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The role of short-chain fatty acid
in metabolic syndrome and its
complications: focusing on
immunity and inflammation
Wenqian Yu1,2†, Siyuan Sun1,2†, Yutong Yan1,2, Hong Zhou1,2,
Ziyi Liu1,2 and Qiang Fu1*

1Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China, 2First Clinical Medical
College, Beijing University of Chinese Medicine, Beijing, China
Metabolic syndrome (Mets) is an important contributor tomorbidity andmortality

in cardiovascular, liver, neurological, and reproductive diseases. Short-chain fatty

acid (SCFA), an organismal energy donor, has recently been demonstrated in an

increasing number of studies to be an important molecule in ameliorating

immuno-inflammation, an important causative factor of Mets, and to improve

lipid distribution, blood glucose, and body weight levels in animal models of Mets.

This study reviews recent research advances on SCFA in Mets from an immune-

inflammatory perspective, including complications dominated by chronic

inflammation, as well as the fact that these findings also contribute to the

understanding of the specific mechanisms by which gut flora metabolites

contribute to metabolic processes in humans. This review proposes an

emerging role for SCFA in the inflammatory Mets, followed by the

identification of major ambiguities to further understand the anti-inflammatory

potential of this substance in Mets. In addition, this study proposes novel

strategies to modulate SCFA for the treatment of Mets that may help to

mitigate the prognosis of Mets and its complications.
KEYWORDS
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1 Introduction

Metabolic syndrome (Mets) is a group of clinical syndromes including abdominal obesity,

hypertension, hyperlipidemia, hyperglycemia, and a series of risk factors for cardiovascular and

cerebrovascular diseases, and its core mechanisms are disorders of glucose and lipid

metabolism and insulin resistance. As a result of a complex interplay of genetic and lifestyle

factors (1), mostly increased consumption of high-calorie, low-fiber fast food and reduced

physical activity due to longer commutes and sedentary work–life habits, it is now a truly

global problem, with prevalence rates in urban populations in some developing countries often
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higher than in Western countries, and with global prevalence rates

estimated to be approximately a quarter of the world’s population (2).

Previous studies have shown that Mets is an important risk factor for

cerebrovascular diseases and chronic kidney diseases (3, 4). The study

of Mets is important for human health issues.

In recent years, the role of intestinal flora in the human body

has received more attention, and more research on SCFA has been

conducted. Studies on the application of SCFA in Mets have

gradually begun to appear in the public’s eye, and they have been

found to improve the distribution of lipids, glucose, and body

weight levels in animal models of Mets (5, 6). It is well known

that Mets is a systemic chronic inflammatory disease, and SCFA can

regulate immunity and inflammation, and the correlation between

immunity and Mets has received more attention (7). However, the

specific mechanisms are still unclear, and there is no summary

report of anti-inflammatory and anti-immune mechanisms in the

various complications of Mets. Recent advances in the regulation of

immunity and inflammation by SCFA provide new insights into

inflammation-related Mets. This review will discuss the effector

pathways associated with SCFA in inflammatory Mets and its

complications, the mechanisms by which SCFA ameliorates

inflammation in Mets, and the treatment of the components of

inflammatory Mets and its complications with SCFA.
2 Search strategy

This review followed the PRISMA guidelines. The primary search

for article screening used in this review was conducted using PubMed

(1,021), Web of Science (985), and Scopus (128) and the medical

subject headings (short-chain fatty acid, inflammation, and metabolic

syndrome). Using the PubMed database as an example, we present

our search strategy: ((((((((((((Short Chain Fatty Acid[MeSH Terms])

OR (Short-Chain Fatty Acid[Title/Abstract])) OR (Volatile Fatty

Acid[Title/Abstract])) AND (Inflammation[MeSH Terms])) OR

(Innate Inflammatory Response[Title/Abstract])) AND (Metabolic

Syndrome[MeSH Terms])) OR (Reaven Syndrome X[Title/

Abstract])) OR (Metabolic Syndrome X[Title/Abstract])) OR

(Insulin Resistance Syndrome X[Title/Abstract])) OR (Metabolic

Cardiovascular Syndrome[Title/Abstract])) OR (Metabolic X

Syndrome[Title/Abstract])) OR (Dysmetabolic Syndrome X[Title/

Abstract])) OR (Cardiometabolic Syndrome[Title/Abstract]).

The literature screening was conducted collaboratively by two

researchers. Following a rigorous selection process, 143 articles were

included in our study. The PRISMA flowchart illustrates the process of

identifying and screening articles related to the role of SCFA as an anti-

inflammatory and anti-immune mechanism in the inflammatory

metabolic syndrome (Figure 1).
3 Gut flora, inflammation, and Mets

High-fat diets and carbohydrate-rich diets are important triggers of

Mets, which may weaken the adhesion of tight junction proteins in the
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gastrointestinal tract, resulting in leaky gut syndrome. Lipopolysaccharides

(LPS) produced by harmful bacteria may infiltrate into the bloodstream

through the portal vein, resulting in endotoxemia and inflammatory

reactions, leading to inflammation of important organs related to

metabolism, such as the liver and pancreas, as well as changes in the

composition and number of intestinal flora. The metabolites produced by

the altered intestinal microorganisms, such as SCFA and ethanol, may

affect the bile acid and fat metabolism process in the liver, leading to the

accumulation of fat, which, in turn, induces hepatic steatosis and triggers

the development of Mets (8). In this process, immune imbalance plays an

integral role in chronic inflammation, adipose tissue dysfunction, and gut

flora disruption. Abdominal adipose tissue accumulation inMets patients,

especially visceral adipose tissue accumulation, exerts shear mechanical

stress on the extracellular environment (9) and promotes intestinal uptake

of antigenic substances therein, which, in turn, induces an inflammatory

immune response, especially in tissues that are in close proximity to the

intestinal tract, and this effect may be exacerbated by the abundance of

lipids in a high-fat diet. Intestinal absorption of dietary fat promotes the

uptake of LPS and protein antigens of intestinal bacterial origin (10, 11).

Lack of immune tolerance to this antigen causes marked inflammatory

responses in mesenteric adipose tissue, and a high-fat diet increases these

inflammatory responses (12). Over time, these responses lead to reduced

glucose tolerance. During diet-induced obesity, intestinal absorption of

antigens is involved in T-cell activation and recruitment in visceral

adipose tissue. The pro-inflammatory environment in visceral adipose

may impair tolerance to these antigens by increasing free fatty acids and

may lead to chronic inflammation. B lymphocytes are likewise recruited

to adipose tissue after the onset of a high-fat diet, even before T cells (CD8

+ T cells and TH1) are recruited (13). In the early stages of obesity,

increased adipocytes release chemotactic adipokines and

chemokines, such as CCL5, which help recruit pro-inflammatory

cells of the adaptive immune system to adipose tissue (14). As

obesity progresses, there is a progressive increase in the release of

INF-g and chemokines, such as CCL2, by CD8+ and TH1-type

lymphocytes, which leads to the activation of NK cells and pro-

inflammatory M1-type macrophages (e.g., Figure 2A). Activated

M1-type macrophages infiltrate visceral adipose tissue and stimulate its

release of large amounts of adipokines and chemotactic mediators such

as tumor necrosis factor-a, interleukin-6, monocyte chemotactic

protein-1, leptin, resistin, and vascular endothelial growth factor (15).

