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Objective: Insomnia is increasingly recognized as a significant factor in the

development of various autoimmune diseases, including autoimmune uveitis

(AU). We investigated insomnia-associated genes that may contribute to AU

pathogenesis and sought to identify potential biomarkers for insomnia-

associated AU.

Methods: Microarray data related to insomnia and AU were downloaded from the

GeneExpressionOmnibus (GEO)database andanalyzed. TheGEO2R toolwas used

to identify differentially expressed genes (DEGs) that were common between

insomnia and AU. Weighted gene co-expression network analysis (WGCNA),

protein-protein interaction (PPI), functional enrichment, and CMap analyses were

thenperformedto identifypathogenicgenes,underlyingmechanisms,andpotential

therapeutic drugs for insomnia-associated AU. Least absolute shrinkage and

selection operator regression was employed to screen for candidate biomarkers,

and their diagnostic performance was evaluated using receiver operating

characteristic (ROC) curves and quantitative polymerase chain reaction (qPCR).

Finally, molecular docking was applied to verify binding activities.

Results:We identified 138 up-regulated and 85 down-regulated DEGs that were

common to insomnia and AU. PPI network analysis highlighted 10 key genes,

CMap analysis identified 30 compounds, and WGCNA revealed 54 key genes and

30 compounds. Intersection of the above-mentioned key genes and compounds

identified six genes and five compounds. After verification by qPCR and ROC

curve analysis, IFI44 and IRF9 were confirmed as hub genes. Finally, two

compounds were selected based on docking scores of less than −7 kcal/mol.

Conclusion: Our study demonstrated involvement of the viral response in both

insomnia and AU and identified the diagnostic significance of IFI44 and IRF9 in

these conditions. These findings provide novel insights for future diagnostic and

therapeutic strategies to treat insomnia-associated AU.
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1 Introduction

Insomnia disorder is the second most prevalent mental disorder

(1) and the most common sleep complaint, affecting up to one-third

of the adult population worldwide (2). Insomnia is defined as

difficulty initiating or maintaining sleep despite adequate sleep

opportunities and a conducive environment, which sufferers

perceive to negatively impact daytime functioning. The diagnostic

criteria for insomnia are when the symptoms occur at least three

times per week and persist for at least three months (2). Although

the mechanisms underlying sleep disorders are not fully

understood, evidence that has accumulated over the past few

decades implicates immune-related molecules in sleep regulation

(3–6). Moreover, sleep disruption can activate inflammation,

creating a positive feedback loop that exacerbates the condition.

Sleep disorders have been observed in some autoimmune diseases,

such as rheumatoid arthritis, systemic lupus erythematosus, and

Behçet’s disease (7).

Autoimmune uveitis (AU) is a prevalent immune disorder that

can cause blindness. Patients frequently experience significant

intraocular inflammation and various systemic symptoms, including

those associated with Behçet’s disease, Vogt-Koyanagi-Harada disease,

seronegative spondyloarthropathies, and multiple sclerosis (8, 9). The

recurrent nature of the disease can lead to severe damage to the retina

and optic nerve. The pathogenesis of AU involves disruption of the

blood–retinal barrier and the activation of Th17 cells and microglia

(10, 11). Epidemiological evidence indicates that uveitis accounts for

approximately 25% of blindness in developing countries (12). Current

treatments for AU typically include corticosteroids, novel

immunosuppressants, and antimetabolite drugs. However, these

treatments are suboptimal because of the complex etiology and

strong heterogeneity of AU (13). Consequently, AU patients remain

at risk of vision loss despite available therapeutic interventions.

A meta-analysis showed that patients with Behçet’s disease have

poorer sleep quality compared with the general population, which

was attributed to changes in sleep parameters and a higher

incidence of specific sleep disorders (14). Behçet’s disease is a

chronic systemic vasculitis affecting small to medium vessels, and

is characterized by a relapsing-remitting course, and most

frequently by mucocutaneous, ocular, and articular involvement

(15). A case control study revealed that sleep duration of less than 7

hours/day (OR 12.12, 95% CI 1.37–107.17, p = 0.025) is a risk factor

for uveitis onset (16). Stress and sleep deprivation can trigger uveitis

flare-ups in patients with idiopathic recurrent acute anterior uveitis.
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Those patients with insufficient sleep had an approximately 12

times higher chance of a uveitis flare-up in the following month.

