). These findings regarding ADO

production warrant further research.

Recent research by Cea et al. showed that upregulation of

surface CD38 leads to intracellular NAD+ depletion, which

induces mitochondrial alterations and increases oxidative stress

(44). Conversely, the availability of different NAD+ precursors

appears to improve NAD+ levels, acting as adjuvants to boost T

lymphocyte responses (44).

CD38 primarily functions as a NAD+-glycohydrolase (42). Its

main product, ADPR, can either be metabolized by the CD203a/

CD73 exoenzymatic tandem into ADO (40), which binds to

purinergic type 1 (P1) receptors (particularly A2A and A2B), or

facilitate Ca2+ influx through TRPM2 channels (45). These

processes modulate lymphocyte proliferation and T cell activation

(42, 46).

2.3.3 CD38 as an immune checkpoint in therapy
Based on this understanding, it is speculated that CD38 serves

as an immune checkpoint regulating NAD+ and ADO homeostasis.

Consequently, metabolic reprogramming of NAD+ regulation via
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CD38 inhibition has garnered attention as a potential strategy for

immunotherapy. This hypothesis was validated in a preclinical

melanoma model, where blocking CD38 expression in T

lymphocytes boosted NAD+ levels, improving the effectiveness of

adoptively transferred T cells (47). Targeting the ADO pathway

may also increase the antitumor effects of drugs through various

mechanisms, such as by boosting effector T and NK cell functions

and inhibiting the immunosuppressive effects of myeloid-derived

suppressor cells (MDSC) (48). Additionally, due to its participation

in the CD38/CD203a/CD73 adenosinergic pathway, CD38 has been

identified as an effective predictor of anti-PD-1 antibody-based

checkpoint immunotherapy responses (49).

Beside reported pharmacological inhibitors (42), several new

strategies aim to inhibit CD38 and increase NAD+ pool

concentrations. These approaches include antibody-drug conjugates

(ADCs), antibody recruiting molecules (ARMs), engineered toxin

bodies (ETBs), bispecific T-cell engagers (BiTEs), and XmAb Fc

domain technology. Preclinical studies and clinical trials evaluating

CD38 inhibition are ongoing in patients with either solid tumors or

hematological malignancies, including MM (3).
2.4 CD38 enzyme activity and therapeutic
antibodies: potential influence
on refractoriness

A crucial question is whether the binding of therapeutic CD38

antibodies interferes with the enzyme’s functional activity. The

differing actions of Daratumumab and Isatuximab in vivo are

summarized in recent reviews (50, 51), and their effects further

analyzed in Horenstein A.L. et al. (2024, submitted).

The primary distinction between these antibodies lies in the

epitopes of CD38 they target. Isatuximab interacts with a

discontinuous epitope partially overlapping the catalytic site,

whereas Daratumumab binds to two continuous amino acid

sequences situated outside the enzymatic active site of CD38 (52,

53). These differences may reflect the methods by which the two

antibodies were selected. Isatuximab was originally developed for its

ability to operate via CDC, while Daratumumab was selected to

enhance ADCC activity. Additionally, Isatuximab was chosen for its

capacity to inhibit the ADP-ribosyl cyclase activity of CD38 (i.e., in

vitro formation of cADPR from NAD+) through an allosteric

antagonism (49–51). Further comparative analysis has shown that

Daratumumab reduces in vitro cADPR production catalyzed by

CD38’s ADP-ribosyl cyclase activity, while Isatuximab exhibits a

stronger inhibitory effect, reducing cyclase activity by approximately

70% (54, 55).

These findings indicate a partial allosteric inhibition of CD38’s

enzymatic activity, disrupting the catalytic site of extracellular

CD38 responsible for in vitro formation of cADPR. However, the

validity of these experimental conditions is limited by two factors,

namely: i) CD38 produces multiple enzymatic products (56), and ii)

antibody binding does not fully represent the enzymatic machinery.
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Notably, the inhibition of CD38’s extracellular cyclase activity

accounts for only 2% of the molecule’s total enzymatic activity

when targeted by therapeutic antibodies (4).

An alternative view suggests that the in vitro conditions used in

these studies might not adequately represent in vivo dynamics.