Together, these factors induce a state of chronic, low-grade

inflammation in the organism, which further contributes to insulin

resistance and dyslipidemia, atherosclerosis, vascular dysfunction, and

the development of nonalcoholic fatty liver disease (NAFLD) and Mets.

It can be seen that immune and inflammatory responses lead to

intestinal bacterial imbalance, and intestinal bacterial imbalance is

more likely to exacerbate the inflammatory response and promote

Mets. Therefore, immunity, inflammation, and intestinal bacterial

disorders often affect each other, forming a vicious cycle, but we can

improve the intestinal internal environment, regulate the

composition and abundance of SCFA, enhance the intestinal

barrier function, reduce the leakage of LPS, and at the same time

exert its anti-inflammatory effect, which, in turn, reduces the

emergence of inflammation.
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4 Causes and effector pathways
of SCFA

4.1 Source

Since the origin of all things, microorganisms have coexisted

with human beings, as if the microbial community has also played

an important role in the evolutionary process of human beings,

and all aspects of human biological functions are affected by

them, among which, the gastrointestinal tract is the place where

the greatest number and variety of commensal microorganisms

are found in the human body, especially in the colon (16).

Moreover, the total abundance of intestinal microorganisms

accounted for more than 90% of the total intest inal

microorganisms, such as the phylum Thick-walled Bacteria and

the phylum Mycobacterium, which are the dominant bacterial

flora involved in the production of SCFA in the intestinal tract. It

has been demonstrated that SCFA, as an important metabolite of

the intestinal bacterial flora, has a significant role in the body’s

immunity, metabolism, endocrinology, and signaling, and that

SCFAs are an important communication substance on the

intestinal-organ axis (17–19). SCFA, also known as volatile

fatty acid, is a general term for organic fatty acids containing

two to six carbon atoms, mainly including acetic acid, propionic

acid, and butyric acid, and consists of the intestinal metabolites of

dietary fiber and protein (20, 21), of which dietary fiber is the

main source of SCFA that can be divided into soluble (such as

gelatin and inulin) and insoluble dietary fibers (such as various

forms of resistant starch) (22).
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SCFAs are produced by various prebiotics through

fermentation processes such as Wood-Ljungdahl, carbon dioxide

fixation, and acetyl-S coenzyme A condensation processes (23, 24).

Prebiotics include antidigestive oligosaccharides (oligofructose),

dietary fibers (e.g., inulin, pectin, and arabinoxylan), and resistant

starches from various plant sources. Bacterial species that utilize

prebiotics express carbohydrate-active enzymes (CAZymes) that

degrade dietary fiber and thus produce SCFA (25). DF-rich diets

increase the expression levels of microbiome-encoded CAZymes

(26). Thus, the level of SCFA production in the colon is highly

dependent on the microbial composition as well as the type and

amount of DF in the diet. In addition to branched-chain amino

acids such as valine, leucine, and isoleucine, amino acids can also be

metabolized by microorganisms to produce acetic, propionic, and

butyric acids (27). For example, threonine can be metabolized to the

three main SCFAs. Microbes that efficiently produce SCFA are

generally considered beneficial and are enriched in the intestines of

healthy hosts with diets containing adequate levels of DF (28, 29).

Previous studies have known that SCFAs, particularly butyric acid,

can have anti-inflammatory effects on immune cell function.

However, some researchers have found that the truth is not so

absolute; propionic acid and butyric acid also have pro-

inflammatory effects. Depending on the type and dose of SCFA

used, these compounds may not impede the immune response, and

in fact may even be stimulatory, with the exception of specific cell

types (30). Cavaglieri et al. (31) demonstrated that butyric acid

inhibited the production of IFN-g by activated rat lymphocytes,

whereas acetic and propionic acids increased this cytokine’s release.

Specific mechanisms of effect are described below.
FIGURE 1

Search strategy. The flowchart outlines the search and screening process for the study. The search was first performed in PubMed, Web of Science,
and Scopus, then duplicate articles and articles that did not meet the research criteria were removed, and finally relevant articles were selected for
further research.
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4.2 Effector pathways

Approximately 95% of SCFAs produced in the intestine are

transported to intestinal epithelial cells by ion exchange,

monocarboxylic acid transporter, or cell gap diffusion. Some of

them are metabolized by intestinal cells to maintain intestinal

homeostasis, while the other part is transported to various tissues

and organs to play biological roles by inhibiting histone

deacetylase (HDAC) or activating G protein-coupled receptors

(GPCRs) (21) (e.g., Figure 2B) (32). The GPCRs such as GPR41,

GPR43, and GPR109A have been found to be expressed on

intestinal epithelial cells, adipose tissue, and immune cells

including neutrophils, dendritic cells, macrophages, and

lymphocytes. The expression of these GPCRs also varies in

different tissues. A recent review has summarized the role of

different receptors of SCFA in immune cells (33). Activation of

these GPCRs can inhibit cAMP-dependent signaling pathways,

activate the mTOR signaling pathway, and inhibit the NF-kB
signaling pathway to reduce the inflammatory response (34, 35).

NF-kB belongs to a family of nuclear transcription factors,

including p50, p52, REL, REL-a, and REL-B, which is the

primary response to noxious cellular stimuli . Several

downstream mediators of the NF-kB pathway have been

identified: tumor necrosis factor-a (TNF-a), interleukin (IL)-1,

IL-2, IL-6, IL-8, IL-12, iNOS, COX2, chemokines, adhesion

molecules, and colony-stimulating factors (36–38).
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GPR41 is present in a wide range of tissues, whereas GPR43 is

mainly expressed in lymphoid tissues and a variety of immune cells.

Both GPR41 and GPR43 bind acetic, propionic, and butyric acids,

whereas GPR109A is predominantly activated by butyric acid. The

activation of GPR43 by SCFA can produce different effects

according to different cell types. For example, it induces Nod-like

receptor protein 3 (NLRP3) inflammatory vesicle activation and IL-

18 secretion in colonic epithelial cells, promotes neutrophil

recruitment to sites of inflammation, and enhances the

differentiation and suppressive function of FOXP3+ regulatory T

(regulatory T, Treg) cells (39). SCFAs (butyric and propionic acids)

also exert their ability to modulate inflammatory and immune

responses by inhibiting HDAC activity. When SCFAs enter cells

by passive diffusion or through transmembrane vectors (e.g.,

SMCT1 and MCT1), they can directly bind to intracellular

HDAC and inhibit its activity, which, in turn, inhibits the

activation of the nuclear factor-kB (NF-kB). Emerging evidence

suggests that butyric acid enhances p65 acetylation by inhibiting

HDAC3 and HDAC6, also altering the lysine acetylation of non-

histone proteins such as NF-kB subunit p65, leading to differential

recruitment of NF-kB to pro-inflammatory gene promoters in vitro

and in vivo (40). In addition, SCFAs, particularly butyric acid, have

recently been found to be activators of intracellular receptors that

control immune responses, such as peroxisome proliferator-

activated receptor-g (PPARg) (41) and the aromatic hydrocarbon

receptor (42). Additionally, butyric acid can provide acetyl groups
FIGURE 2

Inflammatory mechanisms of Mets and effector pathways of SCFA. The figure is drawn with Figdraw.com. (A) In Mets, hypertrophied adipose tissue
disrupts intestinal barrier protection and promotes intestinal absorption of antigenic substances from the gut, which, in turn, induces an inflammatory
immune response. (B) SCFA exerts its biological effects by inhibiting HDAC or activating GPCRs. LPS, lipopolysaccharides; OVA, ovalbumin; TG,
triglycerides; NK, natural killer; TH, T-helper cell; Treg, T-regulatory cell; HDAC, histone deacetylase; GPCRs, G protein-coupled receptors.
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for histone acetylation (43). Butyrate affects gene expression in

intestinal epithelial cells, macrophages, dendritic cells, and

lymphocytes (especially Treg cells) by increasing histone

acetylation and increasing the amount of open chromatin (44–

46). Studies have observed that the effects of butyrate on immune

and nonimmune cells result in alterations in pathways related to the

cell cycle, cellular differentiation, antimicrobial responses,

inflammation, fatty acid metabolism, and oxidative stress-related

alterations in various pathways (46–48).

