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Purpose: This study aimed to create a nomogram model to predict the spread

through air spaces (STAS) in patients diagnosed with stage IA lung adenocarcinoma,

utilizing a substantial sample size alongside a blend of clinical and imaging features.

This model serves as a valuable reference for the preoperative planning process in

these patients.

Materials and methods: A total of 1244 individuals were included in the study.

Individuals who received surgical intervention between January 2022 and May

2023 were categorized into a training cohort (n=950), whereas those treated

from June 2023 to October 2023 were placed in a validation cohort (n=294).

Data from clinical assessments and CT imaging were gathered from all

participants. In the training cohort, analyses employing both multivariate and

univariate logistic regression were performed to discern significant clinical and

CT characteristics. The identified features were subsequently employed to

develop a nomogram prediction model. The evaluation of the model’s

discrimination, calibration, and clinical utility was conducted in both cohorts.

Results: In the training cohort, multivariate logistic regression analysis revealed

several independent risk factors associated with invasive adenocarcinoma:

maximum diameter (OR=2.459, 95%CI: 1.833-3.298), nodule type (OR=4.024,

95%CI: 2.909-5.567), pleura traction sign (OR=2.031, 95%CI: 1.394-2.961),

vascular convergence sign (OR=3.700, 95%CI: 1.668-8.210), and CEA

(OR=1.942, 95%CI: 1.302-2.899). A nomogram model was constructed utilizing

these factors to forecast the occurrence of STAS in stage IA lung
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adenocarcinoma. The Area Under the Curve (AUC) measured 0.835 (95% CI:

0.808–0.862) in the training cohort and 0.830 (95% CI: 0.782–0.878) in the

validation cohort. The internal validation conducted through the bootstrap

method yielded an AUC of 0.846 (95% CI: 0.818-0.881), demonstrating a

robust capacity for discrimination. The Hosmer–Lemeshow goodness-of-fit

test confirmed a satisfactory model fit in both groups (P > 0.05). Additionally,

the calibration curve and decision analysis curve demonstrated high calibration

and clinical applicability of the model in both cohorts.

Conclusion: By integrating clinical and CT imaging characteristics, a nomogram

model was developed to predict the occurrence of STAS, demonstrating robust

predictive performance and providing valuable support for decision-making in

patients with stage IA lung adenocarcinoma.
KEYWORDS
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Introduction

The Global Cancer Report 2020 highlights lung cancer as the

leading cause of cancer-related mortality worldwide, with

adenocarcinoma recognized as the predominant histological

subtype (1). In 2021, the World Health Organization (WHO)

updated the classification of lung adenocarcinomas, dividing them

into in-situ, microinvasive, and invasive categories, based on the

extent of their invasive progression (2).

The widespread adoption of early lung cancer screening

programs has led to increased detection of stage IA lung

adenocarcinomas, which typically present as lung nodules. Surgical

excision is the main treatment modality for these patients (3). For

early-stage IA lung adenocarcinoma, sublobectomy is now the

treatment of choice (4–6). Nonetheless, in some instances,

recurrences and metastases occur, with STAS significantly

contributing to these outcomes (7).

STAS was introduced by the WHO in 2015 as a distinct pattern

of invasion in invasive lung adenocarcinoma (IAC). This pattern is

marked by the presence of pathological micropapillary clusters,

solid nests, or single cells that extend beyond the tumor margin,

infiltrating the adjacent lung parenchyma (8). Research indicates

that STAS correlates with a worse prognosis, prompting several

scholars to advocate for lobectomy in cases of IA lung

adenocarcinoma showing STAS positivity (9–12).

Limitations exist with intraoperative frozen sections for STAS

prediction, making preoperative clinical and imaging evaluations

more predictive (13). Historical data suggest variability in the

predictive reliability of clinical and imaging features for STAS (8, 14–

16). Studies by Onozato et al. (15) and Shiono et al. (14) suggest that

smoking increases the risk of STAS, althoughUruga et al. (16) observed

no such correlation. Similarly, Warth et al. (17) identified male gender

as a risk factor for STAS, a finding not corroborated by Kadota (8).
02
Other research indicates that a tumor diameter exceeding 2 cm

does not reliably predict STAS (18, 19). Yin et al. (20) observed that

pulmonary nodules with partly solid features tend to develop STAS,

while Toyokawa et al. (19) determined that a solid component over

50% is predictive of STAS. Key CT indicators such as solid nodules,

spiculation, vacuoles, well-defined borders, lobulation, and pleural

traction are frequently observed in tumors positive for STAS (20, 21).