Nevertheless, the overarching conclusion is that while

Daratumumab moderately affects CD38’s in vitro cyclase activity,

Isatuximab exerts a stronger effect. Interestingly, both antibodies

mildly activate CD38’s hydrolase activity (i.e., the formation of

ADPR from cADPR as a substrate) (57, 58). Importantly, it remains

unclear whether the in vitro reduction of cADPR levels produced by

extracellular CD38 in the presence of therapeutic mAbs leads to

reduced intracellular Ca2+ mobilization and decreased signaling

potential. On the other hand, potentially increased ADPR levels

could contribute to immune suppression through ADO. Further

investigations are essential to understand these complex

interactions, especially regarding in vivo NAD+ homeostasis and

tumor survival in closed systems. Other potential strategies to

address therapeutic resistance are summarized in (59).

2.4.1 Other potential methods for overcoming
anti CD38 mAbs resistance: the role of CD47

CD47, an integrin-associated receptor, is widely expressed on

the surface of many cell types, including red blood cells and cancer

cells (60). Within the immunoglobulin family, it functions as a

“don’t eat me” signal. Its ligands include thrombospondin-1 (TSP-

1), signal-regulatory protein a (SIRPa), and integrins (61). When

CD47 binds to SIRPa on dendritic cells and macrophages, it

activates an immunoreceptor tyrosine-based inhibitory motif that

suppresses phagocytosis (61). Blocking this signaling axis enhances

the elimination of tumor cells by macrophages and neutrophils (62).

CD47 is highly expressed in solid tumors and hematologic

malignancies, and this overexpression correlates with poor

prognosis in various cancers (60, 63). In the context of MM

cancer cells upregulate CD47 to evade immune surveillance,

exploiting this pathway to enhance their survival.

CD47 expression increases as the disease progresses from

MGUS to MM (64). Numerous studies have shown promising

preclinical results for anti-CD47 therapies in treating hematologic

malignancies. These therapies are effective either as standalone

treatments or in combination with clinically approved drugs,

including those for MM (63, 65–67). Anti-CD47 therapy alone

has shown efficacy against MM (64, 68), and its therapeutic impact

is improved when combined with CD38-targeting agents. Storti

et al. reported that treatment with daratumumab increases MM cell

death, especially in the presence of a subset of CD14+/CD16+

monocytes, and that combining daratumumab with anti-CD47

enhances the elimination of MM cells that are resistant to

daratumumab alone (66).

Bispecific antibodies (BsAbs) are also emerging as promising

tools in cancer therapy. These antibodies exhibit higher affinity and

binding activity for CD38 than for CD47, reducing potential on-

target and off-tumor effects. A study by Li et al. explored various

CD38/CD47 BsAbs, each with unique in vitro properties:

IMM5605–26B4 displayed the most potent inhibitory effect on

CD38 enzymatic activity, while IMM5605–12C10 was effective in
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directly killing MM cells and completely eradicating established

tumors in mouse models (69). ISB 1442, a human bispecific

antibody was recently reported. The antibody has one arm

equipped with biparatopic sequences reacting with distinct

epitopes of the CD38 molecule. The second arm is designed to

react at high affinity with CD47. The basic strategy is to obtain a

reagent focusing its activity prevalently around the cells expressing

CD38, which enables avidity-induced blocking of CD47 on the

same cells, in this way avoiding unwanted off-tumor effects. The

reagent was also equipped with a modified domain with enhanced

FcR functions. ISB 1442 showed enhanced tumor killing in vitro

compared to daratumumab on myeloma cells with varying CD38

expression levels. IBS 1442 is currently in a Phase I clinical trial for

relapsed refractory multiple myeloma (NCT05427812) (70).
2.5 Next generation anti-CD38 antibodies

Advances in antibody therapy may also derive from the

development of new anti-CD38 reagents that retain specificity but

feature significant modifications in their structure and functions.

Some modifications concern the antibody’s ability to react with the

family of FcRs, to avoid mechanical trapping in tissues or the

implementation of FcR-mediated signals interfering with the

therapeutic process.

Of the numerous anti-CD38 reagents currently undergoing

evaluation, summarized below are representative examples of

antibodies now being designed for therapy.
1. Pre-clinical evaluation of the monoclonal antibody CM313.