Overall, the diverse molecular targets of SCFAs illustrate that

different SCFAs in different tissues can target immune and non-

immune cells, modulate immunity in the gut and distal organs, and

potentially protect against immune-mediated diseases.
5 Chronic inflammation due to gut
microbial disorders contributes
to Mets

Gut microbes play a key role in maintaining physiological

functions as they regulate host nutrition, energy harvesting,

epithelial homeostasis, immune system, and drug metabolism

while maintaining homeostasis (49). If the gut microbes are

disturbed, the pre-existing homeostasis in the organism is

disrupted and oxidative stress, mitochondrial dysfunction,

epigenetic alterations, and, ultimately, Mets, occur (e.g., Figure 3).
5.1 Oxidative stress

Reactive oxygen species (ROS), including hydroxyl radicals,

superoxide anion, and hydrogen peroxide, which are formed during

the one-electron reduction of molecular oxygen, regulate a number of

signaling pathways in the intestine and are considered to be central

regulators of intestinal stem cell functions (50). Overproduction of

ROS can occur in obesity, insulin resistance, hyperglycemia, chronic

inflammation, dyslipidemia, and other pathologic diseases (51). Many

studies have found that patients with Mets have lower plasma

antioxidant enzyme activity and more biomarkers of oxidative

damage compared to healthy individuals, which may contribute to

oxidative stress (52). The overproduction of ROS leads to an oxidative

stress environment, which also disrupts redox signaling and control,

leading to an increase in growth factors and stress response

components and activation of apoptotic pathways (53, 54).

Disrupted redox signaling also promotes pro-inflammatory and

pro-fibrotic pathways, affecting insulin metabolic signaling and

endothelial dysfunction, and promoting cardiovascular and renal

inflammation and fibrosis (54, 55), which can lead to target organ

damage and the emergence of major components of Mets, such as

hyperglycemia and hypoglycemia.

The direct and indirect mechanisms by which SCFAs regulate

oxidative stress are through activation of the Keap1-Nrf2 cell

signaling pathway (56, 57). In terms of the direct mechanism,

SCFAs bind to the GPCR receptor to induce the direct activation

of nuclear factor Nrf2 (58), and butyrate induces the activation of
Frontiers in Immunology 05
nuclear factor Nrf2 by recognizing the GPR109A receptor, which

encodes an antioxidant enzyme that inactivates ROS (59). On the

other hand, butyrate has a synergistic effect on Nrf2 activation

because it diffuses into the cell lumen and indirectly activates Nrf2-

dependent gene translocation and transcription by inhibiting HDAC

and increasing the production of histone H3K9ac, which induces

epigenetic modification of the Nrf2 promoter (56, 57, 60, 61).

However, different types of SCFAs have different effects on ROS,

and it has been shown that butyrate, propionate, and acetate

treatments have reduced, no, or increased effects on ROS

production in rat neutrophils (62). Among them, for acetate, which

promotes the release of ROS from mouse neutrophils through the

activation of GPR43 (63), the more plausible explanation for this

phenomenon is the view of some researchers in the field of

immunology, who believe that SCFAs may modulate inflammatory

diseases by accelerating pathogen clearance through the activation of

ROS (24). In fact, butyric acid does induce apoptosis or inhibit cell

proliferation by increasing ROS levels, which, in turn, inhibits cancer

progression (64, 65). The exact mechanism of SCFA and ROS needs

to be continued to be explored by researchers.

Deletion of HDAC Sirtuin-1, an important target of SCFA, affects

Mets as a result of activation of the phosphatidylinositol 3 kinase

(PI3K)–mammalian target of rapamycin (mTOR) signaling pathway

(66, 67). Activation of sirtuins and reduction of oxidative stress

through the use of resveratrol are thought to prevent chronic

inflammation (68), but paradoxically, the findings of oral resveratrol

for improvement of glucose homeostasis and cardiovascular

characteristics are divergent (69), but the feces of mice transplanted

and fed with resveratrol were better than those of oral administration

(70), which may be related to the route of administration, which

reinforces the role of enterobacteria in the amelioration of

inflammation-associated Mets. Recent studies have shown that

seaweed cellulose (71), seaweed polysaccharides (72), acetate (73, 74),

fermented sea buckthorn juice (75), and dry-cured ham (76) inhibit

oxidative stress and therefore have great potential in controlling Mets

as providing new perspectives in the prevention and treatment of Mets.
5.2 Mitochondrial dysfunction

Mitochondria are the main site of biological oxidation and the

center of energy metabolism in the organism. At the same time,

mitochondria are also highly dynamic organelles that are remodeled

through biosynthesis, division and fusion, autophagy, and other

processes to achieve mitochondrial homeostasis (77).

Mitochondrial dysfunction occurs when mtDNA mutations,

kinetic imbalances, and oxidative stress occur in mitochondria.

Mitochondrial dysfunction and subsequent excess ROS production

promotes insulin resistance through activation of the c-Jun amino-

terminal kinase (JNK) and NLRP3 inflammatory vesicles, leading to

the inactivation of the insulin receptor substrate (IRS)1/PI3K/

serine/threonine kinase (Akt) pathway, which promotes insulin

resistance progression (78). The main pathogenic mechanism of

Mets is closely related to insulin resistance, and the study of

mitochondrial dysfunction is undoubtedly an important target for

attacking Mets.
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It has been shown that SCFAs such as propionate and butyrate

enhance mitochondrial biogenesis (79). SCFA supplementation may

prevent colonic inflammation and dysregulated mitochondrial energy

metabolism by improving the balance between Treg cells and Th17

cells, increasing mitochondrial ETC activity and oxidative

phosphorylation (80), but there are very few studies on SCFA and

mitochondrial autophagy, among others. It has been well

documented that mitochondrial dysfunction is associated with

Mets and that abnormal mitochondrial autophagy leads to

impaired mitochondrial function and is involved in the

development and progression of Mets (81, 82). It has been

demonstrated by flow cytometry analysis that propionate induced

Dy loss, leading to aberrant mitochondrial autophagy (83), and that

butyrate restored PRKN expression by blocking RELA nuclear

translocation and directly inhibiting HDAC8 in the nucleus, which,

in turn, ameliorated mitochondrial autophagy in high-glucose-

inhibited neuronal cells (84). Mitochondrial autophagy has many

cellular pathways in Mets, such as the classical PINK1/Parkin

pathway, the mitochondrial autophagy receptor FUNDC1, and the

BINP3/NIX pathway, which are closely associated with Mets-

associated metabolic disorders, such as type 2 diabetes (85), obesity

(86), heart disease (87), and NAFLD (88), respectively. However, two

important proteins related to the regulation of mitochondrial

autophagy in glucolipid metabolism are currently underappreciated

in the context of Mets. FK506-binding protein 8 (FKBP8), a

mitochondrial autophagy-recognizing protein, mediates
Frontiers in Immunology 06
mitochondrial autophagy and fragmentation (89), which