However, the focus on individual features has limited the overall

predictive accuracy. Combining multiple diagnostic features has

shown to enhance performance, with Ding et al. (22) achieving an

AUC of 0.724 using a combination of CTR, tumor size, vacuoles, and

spiculation, while Gao et al. (23) reached an AUC of 0.808 by

integrating age, nodule type, and SUVmax.

Despite some improvements in diagnostic efficacy, the

limitations of small sample sizes and variability in features persist,

underscoring the need for further studies involving more

comprehensive datasets. To address this gap, we propose a large-

scale investigation to thoroughly assess the link between clinical and

imaging features and STAS in stage IA lung adenocarcinoma. Our

objectives include identifying independent predictors, developing

and validating a predictive nomogram for STAS, and aiding in the

selection of appropriate treatment strategies for patients with stage

IA lung adenocarcinoma.
Materials and methods

Participants

Data were collected retrospectively from patients diagnosed

with IAC who had surgical resection at Yunnan Cancer Hospital

(Third Affiliated Hospital of Kunming Medical University) from

January 2022 to October 2023. The staging process adhered to the
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8th edition of the IASLC TNM staging system specifically designed

for lung cancer (24, 25). Inclusion criteria included: (1) Preoperative

CT reports indicating pulmonary nodules with a maximum

diameter of less than 3 cm; (2) CT imaging performed at Yunnan

Cancer Hospital within two weeks prior to surgery; (3) A

postoperative pathological diagnosis confirming IAC; (4)

Exclusion of distant metastasis through preoperative imaging

techniques such as CT, PET-CT, or ultrasound; (5) Patient age of

18 years or older. Exclusion criteria were: (1) Presence of other

malignant tumors prior to surgery; (2) Non-compliant imaging

data; (3) Presence of more than two invasive adenocarcinoma

nodules in a single patient; (4) Incomplete collection of medical,

imaging, or hematology data; (5) Patients classified as stage IB-IV

through preoperative imaging. Patients were allocated into two

cohorts based on the date of their surgery: (1) 950 patients between

January 2022 and May 2023 formed the training cohort; (2) 294

ground-glass nodules (GGNs) from June 2023 to October 2023

constituted the validation cohort (Figure 1).
Ethical approval and study protocol

Under approval number KYLX2023-137, the study was given

the green light by the Ethics Committee of Yunnan Cancer
Frontiers in Immunology 03
Hospital, which is the Third Affiliated Hospital of Kunming

Medical University. The necessity to get informed consent was

removed because the study was retrospective in nature. Surgical

cohort, cross-sectional, and case-control studies were reported in

accordance with the STROCSS criteria, and the protocol was

registered with ClinicalTrials.gov (26).
CT acquisition

Before the chest CT examination, patients participated in

breathing training. Throughout the scanning procedure, subjects

were placed in a supine position, with their arms raised, and were

directed to take deep breaths. Following either breath-holding or

tranquil respiration, a breath-holding scan was performed from the

apex of the lung to its base utilizing a helical sweep methodology.

The experimental conditions were established with a tube voltage of

120 kilovolt (kV) and a current of 100 milliampere (mA), alongside

a pitch of 1.0 and a slice thickness of 1mm. The sweep parameters

consisted of a voltage setting of 70 kV and a tube current of 50

milliampere-seconds (mAs), accompanied by a resolution matrix

measuring 512×512. The settings for the lung window varied

between 1200 and 1500 Hounsfield Units (HU), with a window

level established at -600 to -700 HU. The mediastinal window was
FIGURE 1

Patient screening flowchart.
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established within a range of 400 to 500 HU, featuring a window

level of 40 to 50 HU.
Clinical and imaging features analysis

Clinical data collected included: (1) demographic characteristics

including sex, age, tobacco use history, and family history of cancer;

(2) Preoperative blood markers encompassed Carcinoembryonic

Antigen (CEA), Carbohydrate Antigen 125 (CA125), as well as

ratios including the platelet-lymphocyte ratio (PLR) and

neutrophil-lymphocyte ratio (NLR). Additionally, the systemic

inflammation index (SII) was determined by the product of

platelet count and NLR.