Additionally, sleep deprivation can promote Th17 cell

pathogenicity and AU onset (17). However, the mechanisms by

which sleep deprivation affects uveitis onset or recurrence remain

unclear. Further exploration of gene expression in insomnia-

associated AU is crucial to understanding the impact of insomnia

on uveitis onset and recurrence.

This study analyzed microarray data from the Gene Expression

Omnibus (GEO) database, specifically focusing on peripheral blood

mononuclear cells (PBMCs) from patients with insomnia or

autoimmune uveitis (AU) (datasets GSE208668 and GSE66936).

Potential therapeutic small molecule compounds were identified

using the CMap database and validated via molecular docking.

These findings offer new insights into the pathogenesis of both

uveitis and insomnia.
2 Material and methods

2.1 GEO dataset processing

We searched the GEO database for gene expression profiles

related to “insomnia” and “autoimmune uveitis”. The obtained

datasets were filtered based on the following criteria: (1) the gene

expression profiles must include samples from patients with

insomnia, uveitis, and controls. (2) The sequencing data must be

obtained from PBMCs. Based on these criteria, the GEO datasets,

GSE66936 and GSE208668, were selected. Table 1 provides a

detailed overview of these datasets.
2.2 Identification of differentially expressed
genes common to insomnia and AU

GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r), an official

tool of the GEO database that uses linear models for microarray

analysis, was employed to compare samples and to identify

differentially expressed genes (DEGs) across experimental

conditions in GSE66936 and GSE208668 datasets. This analysis

aimed to reveal common genetic characteristics between insomnia

and uveitis. The Benjamini-Hochberg false discovery rate method

was applied, with an adjusted P value < 0.05 and |log2 FC| > 0.58 as

the threshold for DEG screening.
TABLE 1 Information of GEO datasets involved in this study.

GSE number Platform Samples Source Disease

GSE66936 GPL570 4 patients VS 17 controls PBMCs autoimmune uveitis

GSE208668 GPL10904 17 patients VS 25 controls PBMCs insomnia
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https://www.ncbi.nlm.nih.gov/geo/geo2r
https://doi.org/10.3389/fimmu.2025.1519371
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2025.1519371
2.3 Weighted gene co-expression
network analysis

WGCNA, an algorithm widely used to find co-expression gene

modules with high biological significance, was employed to explore

the relationship between screened gene networks and diseases using

the Spearman correlation coefficient. The analysis was conducted

using ImageGP (http://www.ehbio.com/ImageGP), a web

application based on a high-level web framework for backend

data preprocessing and analysis, primarily based on the R

programming language. To avoid redundant modules, we

adjusted the parameters as follows: the minimum module size

was set to 10 for insomnia and 100 for uveitis, with a deep split

of 4. Other parameters were network type = “signed” and R square

cut = 0.85. Finally, the expression profiles of each module were

summarized by the module eigengene, and the correlation between

the module eigengene and clinical features was calculated. Modules

with a high correlation coefficient with clinical features were

selected for subsequent analyses.
2.4 Protein–protein interaction
network construction

PPI networks were constructed using STRING (https://string-

db.org/) and visualized using the Cytoscape platform. Significant

modules and core genes were identified using the Cytoscape

plugins, CytoHubba and MCODE. Two different algorithms,

Maximal Clique Centrality, and Density of Maximum

Neighborhood Component, were used to identify hub genes.
2.5 LASSO regression analysis

The hub genes were further identified using LASSO analysis.