This conventional antibody was developed by selecting a

precise CD38 sequence and identifying unique

complementary-determining regions, which provided

much higher sensitivity and improved performance

compared to traditional reagents. The original murine

antibody was humanized, and CM313 has been shown to

inhibit some of the enzymatic activities of CD38.

Toxicology studies in Cynomolgus monkeys and murine

models indicate that CM313 is well tolerated (71).

2. The Danish company GenMab introduced specific

mutations in the Fc domain of a human anti-CD38

antibody, leading to (or improving) hexamer formation

upon binding to cell surface CD38. The strategy adopted is

reported in a recent paper (72). This approach increased

CDC function in MM cells (even in cells expressing low

levels of surface CD38) and was also effective against other

hematological malignancies. The hexabody did not

compete in vitro with Daratumumab or Isatuximab, but

strongly inhibited the cyclase activity of the target.

Furthermore, the hexabody induced FcR-mediated signals

in NK cells and macrophages, while other effectors involved

in the immune response were apparently unaffected.

Clinical trials evaluating the safety and efficacy of the

reagent in vivo are ongoing (NCT04824794) (73).

3. Bispecific antibodies feature two distinct Fabs which can

lead to the generation of effects similar to those evoked by
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CAR-T cells (which are beyond the scope of this review). Of

the two arms, one is designed to provide tumor specificity,

while the other has the role of triggering the signaling

potential. This last step elicits an anti-tumor response by T

lymphocytes or by NK cells. The use of bispecific reagents

has found wide clinical applications because of its

simplicity and–equally important–lower costs (74).

4. A further strategy was to increase the function of the T

lymphocytes, by activating two distinct activation pathways.

Sanofi (Europe and USA) designed SAR442257, a trispecific

antibody where CD38 confers target specificity and CD3 and

CD28 provide dual activation signals to optimize T

lymphocyte effector functions and to ensure sustained

proliferation. An original characteristic of this reagent is

the choice of CD28-mediated signals to help prevent cell

death, which is often observed after T-cell activation. The

trispecific reagent was evaluated for its ability to induce

activation and proliferation of T lymphocytes. Cytokine

release syndrome (CRS) was avoided by using an IgG4

isotype, which does not activate complement fixation (67).

CD28 is not only expressed by T lymphocyte but also by

myeloma cells (75). Preclinical tests have shown that 86% of

RRMM patients express CD28, compared to newly diagnosed

MMpatients. The conclusion is that the trispecific SAR442257

operates via dual targeting of CD38 and CD28 on myeloma

cells and of CD3 and CD28 on T lymphocytes, showing

superior MM killing compared to bispecific antibodies. The

study also highlighted the role of TNF-b in favoring resistance

to the antibody. The TGF-b inhibitor Vactoserib enhances

sensitivity of the target cells to the antibody (76).

The same antibody was analyzed ex vivo using

Myeloma Drug Sensitivity Testing to identify suitable

MM patients for this therapy. To this end, tests were

conducted by challenging the patients’ endogenous T

lymphocytes with primary MM cells. This novel approach

enabled the identification of patients who responded to

SAR442257. The association among T-cell phenotype,

performance, disease state and sensitivity to this antibody

is currently under investigation (77). The trispecific

antibody was also recently tested on acute myeloid

leukemia cell lines and patients (78).

5. An alternative strategy was to flank CD3 engager with co-

targeting CD38 and BCMA. The ISB 2001 antibody is a

recombinant trispecific complex: one arm contains a

sequence reacting with CD38, while the second arm

contains specificities for CD3 and BCMA. The results

obtained by an international group are apparently

superior to other trispecific antibodies, as shown in vivo

in mouse models. The group has also devised a quantitative

systems pharmacology model, which exploits clinical

patient data to obtain a personalized posology (79).

6. Another strategy to improve overall binding efficiency

involves biparatopic antibodies. These recombinant reagents

use two heavy chains that react with distinct epitopes of the

same molecule. The California-based company Teneobio

targeted CD38 with the aim of developing an antibody
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capable of fully inhibiting the enzymatic activities of the

molecule–not yet achieved with the anti-CD38 reagents

currently used in in vivo therapy. The platform used for

constructing these antibodies included two Fabs that react

with two distinct sequences of the CD38 domain hosting the

catalytic site. Additionally, the antibody was improved with a

silenced IgG4 Fc, which does not deplete or interfere with the

normal effectors (80). The TNB-T38 antibody is now in trials.