Two senior diagnostic chest radiologists, unaware of the patients’

pathological outcomes and fundamental demographic details,

meticulously assessed and recorded the CT imaging characteristics.

The evaluated imaging characteristics comprised: (1) Air

bronchogram sign: visible as tubular air-density within bronchi at

various segments on consecutive CT slices; (2) Cavitation sign:

characterized by air or low-density areas within nodules measuring

less than 5 mm, with features such as smooth, irregular contours or

faintly defined boundaries; (3) Pleural indentation sign: tent-like or

linear opacities between the pleura and lesions, or star-shaped

shadows; (4) Vascular convergence sign: displacement and

convergence of blood vessels towards a lesion, indicative of traction

or direct association with the lesion; (5) Lobulation sign: irregular,

arc-like contours on the nodule’s perimeter, possibly forming

multiple lobular projections with serrated or wavy intervening

notches; (6) Spiculation sign: radial, sharp projections from the

nodule edge, resembling a dense brush or thin line without

branching, not adhering to the pleural surface; (7) Maximum

tumor diameter: measured on axial CT images; (8) Nodule type:

categorized as solid, partially solid, or pure ground-glass nodules.
Histopathological evaluation

The surgical excision of tissue samples was followed by

preservation in 10% formalin, embedding in paraffin, sectioning

with a microtome, and staining using Hematoxylin and Eosin (HE).

The categorization of each specimen followed the 2015 WHO

Classification of Lung Tumors and the criteria established by

Kadota et al. (8, 27). STAS positivity was determined by the

presence of isolated cancer cells or small clusters of cancer cells

within alveolar spaces, distinctly separated from the primary tumor

by at least one alveolar septum. Criteria for excluding STAS, as

defined by Kadota et al. (8), included: (1) mechanically displaced

tumor cells or irregular clusters randomly distributed or located at

the margins of the section; (2) tumor cell strands detached from

interstitial lung tissue or alveolar walls due to inadequate tissue

preservation. In instances where distinguishing non-tumor cells

proved challenging, immunohistochemistry was utilized to confirm

the status of STAS. Two pathologists, each possessing over 15 years
Frontiers in Immunology 04
of expertise within the Pathology Department of Yunnan Cancer

Hospital, performed the evaluations independently.
Imaging feature selection

Univariate analyses were conducted to examine the clinical and

imaging characteristics between the groups identified as STAS-

positive and STAS-negative within the training cohorts. Variables

exhibiting a P-value < 0.05 in the univariate analysis were analyzed

further through multivariate logistic regression to identify

significant clinical and imaging predictors of IAC. The Variance

Inflation Factor (VIF) was employed to assess collinearity among

the independent variables. Clinical and imaging characteristics

between the training and validation cohorts were compared using

Mann–Whitney U tests and chi-square tests.
Model construction and
performance assessment

Multivariate logistic regressionmodels were employed to evaluate

the influence of various factors on the construction of the nomogram.

Only variables with a P-value < 0.05 in the multivariate analysis were

included in the final nomogram. The nomogram for predicting STAS

in clinical stage IA lung adenocarcinoma was developed using R

software. Model performance was assessed in both training and

validation groups, with discriminative ability measured by AUC

values, calibration by calibration curves, model fit by Hosmer–

Lemeshow tests, and clinical utility by decision curve analysis

(DCA). Internal validation was conducted through bootstrap

resampling 1,000 times.
Statistical methods

Independent sample t-tests were employed to compare

continuous variables between STAS-positive and STAS-negative

cohorts, provided these variables conformed to a normal

distribution. In instances where the assumptions of normality

were not satisfied, Mann–Whitney U tests were employed. The

continuous variables encompassed age, NLR, PLR, SII, and the

maximum diameter of the tumor. The assessment involved

categorical variables including gender, tumor location, smoking

history, nodule type, and levels of CEA and CA125. Additionally,

signs such as vacuoles, pleural traction, lobulation, air

bronchogram, vascular convergence, and spiculation were

evaluated using the Pearson chi-square test. Binary logistic

regression was utilized for both continuous and categorical

variables that exhibited significant differences (P < 0.05) in the

univariate analysis. A streamlined logistic regression model was

constructed employing a backward elimination approach. All

statistical analyses were performed utilizing R software (version

4.2.1) and SPSS (version 26.0), employing an optimal cutoff
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determined by the maximum Youden’s index. A P-value below 0.05