LASSO analysis is a regression method that improves prediction

accuracy by selecting a variable from high-dimensional data with

strong predictive value and low correlation. A LASSO logistic

regression model was then built based on the expression levels of

these hub genes and clinical traits.
2.6 Small molecule compound screening
and molecular ligand docking analysis

The Connectivity Map database (CMap, https://clue.io/) is a

differential gene expression-based drug prediction database,

primarily used to explore the functional relationships among

genes, small molecule compounds, and diseases. The primary

protein structures of the target genes were downloaded from The

Protein Data Bank database (http://www.rcsb.org, PDB). AutoDock

Tools software (version 1.5.7) was used to perform molecular

docking of the key targets with small molecule compounds. The

binding activities of these compounds to their targets were
Frontiers in Immunology 03
evaluated based on docking energy values using Pymol software

(http://www.pymol.org).
2.7 Real-time quantitative polymerase
chain reaction

Peripheral blood was collected from all subjects into tubes

containing ethylene diamine tetraacetic acid. PBMCs were

isolated by centrifugation through a Ficoll-Paque (Sigma-Aldrich)

density gradient. Total RNA from PBMCs was extracted using

TRizol reagent (Thermo Fisher Scientific, USA), and RNA

concentration was assessed by Nanodrop 2000 spectrophotometry

(Thermo Fisher Scientific). Total RNA was reverse transcribed into

cDNA using HiScript III All-in-one RT SuperMix Perfect (Vazyme

Biotech Co.). Real-time PCR quantification (RT-qPCR) was

performed on a QuantStudio 3 Real-Time PCR System (Thermo

Fisher Scientific) using ChamQ Universal SYBR qPCR Master Mix

(Vazyme Biotech Co.). RT-qPCR primer sequences were: IFI44

forward: 5′-TGTGAGCCTGTGAGGTCCAAG-3′, IFI44 reverse:

5′-AATTGCTAACCACCGAGATGTCAG-3′; IRF9 forward: 5′-
CTGCTGCTCACCTTCATCTACAAC-3 ′ , IRF9 reverse

5′-ACCTGCTCCATGCTGCTCTC-3′; b-actin: forward: 5′-
CCACGAAACTACCTTCAACTCCATC - 3 ′ , r e v e r s e

5′-AGTGATCTCCTTCTGCATCCTGTC-3′.
2.8 Statistical analysis

LASSO regression was performed using the glmnet R package.

All statistical tests were two-tailed, with P < 0.05 considered

statistically significant.
3 Results

3.1 DEGs common to insomnia and uveitis

Analysis of differential gene expression between insomnia and

control samples revealed 5945 DEGs, with 2786 up-regulated and

3159 down-regulated. Similarly, 1172 up-regulated and 746 down-

regulated DEGs were identified between uveitis and control

samples. Among these, 138 up-regulated and 85 down-regulated

DEGs were common between insomnia and uveitis (Figure 1).
3.2 Screen for key genes in insomnia
and uveitis

STRING was used to generate PPI networks of shared DEGs to

clarify their interactions (Figure 2A). The CytoHubba methods,

Maximal Clique Centrality, and Density of Maximum

Neighborhood Component, were used to predict and explore the

top 15 key genes in the PPI network. Ten key genes that were up
frontiersin.org
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regulated in both diseases were identified: ISG20, SAMD9L, IFI44,

IFITM2, PARP9, IRF9, SP100, IFI44L, TRIM22, and SP110.

Subsequently, six cluster modules were identified using the

MCODE plugin, with cluster 1 having the highest score (score of

10, 12 nodes, and 55 edges). The above 10 genes were consistent

with this cluster (Figure 2B). Moreover, pathway enrichment

analyses were conducted on these 10 key genes. Gene Ontology

enrichment analysis indicated that these genes were significantly

involved in the response to viruses, including defense response to

viruses, negative regulation of viral genome replication, and the type

I interferon signaling pathway (Figure 2C). Kyoto Encyclopedia of

Genes and Genomes enrichment analysis also revealed associations

with virus infection. Reactome enrichment analysis revealed the

activation of multiple virus response-related pathways, including

interferon, interferon alpha/beta, and interferon gamma signaling

pathways (Figure 2D, E).