The reagent has been instrumental in demonstrating a

relationship between the products generated by the CD38

enzyme and multi-organ fibrosis (43).

7. Another original approach was adopted by Candelaria

et al., who switched the class of Ig, using IgE instead of

the conventional IgG. The potentially beneficial features of

IgE include its affinity for the FceR, expressed by the

immune effectors responsible for ADCC and ADCP, and

the low levels of normal IgE in the blood, which avoids

competition with the therapeutic IgE. In vitro results are

promising, showing induction of degranulation in FceR-
expressing cells. Increased survival was observed in mice

when disseminated tumor cells were exposed to the IgE

antibody and PBMC as a source of monocyte effectors (81).
2.6 Areas to be investigated to expand
research in the field of CD38

2.6.1 Fate of unbound therapeutic antibody
One proposal is the selection of therapeutic antibodies that show

negligible reactivity with red blood cells (RBC) and platelets, which are

reported to express CD38 at a cell surface density too low to trigger

lysis. Despite their reduced ability to capture the therapeutic antibodies,

the high number of these cells suggests that they could act as carriers of

anti-CD38 antibodies in biological fluids. Thus, RBC and likely

platelets in biological fluids may sequester a portion of the antibody

pool away from their therapeutic targets (82).

2.6.2 Tumor microenvironment
S. Paget’s “seed and soil theory” from 1889 predicted the role of

TME in tumor growth. This concept has been supported by

numerous studies across various types of cancer (83). The core

concept is that normal components of the tissue (or of the niche

where the tumor grows) may provide, either occasionally or as part

of a precise neoplastic strategy, a set of soluble factors that

contribute to, or even determine, the growth of the tumor itself

or facilitate immune evasion.

The TME consists of multiple elements: in addition to epithelial,

stromal, and immune cells, recent interest has been focused on

cancer-associated fibroblasts (CAF) and adipocytes.

2.6.2.1 Cancer-associated fibroblasts (CAFs)

Traditionally considered as tumor-supporting, recent reports

suggest they also play a role in inhibiting tumor development. This

dual role may be attributable to the heterogeneity and plasticity of

cancer-associated fibroblastsCAFs), largely dependent on their origin.
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Newly proposed classifications may help translate their functional

characteristics into therapeutic strategies (84, 85). This therapeutic

potential has been confirmed in lung (85) and breast cancers (86).

The connection betweenMM and CAFs is increasingly recognized, as

outlined in the following recent publications (87–91):

2.6.2.2 Adipocytes

Recently acknowledged as potential contributors to myeloma

dynamics and immune cell functions, adipocytes are abundant in the

BM and increase with age–a relevant factor given MM’s prevalence in

older individuals. Unlike traditional classifications of brown, beige, and

white fat, BM adipocytes exhibit distinct characteristics and functions

(92, 93). Single-nucleus RNA sequencing (snRNA-seq) has identified a

subpopulation of BM adipocytes involved in thermogenesis (94).

Notably, forward-feedback loops between adipocytes and malignant
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plasma cells in the BM niche can modulate MM cell proliferation and

supportMMgrowth. Some of these interactions involve the upregulation

of CD38, mediated by adipocyte-secreted angiotensin II (Ang II), which

has been identified as the direct cause of increased expression of acetyl-

CoA synthetase (ACSS2) in MM plasma cells, promoting growth by

stabilizing the oncoprotein IRF4 in vitro and in vivo (95).

CD38 can also influence sirtuin activities, affecting histone

acetylation and gene expression. This suggests a potential link

between ACSS2 and CD38 in regulating gene expression through

epigenetic mechanisms.