was deemed statistically significant.
Results

Clinical and pathological characteristics

A total of 1,244 individuals participated in the study,

comprising 451 males (36.3%) and 793 females (63.7%). In the

training cohort, the STAS-positive group comprised 285 patients,

while the STAS-negative group included 665 patients. The

validation cohort consisted of 92 STAS-positive and 202 STAS-

negative patients. No significant differences in clinical or CT

characteristics were observed between the training and validation

cohorts, supporting their use for model development and

evaluation. Detailed clinical and CT characteristics of the patients

are outlined in Table 1.
Imaging features analysis and selection

Univariate analysis identified gender, smoking history, CEA,

CA125, lobulation, maximum tumor diameter, spiculation, signs of

vascular convergence, pleural traction, and nodule type as

statistically significant variables (P < 0.05) in the training cohort

(Table 2). Following this, binary logistic regression highlighted

maximum diameter (OR=2.459, 95%CI: 1.833-3.298), nodule type

(OR=4.024, 95%CI: 2.909-5.567), pleural traction sign (OR=2.031,

95%CI: 1.394-2.961), vascular convergence sign (OR=3.700, 95%CI:

1.668-8.210), and CEA (OR=1.942, 95%CI: 1.302-2.899) as

independent predictors of STAS (P < 0.05) (Table 2). Analysis for

collinearity among these five indicators showed no significant

issues. Additionally, ROC curves for each risk factor were

generated, and based on the Youden index, an optimal cutoff for

maximum diameter was established at 1.45 cm.
Nomogram models construction
and validation

A nomogram was constructed using variables such as nodule type,

pleural traction, vascular convergence, CEA levels, and maximum

diameter to predict STAS in patients with stage IA lung

adenocarcinoma (Figure 2). The AUC values recorded were 0.835

(95%CI: 0.808–0.862) for the training group and 0.830 (95%CI: 0.782–

0.878) for the validation group, indicating a strong ability of the model

to differentiate between outcomes in both datasets (Figures 3, 4). The

Hosmer-Lemeshow test demonstrated a favorable fit for both the

training and validation cohorts (P > 0.05), while the calibration

curves illustrated a robust alignment between predicted and observed

outcomes, thereby validating themodel’s accuracy (Figure 5). DCAs for

both cohorts highlighted the practical utility of the model (Figure 6).

Additionally, an AUC of 0.846 (95%CI: 0.818–0.881) obtained through
Frontiers in Immunology 05
Bootstrap internal validation further affirmed the model’s consistent

discriminatory capacity. Application of this model in the validation

group demonstrated its robust predictive performance (Figure 7).
Discussion

Lung cancer continues to be a leading factor in cancer-related

deaths, with adenocarcinoma identified as the most common

subtype (28). The evolution of screening technologies has

significantly improved the identification of early-stage lung

cancer, positioning surgical intervention as the most effective

treatment option for these instances. In light of the findings from

the JCOG studies (29–32), sublobectomy has emerged as a

prevalent surgical method. Nevertheless, the occurrence of STAS

in patients is intricately associated with heightened recurrence rates

and reduced survival rates. Lobectomy generally results in more

favorable outcomes for individuals diagnosed with STAS-positive

stage IA lung adenocarcinoma (11, 33). Therefore, precise

preoperative assessment of STAS is crucial for guiding the

selection of surgical interventions (8, 10). This study introduced a

nomogram that integrates preoperative clinical and CT imaging

data to estimate the likelihood of STAS, thereby facilitating surgical

planning for early-stage lung adenocarcinoma.