Eight modules were identified in both insomnia and uveitis

(Figures 3A, B). Heatmaps illustrating module–trait relationships

were used to evaluate the associations between each module and the

diseases. To study the pathogenic genes, we focused only on the

modules that were positively correlated with the traits. Specifically,

the turquoise, brown, and green modules in insomnia and the

turquoise, yellow, and blue modules in uveitis were selected for

further analysis, based on Spearman’s rank correlation coefficient,

which exceeded 0.7 (P < 0.05). Intersection of uveitis and insomnia

genes using a Venn diagram revealed 54 genes. Comparison of these

withpreviously identified key hub genes identifiedfive common genes:

ISG20, IFI44, IFITM2, IRF9 and IFI44L. Pathway enrichment analyses
Frontiers in Immunology 04
were then performed and, consistent with the PPI findings, Gene

Ontology enrichment revealed significant involvement of these genes

in response to virus,whileReactome enrichment analysis indicated the

activation of multiple virus response-related pathways (Figure 3C).
3.3 The validation of hub genes in insomnia
and uveitis

LASSO regression was applied and identified three candidate

hub genes out of five key genes with significant potential for

diagnosing uveitis (Figures 4A, B). Subsequently, four potential

hub genes out of these five candidate hub genes were found to have

a strong impact on diagnosing uveitis (Figures 4C, D). Among

these, IFI44, IFI44L, and IRF9, were identified as having a

significant effect on diagnosing insomnia-associated uveitis.

According to ROC curve analysis, the area under the curve of

IFI44 and IRF9 was greater than 0.7 in both insomnia and uveitis

(Figures 4E, F). Finally, IFI44 and IRF9 expressions in PBMCs from

subjects with insomnia with or without uveitis were confirmed by

qPCR (Figures 4G, H).
3.4 Prediction of potential drugs for
patients with insomnia and uveitis

We submitted the 10 and 54 genes described above to the CMap

database to screen for small molecule compounds that have
FIGURE 1

The identification of shared differentially expressed genes. (A, C) Volcano map of DEGs in GSE208668 and GSE66936. (B, D) normalized expression
matrices in GSE208668and GSE66936. (E) The shared DEGs of the Uveitis dataset and Insomnia dataset are represented by a Venn diagram.
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potential efficacy in the management of insomnia-associated

uveitis. After intersection, the top six compounds, with the

highest negative scores, were identified as potential therapeutic

agents: PKCbeta-inhibitor (BRD-K89687904), kenpaullone,

enzastaurin, SB-216763, amylocaine, and BRD-K06817181 were

potential therapeutic agents for the treatment of insomnia-

associated uveitis (Figures 5A, B). The structures of these

compounds were retrieved from the PubChem database and are

displayed in Figures 5C–H.
3.5 The molecular docking of two
compounds against insomnia-
associated uveitis

Molecular docking is an important method for structure-based

drug design and screening that finds the optimal conformation of

small molecule compounds and target molecules for interaction. In

this study, the crystal structures of two molecular targets, IFI44 (ID:

Q8TCB0) and IRF9 (ID: Q00978), were downloaded from the

AlphaFold Protein Structure Database. We used AutoDock Tools

1.57 software to dock the above five compounds that have treatment

potential for insomnia-associated uveitis on the IFI44 and IRF9

molecular targets. The docking scores of PKCbeta Inhibitor and
Frontiers in Immunology 05
kenpaullone were less than −7 kcal/mol, indicating a high binding

affinity of both compounds with the targets. The binding poses and

sites are shown in Figures 6A–D, where the yellow color represents

the compounds, and the red dotted lines represent hydrogen

bond interactions.
4 Discussion

In this study, we used bioinformatic analyses to identify

potential diagnostic genes for insomnia-associated uveitis. We

then validated these findings using PBMCs from participants and

identified IFI44 and IRF9 as key genes. Additionally, we explored

potential therapeutic drugs for insomnia-associated uveitis using

the CMap database. Finally, molecular docking identified two small

molecule compounds that target IFI44 and IRF9.