dynamically regulates pancreatic islet b-cells and glucose-stimulated

insulin secretion (90). Theoretically, FKBP8 is important in the

development of insulin resistance or T2DM. However, there are

fewer studies on FKBP8. Similarly, BCL-2-like protein 13 (BCL2L13)

is a mitochondrial outer membrane protein involved in

mitochondrial division in mammalian cells; BCL2L13 is important

in the control of apoptosis, mitochondrial fracture, and the

promotion of mitochondrial autophagy (91); BCL2L13 can play a

role in the promotion of adipogenesis by regulating mitochondrial

autophagy process to maintain mitochondrial quality control (92,

93). BCL2L13 may be a promising biomarker as a potential drug

therapeutic target for Mets. However, no relevant studies have

emerged with Mets.
5.3 Epigenetic changes

Since the common aggregation of obesity cannot be explained

by common environmental conditions alone, the heritability of

obesity is widely believed to be between 40% and 70%. However, the

risk loci associated with BMI revealed in genome-wide association

studies can only explain approximately 16% of heritability, even

after taking into account their superimposed effects (94). As a result,

epigenetic mechanisms have become the focus of obesity research in

the past few years to explain inherited deletions. Epigenetic
FIGURE 3

Mechanisms associated with SCFA ameliorating Mets by modulating oxidative stress, mitochondrial dysfunction, and epigenetic alterations. The
figure is drawn with Figdraw.com. ROS, reactive oxygen species.
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mechanisms describe processes that affect the DNA surrounding

the transcription of a gene without changes in the DNA sequence

itself. Examples include adding methyl groups to cytosine and then

adding guanosine (CpG site) to the sequence. Other mechanisms

alter the structure of chromatin, for example, through modifications

such as methylation, acetylation, or phosphorylation of histones.

Several studies have observed differences in methylation levels at

different CpG sites between obese and lean individuals and after

weight loss interventions (95–97).

SCFAs achieve epigenetic regulation through HDAC inhibition,

increase mitochondrial b-oxidation, and prevent high-fat diet-

induced insulin resistance, thereby improving glucose sensitivity

and obesity. Epigenetic mechanisms have also been shown to play

an important role in the regulation of genes involved in

inflammatory processes and have been closely linked to SCFA-

producing bacteria and metabolic diseases. SCFAs are thought to

influence inflammation and chronic diseases (98), and butyric acid

can regulate gene expression by inhibiting HDACs, which, in turn,

prevents HDACs from suppressing the expansion of anti-

inflammatory Treg cells. Butyrate and, to a lesser extent,

propionate induced the differentiation of colonic Treg cells to

suppress inflammatory and allergic responses in the gut (44).

GPR43 and GPR41 also triggered the inhibition of HDAC 1 (99),

which enhanced the apoptosis of activated T cells, thus possessing

anti-inflammatory potential. It has been shown that mice lacking

Toll-like receptor 4 (TLR4) or under antibiotic treatment display

reduced LPS and are protected from systemic lipid infusion and

alleviate Mets (100). Surprisingly the inhibition of TLR4 gene

transcription can be mediated by DNA methylation and histone

deacetylation (101), which are both associated with epigenetic

mechanisms and have not been linked to SCFA by any

investigator, which is a good therapeutic target.
6 Effects of SCFA in components of
the inflammatory Mets and
its complications

After SCFA is absorbed by the intestine, part of it is utilized

locally as fuel for intestinal epithelial cells, and the other part enters

the portal vein to enter the blood circulation, which improves Mets-

associated disorders of glucose and lipid metabolism as well as

cardiovascular, reproductive, and neurological complications by

exerting anti-inflammatory effects (e.g., Table 1, Figure 4).
6.1 Type 2 diabetes

Type 2 diabetes is strongly associated with insulin resistance.

The potential mechanisms of intestinal microbial translocation to

the pancreas are unknown, and one possibility that has been

suggested is via the pancreatic ducts (102), while another may be

via the portal vein via the bloodstream from the distal

gastrointestinal tract (103). Translocation of flora triggers innate

and adaptive immune responses and induces inflammation in
Frontiers in Immunology 07
colonized tissues or organs; interestingly, translocation of

Enterococcus and Escherichia coli leads to acute pancreatitis (104).

Inflammatory diseases, such as inflammatory bowel disease (IBD),

are known to be associated with higher intestinal permeability

(105), and increased intestinal permeability can also lead to

increased commensal bacterial translocation (106). There is a

large body of research showing that patients with IBD have a

higher risk of developing a number of pancreatic diseases,

including type 2 diabetes (107), pancreatitis (108), and pancreatic

cancer (109). In terms of metabolic diseases, a national cohort study

from Denmark showed that patients with IBD are at a higher risk of

developing type 2 diabetes (110), suggesting that intestinal

inflammation is strongly associated with insulin resistance.

Notably, it was found that mutations in autoimmune-related

genes overlap between IBD and type 1 diabetes (T1D), such as

protein tyrosine phosphatase non-receptor type 2 (PTPN2) and

PTPN22, which negatively regulate T-cell activation (111) and alter

the composition of the gut microbiota in IBD patients (112). This

suggests that the association between T1D and IBD may involve

immune dysfunction and increases the likelihood of overlapping

genes between IBD and diabetes.

SCFAs improve insulin sensitivity through multiple pathways.

In terms of inflammation, SCFA can inhibit intestinal and systemic

inflammatory responses and reduce the release of pro-inflammatory

factors, thereby improving the mechanism of insulin action (113,

114). For example, SCFA can enhance the barrier function of

intestinal epithelial cells, reduce intestinal permeability, and

prevent endotoxin from entering the circulation (115). In

addition, acetate, propionate, and butyrate also appear to regulate

hepatic glucose metabolism through activation of AMP-

activated protein kinase (AMPK) and promotion of PPARg on

gluconeogenesis (116).

Although clinical studies have demonstrated a relationship

between SCFA and insulin resistance, these results of clinical

interventions have been variable. Several systematic evaluations

and meta-analyses suggest that increased intake of SCFA may be

beneficial in reducing fasting insulin levels and improving insulin

sensitivity (117, 118). However, many trials suffered from poorly

considered experimental designs, and future studies need to pay

attention to assessing several factors, such as the different types of

SCFA (acetic acid, propionic acid, butyric acid, or mixtures thereof),

the form of SCFA administration (fiber-rich diets or capsules

containing sodium salts or inulin esters), the duration of the

intervention, the route of administration (oral or intravenous

infusion), and patient adherence.