Previous findings by Onozato et al. (15) and Shiono et al. (14)

indicate that smoking increases the likelihood of developing STAS,

while Warth et al. (17) observed a higher propensity for STAS

among male patients, a result that contrasts with ours. In our

analysis, although gender and smoking history were significant in

univariate analysis, they did not emerge as independent predictors

of STAS, aligning with other research (8, 16). This variation could

be attributed to differences in the characteristics of the study

populations, measurement protocols, and analytical models used

in different studies.

Serum tumor markers serve as crucial non-invasive tools for

detecting cancer, contributing to early lung cancer screening and

monitoring for postoperative progression and metastasis (34).

Shimomura et al. (35) reported elevated preoperative CEA levels in

STAS-positive patients, a finding echoed by other research (36, 37).

Our analysis also identifies high CEA levels as an independent risk

factor for STAS. However, Qin et al. (38) did not observe a correlation

between CEA levels and STAS, possibly due to the inclusion of

patients at various stages of lung cancer.

The role of maximum tumor diameter as a predictor of STAS

has been debated. While Toyokawa et al. (39) and others (18)

suggest that diameters larger than 2 cm are unreliable predictors,

conflicting evidence exists (19, 40). Yin et al. (20) conducted a meta-

analysis and found no predictive value for diameters exceeding 2

cm; however, their analysis might have been impacted by treating

nodule diameter as a binary variable. In a contrasting study, Qin

et al. (38) treated maximum diameter as a continuous variable in a

cohort of 503 patients and found it to be an independent predictor

of STAS, which supports our conclusions. Our research

corroborates that maximum tumor diameter is an independent
frontiersin.org
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TABLE 1 Comparison of clinical and CT features between the training group and the validation group.

Variables Total (N=1244) Train group (N=950) Validation group (N=294) P

age, Median (Q1,Q3) 56.00 (50.00,63.00) 56.00 (50.00, 63.00) 57.00 (50.00, 63.00) 0.301

Maximum diameter, Median (Q1,Q3) 1.50 (1.10,2.10) 1.50 (1.10, 2.10) 1.50 (1.10, 2.00) 0.116

NLR, Median (Q1,Q3) 1.73 (1.32,2.28) 1.76 (1.32, 2.29) 1.63 (1.31, 2.22) 0.144

PLR, Median (Q1,Q3) 120.45 (96.32,155.30) 121.28 (97.40, 155.63) 118.19 (94.76, 153.38) 0.385

SII, Median (Q1,Q3) 386.81 (281.43,561.81) 394.70 (282.62, 571.40) 362.86 (280.84, 516.94) 0.113

gender, n (%) 0.292

male 451 (36.3%) 352 (37.1%) 99 (33.7%)

female 793 (63.7%) 598 (62.9%) 195 (66.3%)

Family history of cancer, n (%) 0.093

No 1143 866 277

Yes 101 84 17

Smoking history, n (%) 0.941

No 967 (77.7%) 738 (77.7%) 229 (77.9%)

Yes 277 (22.3%) 212 (22.3%) 65 (22.1%)

STAS, n (%) 0.673

No 867 (69.7%) 665 (70.0%) 202 (68.7%)

Yes 377 (30.3%) 285 (30.0%) 92 (31.3%)

Tumor location, n (%) 0.532

Superior lobe of right lung 397 (31.9%) 291 (30.6%) 106 (36.1%)

Middle lobe of right lung 92 (7.4%) 71 (7.5%) 21 (7.1%)

Inferior lobe of right lung 256 (20.6%) 201 (21.2%) 55 (18.7%)

Upper lobe of left lung 296 (23.8%) 230 (24.2%) 66 (22.4%)

Inferior lobe of left lung 203 (16.3%) 157 (16.5%) 46 (15.6%)

Nodule type, n (%) 0.083

Ground glass nodule 157 (12.6%) 109 (11.5%) 48 (16.3%)

Part solid nodules 592 (47.6%) 461 (48.5%) 131 (44.6%)

Solid nodules 495 (39.8%) 380 (40.0%) 115 (39.1%)

lobulation, n (%) 0.866

No 973 (78.2%) 742 (78.1%) 231 (78.6%)