Our study suggests that immune responses to viral infections

may be common underlying mechanisms for both diseases.

Infections of viruses, such as herpes simplex virus (18), Epstein-

Barr virus (19), and human papillomavirus (20), are risk factors for

autoimmune uveitis in conditions such as Behçet’s Disease.

Furthermore, the mechanism might not involve simple responses

to viral replication but rather the long-term impact of viral infection

on the immune system after the virus is no longer active (21). The
FIGURE 2

PPI analysis network construction and enrichment analysis. (A) The PPI network of shared differentially expressed genes. (B) The PPI network of
module 1 genes with the top 1 highest score based on MCODE analysis. (C) Venn diagram showed the overlapping genes between MCODE, MCC
and DNMC analysis. (D, E) The bubble plots showing the GO, KEGG and REACTOME enrichment analysis.
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correlation between insomnia and viral infections has also been

extensively studied. For example, insufficient sleep in the week

preceding symptom onset was associated with increased disease

severity in patients with coronavirus disease 2019 (22). Conversely,

the incidence of insomnia has been documented to significantly

increase after viral infections (23). These studies indicate that

insomnia and virus infection may mutually exacerbate each other,

creating a positive feedback loop. Based on this, we hypothesized a

link between viral infections and insomnia and uveitis. Long-term

interaction between insomnia and viral infections may have effects

on the immune system that increase the incidence of uveitis.

IFI44 and IRF9 regulate interferons, a family of cytokines with

multiple effects in humans. First identified as antiviral inhibitors by

Isaacs and Lindenmann in 1957 (24), interferons have since been

recognized as crucial regulators of the human immune system (25).

They play key roles in combating viral (26), and bacterial infections

(27) and in autoimmune diseases (28). There are three types of

interferons (IFNs): type I (IFN-a, b, e, k, and w), type II (IFN-g),
and type III (IFN-l), with signaling through the Janus kinase (JAK)/
STAT pathway (29).
Frontiers in Immunology 06
IFI44, identified in this study as a diagnostic biomarker for

insomnia-associated uveitis, consists of 444 amino acids. IFI44 is an

interferon-stimulated gene (ISG) induced by type I interferons, and

it has diagnostic value in autoimmune diseases such as systemic

lupus erythematosus and primary Sjögren’s syndrome. IFI44 is also

associated with immune infiltrating cells and has been positively

correlated with activated dendritic cells, immature B cells, and

activated CD4+ memory T cells (30). T lymphocytes are

considered to play a crucial role in the immunopathogenesis of

uveitis (31). Type I interferons (e.g., IFN-a and IFN-b) play a key

role in immune activation, thereby influencing the production and

regulation of pro-inflammatory cytokines and other mediators (32).

We hypothesize that the upregulation of IFI44 in patients with

insomnia may promote the progression of uveitis by inducing

innate immunity, activating acquired immunity, and modulating

inflammatory cytokine and antibody levels.

IRF9 plays a role in the signaling of type I interferons (e.g., IFN-

a and IFN-b) through the JAK-STAT pathway. When type I

interferons bind to their receptors, they activate JAK kinases,

which phosphorylate STAT1 and STAT2. Phosphorylated STAT1
FIGURE 3

WGCNA and enrichment analysis. (A, B) Weighted gene co-expression network analyses of insomnia and uveitis. (C) The bubble plots showing the
GO and REACTOME enrichment analysis of final 5 key genes.
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and STAT2 heterodimerize and recruit IRF9 to form the ISGF3

complex, which enters the nucleus and activates the transcription of

ISGs (33). In addition to mediating antiviral responses, IRF9 is also

elevated in autoimmune diseases, such as systemic lupus

erythematosus and rheumatoid arthritis. There is a substantial

body of evidence supporting an important role of the IFN

pathway in the pathogenesis of uveitis (32, 34). Moreover, novel

agents targeting IFN-a significantly improve vision in uveitis
Frontiers in Immunology 07
patients. We speculate that elevated IRF9 in insomnia patients

may promote the progression of uveitis by enhancing immune

responses and the secretion of inflammatory cytokines. However,

the specific mechanisms involved require further investigation.