SCFAs can also play a role in islet cytoprotection, and butyrate

treatment of non-obese diabetic mice reduced the proportion of

inflammatory/regulatory macrophages through the SHIP-1/PI3K

pathway, which suppressed the frequency of diabetogenic IFN-

g+CD8+ T cells in the pancreas and reduced diabetes incidence

(119). The addition of SCFAs (especially butyrate) to islet cell

culture dishes increased the production of the antimicrobial

peptide CRAMP by islet b-cells (119), but the exact mechanism

involved in the regulation of the antimicrobial peptide CRAMP

through which mechanism, GPCRs or HDAC, is not known and

needs to be further investigated.
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TABLE 1 Summary of substances whose target SCFAs improve Mets by inhibiting inflammation.

Veterinary
drug

Target point Findings related to Mets Reference Research design

Seaweed
cellulose

Antioxidant Reduces malondialdehyde (MDA) and
superoxide dismutase (SOD), enhances total
antioxidant capacity (TAC), and inhibits
oxidative stress.

(72, 276) SC was administered to high-fat sugar diet (HFSD)-induced
C57BL/6 mice by intragastric gavage at 250 or 500 mg/kg
bw/day for 6 weeks.

Acetate
circumvents

Inhibition of
PDK4/
NLRP3
inflammasome

Improves insulin resistance, decreases
testosterone and leptin, and increases
adiponectin levels; decreases lipid deposition,
malondialdehyde, inflammatory mediators
(nuclear factor-kB and tumor necrosis factor-
a), lactate dehydrogenase, lactate/pyruvate
ratio, HDAC, and PDK 4 in skeletal muscle;
and increases glycogen synthesis, glutathione,
and NrF2.

(73) Eight-week-old female Wistar rats were divided into three
groups (n = 6) and treated with drug, letrozole (1 mg/kg)
and letrozole plus acetate (200 mg/kg). The drugs were
administered orally for 21 days.

Acetate NF-kB/NLRP3
immune response

Attenuation of hyperandrogenism, apoptosis,
oxidative stress and NF-kB/NLRP3
immunoreactivity eliminates renal dysfunction
in animals with experimental polycystic
ovary syndrome.

(74) Eight-week-old female Wistar rats were randomized into
four groups (n = 6) to receive drug, sodium acetate (200
mg/kg), letrozole (1 mg/kg), and letrozole plus sodium
acetate. The drug was administered orally once daily for
21 days.

Sea buckthorn
juice via
fermentation

Flavonoids Flavonoids promoted interactions between FHJ
and probiotics such as Akkermansia and
Lachnospiraceae. Additionally, FHJ increased
SCFAs associated with improvements in
multiple sclerosis.

(277) High-fat dietary chow HFD and BHJ supplements were fed
to C57BL/6 mice for 16 weeks.

Xuanwei
Ham Proteins

Antioxidant,
AMPK/
Nrf2 activation

Maintains low serum levels of TC and LDL
cholesterol and has high antioxidant activity.
This regulation of lipid metabolism and
oxidative stress may be related to AMPK/
Nrf2 signaling.

(76) C57BL/6 mice were fed a diet containing casein, raw ham
protein (XWH0), or Xuanwei ham protein (XWH1, XWH2,
or XWH3) after maturation for 1, 2, or 3 years for 4 weeks.

Propionate
and butyrate

Mitochondrial
biogenesis

Enhances mitochondrial biogenesis and
promotes early neurogenic differentiation of
neural stem cells through ROS and extracellular
signal-regulated kinase 1/2-
dependent mechanisms.

(79) C57BL/6N male non-littermate mice were fed a high-fat,
choline-deficient diet for 14 and 24 weeks.

Butyrate M6A
methyltransferase
METTL3,
NLRP3 protein

Inhibition of the expression of the m6A
methyltransferase METTL3 resulted in a
decrease in FOSL2 m6A methylation levels and
mRNA expression. In addition, NLRP3 protein
expression and inflammatory cytokine (IL-6
and TNF-a) expression were downregulated in
KGN cells.

(278) The human ovarian granulosa cells were treated with several
doses of butyric acid (BA) (1.1 mg/mL and 11 mg/mL) in
DMEM/F12 media for 24 h in six-well cell plates.

Cedryl acetate
ameliorates
adiposity

Adipose tissue Regulation of metabolism-related gene
expression in mouse liver (including Pepck,
G6Pase, and Fbp1) and epididymal white
adipose tissue (including PPARg, C/EBPa,
FABP4, FAS, Cytc, PGC-1a, PRDM16, Cidea,
and COX4).

(279) Three groups of 10-week-old C57BL/6J mice were fed chow,
a high-fat diet, or a high-fat diet supplemented with CA
(100 mg/kg) for 19 weeks.

Tea catechins PPARa Significantly alleviates obesity and low-grade
inflammation. Reduces hepatic steatosis and
upregulates hepatic peroxisome proliferator-
activated receptor alpha (PPARa) mRNA and
protein expression.

(280) Green, oolong, and black tea catechins in high-fat diet
(HFD)-fed C57BL/6J mice.

Dietary betaine miR-378a/YY1
regulating axis

Increasing two major members of SCFAs,
including acetate and butyrate, regulates DNA
methylation levels in the host miR-378a
promoter, thereby preventing obesity and
glucose intolerance.

(281) 8-week-old Kunming mice were initially supplemented with
a 200-mL combination of four nonabsorbable antibiotics,
namely, ampicillin, neomycin, metronidazole, and
vancomycin (Sangon Biotech, China) via oral gavage daily
(10 mg of each antibiotic per mice per day). After 10 days,
the oral gavage was changed to ad libitum administration in
drinking water (1 g/L ampicillin, 1 g/L neomycin, 1 g/L
metronidazole, and 500 mg/L vancomycin) for
indicated durations.

(Continued)
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TABLE 1 Continued

Veterinary
drug

Target point Findings related to Mets Reference Research design

Bletilla
striata
oligosaccharides

Inhibition of
Mcp-1 and Cd11c
(a macrophage
membrane
molecule)
overexpression in
white
adipose tissue

Prevents weight gain, reverses glucose
intolerance and insulin resistance, and inhibits
adipocyte hypertrophy. BO-treated mice also
inhibited chronic inflammation and protected
the intestinal barrier from disruption.

(282) Treatment of high-density lipoprotein cholesterol (HFD)-
fed 6-week-old C57BL/6 J male mice with BO for 5 months.

SCFA mixtures
(acetate,
propionate,
and butyrate)

Phospho-NF-kB
(P-NF-kB) and
iba1, and
cellular mortality

Significant downregulation of inflammatory
cytokines TNF-a, MCP-1, IL-6, and IFN-Υ,
reduction of inflammatory mediators phospho-
NF-kB (P-NF-kB) and iba1, and cellular
mortality in mice infected with Japanese
encephalitis virus.

(283) BALB/c mice on day 10 of life were given intraperitoneal
injections of SCFA mixture (acetate, propionate, and
butyrate) or PBS for 7 days, followed by JEV infection.

Acetate Regulation of
mitomycin-
2 (MFn2)

Decreased inflammation in the ovary (tumor
growth factor and nuclear factor-kB), caspase-6,
elevated hypoxia-inducible factor-1a, and
decreased histone deacetylase-2 (HDAC2).
Ameliorates mitochondrial abnormalities
observed in rats with polycystic ovary
syndrome, elevates adenosine triphosphate
synthase and MFn2. Ameliorates ovarian
mitochondrial abnormalities.