Yes 271 (21.8%) 208 (21.9%) 63 (21.4%)

spiculation, n (%) 0.402

No 890 (71.5%) 674 (70.9%) 216 (73.5%)

Yes 354 (28.5%) 276 (29.1%) 78 (26.5%)

Vacuole sign, n (%) 0.581

No 1045 (84.0%) 795 (83.7%) 250 (85.0%)

Yes 199 (16.0%) 155 (16.3%) 44 (15.0%)

Pleura traction sign, n (%) 0.065

No 589 (47.3%) 436 (45.9%) 153 (52.0%)

(Continued)
F
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indicator of STAS in stage IA lung adenocarcinoma, particularly

when the diameter surpasses 1.45 cm.

The aggressiveness of lung cancer is closely linked to the

proportion of solid tumor components observed on CT scans; a
Frontiers in Immunology 07
higher solid component indicates a more significant pathological

invasion and an elevated probability of STAS. Research by multiple

authors (14, 38) has shown a positive correlation between the core-

to-total ratio (CTR) and the likelihood of STAS. Qi et al. (41)
TABLE 1 Continued

Variables Total (N=1244) Train group (N=950) Validation group (N=294) P

Yes 655 (52.7%) 514 (54.1%) 141 (48.0%)

Air bronchogram sign, n (%) 0.965

No 1219 (98.0%) 931 (98.0%) 288 (98.0%)

Yes 25 (2.0%) 19 (2.0%) 6 (2.0%)

Vascular convergence sign, n (%) 0.094

No 1186 (95.3%) 911 (95.9%) 275 (93.5%)

Yes 58 (4.7%) 39 (4.1%) 19 (6.5%)

CEA (mg/L), n (%) 0.071

>3.4 258 (20.7%) 208 (21.9%) 50 (17.0%)

≤3.4 986 (79.3%) 742 (78.1%) 244 (83.0%)

CA125 (mg/L), n (%) 0.284

>35 28 (2.3%) 19 (2.0%) 9 (3.1%)

≤35 1216 (97.7%) 931 (98.0%) 285 (96.9%)
TABLE 2 Multivariable Logistic Regression of clinical and CT finding and STAS of patients.

Univariate Multivariate

OR (95%CI) P OR (95%CI) P

gender 0.585 (0.441-0.777) <0.001 0.913 (0.581-1.437) 0.695

age 1.005 (0.991-1.020) 0.459

Family cancer 0.612 (0.356-1.051) 0.075

Smoking history 1.949 (1.418-2.679) <0.001 1.349 (0.807-2.255) 0.253

Tumor location 1.039 (0.946-1.141) 0.424

Maximum diameter 3.605 (2.815-4.617) <0.001 2.459 (1.833-3.298) <0.001

Nodule type 5.837 (4.384-7.773) <0.001 4.024 (2.909-5.567) <0.001

lobulation 3.018 (2.194-4.153) <0.001 1.366 (0.925-2.017) 0.116

spiculation 3.121 (2.319-4.201) <0.001 1.073 (0.740-1.555) 0.71

Vacuole sign 0.911 (0.623-1.333) 0.632

Pleura traction sign 4.056 (2.964-5.550) <0.001 2.031 (1.394-2.961) <0.001

Air bronchogram sign 1.370 (0.534-3.517) 0.513

Vascular convergence sign 5.035 (2.548-9.950) <0.001 3.700 (1.668-8.210) 0.001

CEA 3.096 (2.252-4.274) <0.001 1.942 (1.302-2.899) 0.001

CA125 3.300 (1.312-8.264) 0.011 2.309 (0.740-7.246) 0.149

NLR 1.027 (0.969-1.089) 0.371

PLR 1.000 (0.997-1.003) 0.942

SII 1.000 (1.000-1.000) 0.304
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1519766
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2025.1519766
highlighted CTR as the most accurate CT characteristic for