Moreover, extracellular CD38 is involved in the conversion of

NAD+ to adenosine (ADO), leading to NAD+ depletion (40). ADO

plays a role in regulating intercellular crosstalk as well as

thermogenic and metabolic functions, such as adipocyte

differentiation and lipid synthesis, in adipose tissues (96).
FIGURE 2

(A) Mechanistic Role of Adipocyte-Derived ACSS2 in MM Proliferation. Adipocyte-derived ACSS2 generates acetyl-CoA, fueling the TCA cycle and
driving fatty acid (FFA) synthesis (e.g., palmitate). This promotes MM proliferation through multiple mechanisms: (1) stabilizing the oncogenic protein
IRF4 via sirtuin-mediated histone acetylation, and (2) supporting lipogenesis, which induces metabolic changes favoring MM cell survival.
Adiponectin inhibits MM growth but is downregulated by malignant plasma cells via TNFa signaling. Conversely, leptin and IL-6 stimulate
proliferation through the AKT and JAK/STAT3 pathways. IL-6 also induces a SASP phenotype in BM adipocytes, leading to upregulation of CD38
expression in MM plasma cells. Additionally, lipolysis in BM adipocytes releases FFA, which MM plasma cells uptake to further enhance their
proliferation. Elevated Ang II levels from BM adipocytes activate CD38 overexpression, promoting ADPR-to-ADO conversion (detailed in panel B),
and contributing to immunosuppression and IRF4-mediated MM growth. (B) CD36-CD38 Crosstalk in Lipid and NAD+ Metabolism. ACSS2-derived
palmitate induces ER stress and lipotoxicity by activating NF-kB, producing ROS, and activating the NLRP3 inflammasome. The uptake of palmitate
via CD36 influences substrate availability for NAD+ synthesis, affecting CD38 activity and disrupting metabolic homeostasis. CD36 and CD38
expression are regulated by PPARg, which forms a heterodimer with RXRa to control genes involved in FFA uptake, adipocyte differentiation, and
inflammation. PPARg activation upregulates CD38, increasing NAADP production (via type III-CD38) and intracellular Ca2+ levels to support MM cell
survival. CD38-overexpressing MM cells deplete NAD+, impairing sirtuin activity and disrupting histone acetylation and gene expression. This
interaction emphasizes the interplay between lipid metabolism and epigenetic regulation in MM proliferation. ACSS2, acetyl-CoA synthetase 2; ADO,
adenosine; Ang II, angiotensin II; AT1, angiotensin II receptor type 1; EL, endolysosomes; ER, endoplasmic reticulum; FFA, free fatty acids; GLUT1/4,
glucose transporter 1/4; PPARg, proliferator-activated receptor-g; RXRa, retinoic X receptor-a; ROS, reactive oxygen species; SASP; senescence-
associated secretory phenotype; TCA cycle, tricarboxylic acid cycle; TNFa, tumor necrosis factor alpha.
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Recent evidence highlights the active and complex roles of BM

adipocytes, suggesting that they are not merely passive energy stores

but actively regulate multiple functions that can influence

hematopoiesis, for instance, either positively or negatively (97).

Additionally, multiple reports confirm that adipocytes secrete a

range of paracrine factors relevant to MM dynamics, notably stem

cell factor, adiponectin, leptin, and IL-2b. MM plasma cells have

also been shown to modulate inflammatory cytokine production,

which can influence adipocyte function and lipolysis. For a

comprehensive review, see reference (98).

Further, adipocytes are also studied in relation to myeloma

progression. An analysis of an MGUS sample revealed a significant

upregulation of adipogenic commitment. Moreover, adipocytes are

reported to modulate responses to treatment. Specifically, Ochiai M

et al. (99) demonstrated that adipocytes mediate drug resistance inMM

plasma cells, contributing to recurrence and/or disease progression (99).

The literature indicates that MM may stimulate lipolysis in

adipocytes through the activation of specific pathways. The resulting

free fatty acids (FFA) are then taken up by MM cells via fatty acid

transporter proteins, which support their proliferation within the BM
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niche (100–102). Figure 2 provides a schematic illustration of the

homeostatic feedback circuits between adipocytes and MM cells.

The link between obesity and MM remains largely correlative.