(223) Eight-week-old female Wistar rats were randomized into
four groups (n = 5). Polycystic ovary syndrome was induced
with 1 mg/kg letrozole (orally) for 21 days. Afterwards, the
rats were administered acetate (200 mg/kg; orally) for 6
consecutive weeks.
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FIGURE 4

SCFAs exert anti-inflammatory effects in components of Mets. The figure is drawn with Figdraw.com. LPS, lipopolysaccharides; OVA, ovalbumin; TG,
triglycerides; NK, natural killer; TH, T-helper cell; Treg, T-regulatory cell.
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6.2 Disordered lipid metabolism

Aseptic inflammation promoted by a high-calorie or high-fat

diet can disrupt the gut microbiota and lead to metabolic

endotoxemia, which can trigger activation of innate immunity

(120). A growing body of evidence indicates that a specific group

of bacterial species are associated with obesity and related

metabolic defects such as insulin sensitivity by regulating lipid

metabolism and systemic inflammatory responses (121–123).

Whereas SCFAs play an important role in lipid metabolism,

SCFAs not only participate in lipid metabolism as substrates,

but also act as regulators to modulate lipid metabolism. As a

member of the fatty acid family, SCFAs provide substrates for lipid

synthesis. SCFAs can be converted to acetyl coenzyme A to generate

energy through the tricarboxylic acid cycle (124). In addition, acetate,

as a precursor for the synthesis of palmitic and stearic acids, in turn

promotes hepatic fatty acidmetabolism (125). At the same time, acetyl

coenzyme A converted by SCFAs can also generate palmitic acid

through the action of the cytoplasmic enzyme system, and palmitic

acid can be transferred to the mitochondria to promote the formation

of triglycerides and be stored in adipose tissue (126). Li showed that

butyric acid increased fatty acid oxidation in brown adipose tissue and

improved diet-induced obesity and insulin resistance (127). Butyric

acid also promotes white tissue browning, morphologically reduces

adipocyte size, and increases the number of multicellular

adipocytes (126).

In specific inflammation-related mechanisms, the AMPK

signaling pathway is involved in lipid metabolism and increases

PGC-1a expression in adipose tissue and skeletal muscle (128), and

chronic AMPK activation via loss of FLCN induces functional beige

adipose tissue through PGC-1a/ERRa, as PGC-1a regulates the

transcriptional activity of various transcription factors, including

PPARa and PPARg (129). Furthermore, it has been shown that

activation of the AMPK signaling pathway promotes the expression

of hormone-sensitive lipase (HSL) and adipose triglyceride lipase

(ATGL) as the main enzymes of lipolysis, and promotes lipolysis

(130, 131).However, there are findings that are controversial with

them, and one study found that SCFAs can reduce protein kinase A

(PKA) activity by inhibiting adenylate cyclase (132), which, in turn,

leads to dephosphorylation and inactivation of HSL in adipose tissue

(133). Similarly, Jocken et al. found that acetate exerts anti-lipolytic

effects by inhibiting the phosphorylation activity of HSL in human

pluripotent adipose tissue-derived stem cells (134). Surprisingly,

however, it was recently found that activation of AMPK in murine

hepatocellular carcinoma cells inhibits hepatic fatty acid synthesis via

suppression of sterol regulatory element-binding protein 1C (SREBP-

1C), a major regulator of hepatic adipogenic gene expression (135),

which is a potential therapeutic target.
6.3 Hypertension

Hypertension is one of the important components of Mets, and

hypertensive patients have higher levels of IL-6, IL-8, and TNF-a in

the blood (136). The systemic inflammatory state adversely affects

the body’s RAAS system and the vascular endothelial system,
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leading to elevated blood pressure, which increases intestinal

inflammation and permeability in patients (137); it can affect

intestinal physiology and decrease the abundance and diversity of

intestinal flora, thus decreasing the concentration of SCFAs. SCFAs

exert their regulatory functions mainly through the inhibition of

HDACs and the activation of Gpr43 and Gpr109a, and intervene in

the key factors of kidney and brain through the mechanism of

renal–intestinal axis and brain–intestinal axis, which not only

control inflammation to regulate blood pressure, but also

influence metabolism and immunity to regulate blood pressure.

Specifically, in terms of immuno-inflammation, SCFA can achieve

the occurrence and development of hypertension by regulating

effector T cells, helper T cells (Th), and regulatory T cells (Treg).

In terms of effector T cells, in the active immune response state,

SCFAs promote effector T-cell generation and, at the same time, can

increase the cytotoxicity of CD8+ T cells and the ability to generate

IL-17, whereas in the physiological state, SCFA promotes the body’s

immune tolerance to effector T cells through the increase in the

generation of IL-10, which, in turn, can have an inhibitory effect on

chronic inflammatory responses in hypertension (138). In terms of

Th, infusion of Ang II into the spleens of wild-type mice increased

the level of CD4+ effector memory T cells (CD44+CD62−) and

decreased the level of CD4+ initial T cells (CD44−CD62+),

resulting in the release of the inflammatory factors IL-17a and

IFN-g from Th17 and Th1, respectively. This, in turn, promotes the

development of hypertension and its target organ damage, which is

reversed by propionate supplementation (139). This suggests that

propionate can ameliorate the inflammatory response by inhibiting

the increase in the number of effector T cells and Th17 cells, thereby

decreasing IL-17a secretion. With regard to Treg, SCFA increases

histone acetylation by inhibiting HDAC, which can differentiate

primitive T cells into Treg and increase Foxp3 expression via Gpr43,

thereby increasing Fox P3+ T-cell activity and IL-10 production

(140), producing an anti-inflammatory effect and thus alleviating

the progression of hypertension (139). It has also been suggested

that its antihypertensive properties may be due to the binding of

SCFA to Gpr43 in the lamina propria of intestinal epithelial cells,

resulting in the polarization of T cells and their conversion to Treg,

which then migrate and accumulate in the renal cortex (141). In

addition, the proportion of methylated regions in genes related to

Treg function increased to different degrees, and supplementation

with acetate altered the level of DNA methylation in Treg-activated

regions, suggesting that SCFA regulates the methylation of

functional genes in T cells and thus activates Treg. However, Gill

(142) found that short-term increases in systemic acetate and

propionate levels did not alter Treg levels in mice, suggesting that

the concentration of SCFA has a strong influence on the outcome of

their effects in immunization. However, different types of SCFA

have different effects on blood pressure, and propionate may have a

better effect on blood pressure control compared with butyrate. In

spontaneously hypertensive rats, butyrate treatment did not affect

intraocular pressure and caused only a transient decrease in blood

pressure (143). In contrast, propionate significantly reduced systolic

and diastolic blood pressure in angiotensin (Ang) II mice,

ameliorating systemic inflammation, cardiac damage, and

vascular dysfunction (144).
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6.4 Obesity

Obesity-induced systemic inflammation can contribute to the

development of a number of non-communicable chronic diseases,

such as type 2 diabetes, chronic liver disease, arthritis, and certain

types of cancer (145). In obesity, two main mechanisms are

involved in systemic inflammation. First, inflammation is driven

by adipose tissue macrophages (ATMs). Significant enlargement of

adipose tissue due to excess energy intake stimulates macrophage

polarization from the anti-inflammatory M2 type to the pro-

inflammatory M1 type (146). M1-type macrophages cause further

inflammation by producing pro-inflammatory cytokines such as

TNF-a and IL-6 (147). In addition, the inability of M1-type

macrophages to buffer lipids leads to lipid spillover into the

circulation and activation of pro-inflammatory cascades (147).