forecasting STAS in lung adenocarcinomas measuring ≤2 cm,

whereas Jia et al. (42) demonstrated that an increase in solid

components substantially raises the risk of STAS. While several

studies (14, 43) have indicated that solid nodules frequently exhibit

STAS in imaging, Yin et al. (20) proposed that part-solid nodules

might present a greater risk of STAS, potentially reflecting the small

number of purely solid nodules in their sample. In their analysis of

327 patients, Toyokawa et al. (19) concluded that a solid component

percentage exceeding 50% was predictive of STAS, a finding that

contrasts with that of Margerie-Mellon et al. (40), possibly due to

variances in nodule size and the heterogeneity of ground-glass

components. Our research corroborates that nodule type acts as

an independent predictor of STAS, with an increase in solid

components markedly heightening the risk.
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Qualitative CT features also significantly influence STAS

prediction. Yin et al. (20) explored common CT qualitative

features linked with STAS, while Gu et al. (21) delved into

additional characteristics. Gu’s findings suggest that tumors

positive for STAS more frequently exhibited traits such as solid

nodules, spiculation, vacuoles, well-defined borders, lobulation,

pleural traction, and vascular clustering signs compared to STAS-

negative adenocarcinomas. Our findings further substantiate

pleural traction signs and vascular convergence as independent

risk factors for STAS, with the observed discrepancies potentially

arising from our focused analysis on stage IA lung adenocarcinoma

patients.

The nomogram prediction model surpasses traditional

correlation analyses by synthesizing multiple pertinent features,

thereby enhancing both the precision and efficiency of predictions
FIGURE 2

A nomogram model predicting the occurrence of STAS in IA lung adenocarcinoma patients.
FIGURE 3

(A) ROC curve of the nomogram in training group. (B) ROC curve of the nomogram in validation group.
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(44, 45). In recent times, radiomics-based nomograms have been

devised to improve diagnostic accuracy for STAS. Nonetheless, the

practical implementation of these tools is somewhat restricted by

the sophisticated technical requirements associated with radiomics

(46, 47). Contrastingly, other investigations (23, 37) have employed

more straightforward clinical imaging data to estimate STAS risk;

however, these studies typically involve smaller cohorts and do not

encompass a thorough analysis of both clinical and imaging

variables. Variability in study populations further complicates the

detailed examination specifically tailored to patients with stage IA

lung adenocarcinoma. In our study, we conducted an extensive

evaluation of the interplay between clinical and imaging attributes
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and STAS across a large sample set. We successfully developed and

validated a prediction model for STAS in stage IA lung

adenocarcinoma, which produced favorable outcomes. When a

patient is assessed as high-risk for STAS, the recommended

clinical approach includes a lobectomy accompanied by extensive

lymph node dissection to optimize prognostic results.

While the findings are promising, it is essential to address several

limitations that warrant further examination. The retrospective

design of this study presents a challenge in addressing selection

bias. The research focuses solely on patients from our institution,

classifying it as a single-center retrospective study with a limited

sample size. While showing steady performance across different time
FIGURE 4

The predictive ability of the model in the training and validation groups.
FIGURE 5

(A) Calibration curve of the nomogram in training group. (B) Calibration curve of the nomogram in validation group.
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FIGURE 6

(A) Decision curve analysis of the nomogram in training group. (B) Decision curve analysis of the nomogram in validation group.
FIGURE 7

(A) A patient was diagnosed with a lesion in the left lower lobe of the lung. Preoperative imaging revealed a solid nodule measuring 2.4 cm in
diameter, accompanied by pleural retraction sign and vascular convergence sign. The serum CEA level was 3.0 mg/L. Postoperative pathology
confirmed invasive adenocarcinoma with evidence of STAS. (B) A patient was found to have a lesion in the right lower lobe of the lung. Preoperative
imaging revealed a solid nodule measuring 2.7 cm in diameter, accompanied by pleural retraction sign and vascular convergence sign. The serum
CEA level was 4.0 mg/L. Postoperative pathology confirmed invasive adenocarcinoma with evidence of STAS.
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frames, the lack of multicenter and prospective data restricts the

broader applicability and validation of these results. Furthermore, the

imaging characteristics were quantified through manual methods,

which may introduce a potential for bias.
Conclusion

By amalgamating clinical and CT imaging features, we crafted a

nomogram prediction model capable of forecasting the occurrence

of STAS in patients with stage IA lung adenocarcinoma. This model

exhibits robust predictive strength for STAS, significantly aiding

clinical management and informing decision-making processes

concerning this condition.
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