The Protein kinase C (PKC) family consists of phospholipid-

dependent serine/threonine kinases that are classified into three

subfamilies based on their structural and activation characteristics:

conventional/classical PKC isoforms (cPKCs: a, bI, bII, and g),
FIGURE 4

Candidate genes were screened in the Lasso model and ROC curve analysis. (A, B) 3 potential biomarkers were identified by LASSO regression in
uveitis. (C, D) 4 potential biomarkers were identified by LASSO regression in insomnia. (E, F) The diagnostic accuracy of hub genes for uveitis (E) or
insomnia (F) was evaluated by ROC curves analysis. (G, H) The identification of expression of IFI44 and IRF9 between insomnia and insomnia with
uveitis from PBMCs.
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novel PKC isoforms (nPKCs: d, e, h, and q), and atypical PKC

isoforms (aPKCs: z, i, and l) (35, 36). PKCs are involved in various

signal transduction pathways that control cell proliferation,

differentiation, survival, invasion, migration, and apoptosis. In

multiple sclerosis, a central nervous system inflammatory

demyelinating disease, PKCb inhibitors can stabilize the blood–

brain barrier by targeting PKCb in endothelial cells and possibly
Frontiers in Immunology 08
astrocytes, thereby inhibiting disease progression (37). In this study,

PKCb inhibitors also showed therapeutic potential in insomnia-

associated uveitis.

Kenpaullone is an effective inhibitor of CDK1/2/5 and GSK3b.
Cyclin-dependent kinase 2 (CDK2) is a negative regulator of Treg cell

differentiation that is induced by transforming growth factor-b.
CDK2 can directly phosphorylate FOXP3, disrupting its stability
FIGURE 5

Screening of the compounds for the treatment of insomnia with uveitis by CMap analysis. (A, B) The heatmap presenting the top 30 compounds
with the most significantly negative enrichment scores in 10 cell lines based on CMap analysis. (C–G) The chemical structures of 6 compounds from
the intersection of above two 30 compounds were shown.
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(38), and can inhibit Treg maintenance during inflammation (39).

Inhibiting the GSK3b pathway can also promote Treg cell

differentiation (40). Additionally, Treg cells (CD4+CD25+FOXP3+)

are implicated in the development of Vogt-Koyanagi-Harada (VKH)

disease (41). Therefore, Kenpaullone is a potential drug for insomnia-

associated uveitis, but its efficacy and mechanism of action require

further evaluation.

Our study identified the diagnostic significance of IFI44 and

IRF9 in insomnia-associated AU; however, this study has some

limitations. Firstly, the sample size was small. Future studies with
Frontiers in Immunology 09
larger sample sizes are needed to increase the statistical power and

reliability of the results. Secondly, possible confounders of the data

were not included in the matrix files (including sex, age, and age at

onset) meaning that underlying bias was not controlled. Thirdly, the

GSE66936 and GSE208668 datasets were derived from monocytes

of autoimmune uveitis patients and from PBMCs of aged insomniacs,

respectively. Therefore, it is hard to specify which cell type plays a

major role in insomnia-associated uveitis by targeting IFI44 and IRF9.

Future research is needed to explore the precisemechanisms bywhich

IFI44 and IRF9 contribute to insomnia-associated uveitis.
FIGURE 6

Molecular docking analysis. (A, B) Molecular docking pattern of PKC beta Inhibitor complexed with IFI44 and IRF9. (C, D) Molecular docking pattern
of kenpaullone complexed with IFI44 and IRF9.
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5 Conclusion

In summary, our study highlights the crucial role of interferons

in both insomnia and uveitis, with a notable emphasis on the viral

response. Additionally, further in-depth investigation of IFI44 and

IRF9 involvement in insomnia and uveitis is warranted and IFI44

and IRF9 should be assessed as therapeutic targets.
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