Second, systemic inflammation in obesity can also be caused by

metabolic endotoxemia, a condition characterized by elevated levels

of circulating endotoxins, including LPS. In obesity, increased

intestinal permeability due to dysbiosis of the intestinal flora

affects the tight junction proteins in the intestinal lumen, which,

in turn, leads to infiltration of LPS into the blood circulation (148).

Elevated metabolic danger signals, free fatty acids (FFAs), and the

bacterial danger signal, LPS, activate the NF-kB and MAPK pro-

inflammatory pathways, which are regulators of systemic

inflammation in obesity, by binding to TLRs (149), resulting in

the transcription of pro-inflammatory cytokines, such as TNF-a,
IL-6, and IL-1b, which initiate systemic inflammation (150).

To date, one of the most effective treatments for obese chronic

low-grade systemic inflammation is weight loss (151). Bariatric

surgery results in significant weight loss, leading to a significant

reduction in the systemic inflammatory response (152), with

significant reductions in the pro-inflammatory cytokines CRP,

TNF-a, and IL-6 (153). SCFAs are a non-invasive, novel,

alternative treatment for systemic inflammation in obesity

compared to the invasive treatment of bariatric surgery. Whereas

SCFAs can inhibit LPS-induced inflammation (154), in addition to

that, SCFAs have many anti-inflammatory mechanisms (155, 156).

Treating SCFA modulates the expression of FFAR and HDAC

genes involved in key inflammatory pathways in monocytes and

ATMs of obese subjects. First, SCFAs play an important role in

obesity systemic inflammation by regulating FFARs. Their key

targets are free fatty acid receptor (FFAR) 2, which is mainly

expressed in immune cells, and FFAR3, which is mainly

expressed in pancreas, spleen, and adipose tissue, both of which

are associated with metabolic diseases such as obesity and T2DM

(156). FFAR2 and FFAR3 are upregulated by LPS stimulation in

monocytes and macrophages (157). Second, SCFAs can inhibit

HDACs, leading to downregulation of NF-kB and MAPK pro-

inflammatory pathways (156). Jeong found that inhibition of

HDAC1–3 reduced LPS-induced phosphorylation of p38MAPK,

which, in turn, reduced LPS-induced expression of TNF-a and IL-1

b (158). Propionate- and butyrate-mediated inhibition of HDACs

in SCFAs plays an important role in the downregulation of the

MAPK pro-inflammatory pathway. The SCFAs butyrate and

propionate interact predominantly with HDACs 1 and 2, which

are located in the nucleus, in addition to HDACs 3, 4, 5, 6, 7, and 9,
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which are shuttled between the cytoplasm and the nucleus (159).

Butyric and propionic acids, considered to be the most potent

HDAC inhibitors, have previously been shown to inhibit TNF-a
production and NF-kB activity, whereas evidence suggests that

acetic acid has little ability to inhibit HDAC activity (45, 160, 161).

The type and concentration of SCFA also affect the

concentration of inflammatory factors in obese patients, and

several studies have shown that butyrate, propionate, and acetate

all significantly reduced TNF-a and IL-6 production in LPS-

stimulated monocytes from obese subjects. Only the degree of

inflammatory factors reduced by different SCFA species varied,

with acetate and butyrate significantly reducing TNF-a production

by LPS-stimulated ATMs, and propionate and butyrate significantly

reducing IL-6 (162, 163). However, Cox showed that SCFAs (0.2–20

mmol/L) were effective in reducing LPS-induced TNF-a in PBMCs,

but not in human monocytes. Few studies have measured the effect

of SCFAs on obese ATMs. Al-Lahham showed that 3 mM propionic

acid significantly reduced LPS-stimulated TNF-a responses in

ATMs (164). However, some studies did not observe an

inhibitory effect of propionate on TNF-a production, which may

be related to the concentration of propionate (163). Since ATMs are

less responsive to LPS stimulation than monocytes and adipose

tissue is difficult to obtain, there are few studies related to the effect

of SCFAs on inflammation in human ATMs, but this study is

related to the important mechanism of chronic inflammation in

obesity, so attention should be paid to the techniques of adipose

tissue extraction and the effect of SCFAs on inflammation in ATMs.
6.5 Nonalcoholic fatty liver disease

The liver is involved in fat synthesis and is therefore closely

related to Mets. The intestine and liver are closely connected

through the portal vein and the biliary system. Enteric substances

such as digested food fragments (amino acids, lipid fragments, and

monosaccharides), intestinal microbial products, and exogenous

toxins enter the liver via the portal vein (165). Animal studies have

also demonstrated that during high-fat diet-induced NAFLD, there

is a gradual increase in LPS levels and changes in the composition of

the intestinal flora (166) and that the exacerbation of NAFLD to

NASH is also associated with an increase in LPS levels (166). It can

be seen that rapidly proliferating bacteria and their metabolites

enter the portal vein through the damaged intestinal wall, and the

inflammatory response caused by the level of LPS, which activates

the cascade immune response and causes hepatic inflammation, is

the key to the occurrence as well as further deterioration of NAFLD.

Intestinal SCFAs can reach the liver through the hepatic portal vein.

In vivo and in vitro studies have found that the anti-inflammatory

effects of butyrate on the liver are mainly mediated through Kupffer

cells. In vivo in rats, butyric acid infusion through the portal vein

enhances the production of the immunosuppressive arachidonic

acid metabolite, prostaglandin E2 (PGE2), by Kupffer cells. In vitro,

butyric acid supplementation of Kupffer cells also increased PGE2

production and inhibited TNF secretion (167).

Two inflammatory mechanisms can be found in NAFLDmouse

models, both of which can be mediated by microbial components
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such as LPS, and they can be transferred from the intestinal lumen

to the liver through the portal vein. One mechanism is that they are

recognized by pattern recognition receptors such as TLRs in the

liver, e.g., TLR4, leading to hepatic inflammation, hepatocellular

injury, and liver fibrosis (168). Similar pathways have been

suggested to contribute to the development of NAFLD. Activation

of inflammatory vesicles, especially the NLRP3 inflammatory

vesicle, is thought to be another trigger of the hepatic

inflammatory response to LPS. Activation of NLRP3 in the liver

leads to activation of caspase 1 and production of IL-1b and several

other inflammatory cytokines, ultimately leading to programmed

cell death, inflammation, and fibrosis. NLRP3 was significantly

upregulated in the livers of NASH patients compared with

steatosis alone (169), and hepatic inflammatory vesicle fractions

correlated with ALD activity (170). On the other hand, NLRP6 and

NLRP3 inflammatory vesicle defects regulate the gut microbiota,

leading to gut barrier dysfunction and exacerbating steatohepatitis

in mice (171).

SCFAs may exert an anti-inflammatory response through

activation of GPR41/43 and AMPK and inhibition of HDACs,

which is beneficial for the treatment of NAFLD (172). In rodents,

enteral administration of acetate and butyrate has been shown to

induce the expression of beta-defensin and histone inhibitor-related

antimicrobial peptides in intestinal epithelial cells in a GPR43-

mediated manner as a means of protecting the intestinal barrier and

organizing the inflammatory response induced by, among others,

LPS (173). Activation of GPR43 on adipocytes inhibits lipolysis and

reduces plasma free fatty acid levels in the binding mechanism of

SCFAs to the GPRs (174). Similarly, GRP41/43 knockout mice

exhibit a smaller trend toward obesity (175, 176).