However, research in this area is rapidly expanding, including

studies that investigate the role of senescence. Beyond scientific

interest, these findings have translational relevance, as modulating

adipocyte function or addressing eating behaviors could serve as

potential targets for adjunctive therapies in MM (95, 101). A recent

review by C. Marques-Mourlet et al. provides a comprehensive

overview of the mechanistic contributions to MM, summarized in a

clear model [see Figure 2, reference (103)]. Although these

observations are primarily based on murine studies (104), they

suggest a promising path toward rapid confirmation and potential

translation into clinical settings.
3 Conclusions

CD38 antibody therapy has marked a significant advancement

in managing myeloma, providing a valuable proof-of-concept for
FIGURE 3

Interaction between anti-CD38 antibodies and myeloma (FcR-negative) and effector cells (CD38-and FcR-positive). (ITAM, immunoreceptor
tyrosine-based activation motif; ITIM, immunoreceptor tyrosine-based inhibitory motif). Adapted from (109).
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exploring in vivo questions derived from basic science. The positive

clinical outcomes were accompanied by unforeseen effects that had

not been predicted by conventional in vitro immunology. These

complexities are further underscored by a recent report by Soriani

et al., which suggests that CD38 can act as a decoy for extracellular

cGAMP, a mediator of innate immunity. The relevance of these

observations is currently being validated in in vivo models (105).

One critical challenge in clinical settings has been the

emergence of antibody refractoriness in MM patients. This

resistance was initially thought to be secondary to a significant

decrease in surface CD38 following antibody exposure. Here, basic

science has provided insights into the molecular regulation of

CD38, as well as a link between CD38 expression, retinoids, and

other emerging drug combinations.

A deeper understanding of how the antibody delivers its lethal hits

or channels signals is also key. Antibody action on cell targets is

mediated by FcRs, which then activate CDC, ADCC, ADCP, and direct

signaling. This system, however, is more complex than initially

thought. For instance, complement activation is regulated by

inhibitory receptors, adding another layer of complexity to the process.

The benefits observed in antibody therapy derive from the multiple

effects induced by IMiDs, including a synergistic enhancement of

surface CD38 expression and the simultaneous inhibition of

complement inhibitory receptors. Additional inhibitory actions are

exerted by IMiDs on suppressor regulatory cells, and their influence

may also vary according to the antibody used (50, 51).

However, observations from in vivo studies complicate the picture

even further. For example, patients refractory to IMiDs in earlier lines

of therapy regained sensitivity to lenalidomide or pomalidomide

following in vivo treatment with Daratumumab (106). This evidence

suggests a multifaceted scenario, where the antibody not only targets

and eliminates tumor cells through specific mechanisms but also

simultaneously activates various pathways in killer cells while

inhibiting and depleting suppressor cells.

Further evidence supporting CD38’s role as a signaling

molecule comes from studies targeting CD38 with soluble

agonists, derived from traditional Chinese medicine, as was the

case for the family of retinoids. These promising results are still

awaiting confirmation in human in vivo models (107).

A unifying hypothesis may come from the notion that the effects

driven by an antibody result from a combination of target binding via

the Fab domains and simultaneous interaction of the Fc domain with

specific receptors. The mechanisms underlying this heterotypic cross-

talk are not yet fully understood, nor are the various effects observed in

normal and pathologic conditions (e.g., inflammation, autoimmunity

and–relevant to this review–responsiveness to antibody therapy) (108).

When applying these observations to the MM model, which

lacks FcR, the lytic effects must be mediated by cells expressing FcR.

The action of the therapeutic antibody on effectors, which often

display both the CD38 target and FcRs, is harder to dissect. At high

in vivo concentrations, the therapeutic antibody may shift the

balance toward these effector cells. As a result, the effectors are

influenced by signals from the ligation of the target molecule by the
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Fab-binding site of the antibody and the simultaneous engagement

of the Fc domain of the IgG by the different FcRs.

The balance between activating and inhibitory receptors

ultimately determines the therapeutic outcome. While the reaction

of the therapeutic antibody seems relatively straightforward on the

myeloma side (as MM cells are FcR-negative), more complex

interactions occur with effector cells (FcR+), where the antibody

can engage both the Fab-binding site and one of the FcRs on the

same cell (Figure 3) (110).

In conclusion, understanding these complex interactions is key

to advancing myeloma therapy and for achieving significant

improvements in patient outcomes. Although a definitive cure has

yet to be found, the treatment landscape has dramatically changed

over the past decade, with monoclonal antibodies playing a central

role in this progress.
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