In addition to the immuno-inflammatory mechanisms

associated with binding to GPRs, SCFAs enter the liver directly

through the portal vein and promote triglyceride synthesis (from

acetic acid) and gluconeogenesis (from propionic acid), which have

been implicated in the development of NAFLD (177). Rau et al.

(178) found that patients with NAFLD had a significantly higher

abundance of SCFA-producing bacteria in their feces and that

higher levels of fecal SCFAs (acetate and propionate) were

associated with higher Th17/Treg cell ratios in the peripheral

blood, convincingly suggesting that the gut microbiome may

modulate the immune response and contribute to disease

progression through the production of greater amounts of SCFAs.

Compared to healthy human controls, patients with NAFLD and

NASH (179) had increased concentrations of SCFAs in their feces,

as well as an increased abundance of bacterial flora involved in their

production, and the immune cell profiles of both were altered. In

detail, this increased fecal SCFA observed in NASH was associated

with a decreased number of resting Treg cells (CD4+CD45RA

+CD25+) and a higher ratio of Th17 cells to resting Treg cells in

the peripheral blood, which is a systemic immune feature observed

in NASH (180).

SCFA also prevents and ameliorates NAFLD by protecting

hepatocytes, and studies suggest that butyric acid has two

mechanisms of action for PPAR receptors to protect hepatocytes.

On the one hand, butyric acid prevents the decreased expression of

PPAR-g in the liver, which promotes fatty acid uptake, increases
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insulin sensitivity (181), and decreases the expression of pro-

inflammatory cytokine gene (IL-1b and TNF-a) macrophage

infiltration-specific markers F4/80, which leads to a significant

reduction of F4/80+ cell infiltration and anti-inflammatory

cytokines in the liver of mice (IL-4 and IL-10) and activation of

hepatic Kupffer cells, thereby preventing liver injury and

inflammation in NAFLD mice (182). On the other hand, butyric

acid acts as an HDAC inhibitor, upregulates PPAR-a expression,

and promotes the binding of the NF-kB classical subunit p65 by

increasing the acetylation of H3K9Ac on the PPAR-a promoter,

thereby inhibiting the inflammatory response (183). In addition, the

finding that SCFAs can reduce the expression of hepatic genes

involved in NAFLD, mainly lipogenic genes such as those encoding

acetyl coenzyme A carboxylase, fatty acid synthetase, and sterol

regulatory element-binding protein 1c (cholesterol regulatory

element-binding protein-1c (184)) through the action of HDAC

inhibitors, provides important mechanistic insights. The concern,

however, is that butyric acid is strongly affected by antibiotics, and it

has been shown that butyric acid levels are significantly reduced in

the liver of mice treated with antibiotics early in life, leading to

impaired IL-18 signaling, which, in turn, inhibits mitochondrial

function and maturation of liver-resident natural killer (NK) cells,

whereas ingesting dietary butyric acid can, in a GPR109A-

dependent manner, stimulate IL-18 production in Kupffer cells

and hepatocytes to reverse this process (185). However, the

mechanisms involved are unclear and need to be continued to be

explored by researchers.
6.6 Heart diseases

Atherosclerosis (AS) is a complex disease with multiple

etiologies, and one of the factors contributing to AS is metabolic

disorders. AS is an inflammatory disease that is associated with

chronic vascular inflammation, and its most common pathologic

process leads to cardiovascular disease. The earliest event in AS is

increased adhesion of monocytes to endothelial cells, which is

mainly regulated by vascular inflammatory factors, including

cytokines such as IL-6, chemokines such as IL-8 and monocyte

chemotactic protein-1, as well as endothelial adhesion molecules

such as vascular cell adhesion molecule-1 and intracellular adhesion

molecule-1. In clinical studies, less endothelial activation and less

low-grade inflammation have been associated with high fiber

depletion, possibly due to the production of SCFA. SCFAs have

recently emerged as important signaling molecules that regulate a

variety of responses in the cardiovascular system (186), and SCFAs

have been shown to play a beneficial role in decreasing endothelial

activation, resulting in decreased cytokine production and adhesion

molecule expression (187). It may regulate endothelial function by

inhibiting HDAC and/or activating GPRs (160).

SCFAs also play an important role in immune system regulation

in modulating cardiovascular disease. Notably, it has been shown

that both HDAC and NF-kB contribute to immune and

inflammatory responses (188), whereas butyrate inhibits the

activation of HDAC and NF-kB in macrophages (189). SCFAs

are also involved in anti-inflammatory responses by upregulating
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anti-inflammatory cytokines and downregulating pro-

inflammatory cytokines. For example, binding of SCFAs to

FFAR2 and GPR109A in intestinal epithelial cells stimulates K+

efflux and hyperpolarization, leading to activation of the

inflammatory vesicle-activating protein NLRP3, which, in turn,

induces the release of IL-18, contributing to the maintenance of

integrity, repair, and intestinal homeostasis (190). Butyrate

increases protein acetylation and TGF-b production in the

intestinal epithelial cells, leading to a decrease in IL-8 production

(191) and an increase in anti-inflammatory Treg cells in the

intestinal epithelial cells, respectively (192). In human mature

dendritic cells, butyric and propionic acids appeared to reduce the

release of pro-inflammatory chemokines such as CXCL11, CXCL10,

CXCL9, CCL5, CCL4, and CCL3, as did inhibiting the expression of

LPS-induced cytokines, including IL-6 and IL12p40. In addition to

the modulation of cytokine production, SCFAs inhibited, by

lowering the luminal pH, the growth of pathogenic bacteria (193).

Finally, SCFAs, especially butyrate, can contribute to host defense

by inducing the antimicrobial protein histone inhibitor IL-37 (194)

and increasing the levels of T regulatory cells in the gut (44). In

summary, we can infer that SCFAs can exert benefits in metabolic

cardiovascular disease characterized by dysregulation of blood

pressure, glucolipid metabolism, inflammatory response, and/or

gut barrier integrity. Indeed, several studies have demonstrated

the benefits exerted by SCFAs in metabolic cardiovascular disease.

It is worth mentioning that recent studies on SCFA for

polycystic ovary syndrome (PCOS) in relation to inflammation in

the heart have become progressively more frequent, and it has been

found that acetate can reverse cardiac energy depletion, alleviate

nitric oxide (NO/eNOS) deficiency, elevate SIRT-1/HIF-1a levels,

and decrease CTGF/TGFb-1 in an experimental PCOS model by

inhibiting HDAC2, oxidative stress (malondialdehyde)/

inflammation (NF-kB/SDF-1) markers, and plasma troponin T

levels (195). Acetate has also been found to prevent cardiac

inflammation in a rat model of PCOS by inhibiting PCSK9 and

NF-kB-dependent mechanisms (196).
6.7 Diseases of the nervous system

Mets and major depressive disorder are two of the most serious

disorders worldwide, often reported to have a high comorbidity rate,

and studies have demonstrated a strong correlation with

inflammation (197). In addition to influencing material

metabolism, the gut microbiota affects the nervous system by

regulating the hypothalamic–pituitary–adrenal axis and producing

neuroactive substances (198). The interaction between the central

nervous system (CNS) and the gut flora is known as the flora–gut–

brain axis. A growing body of research suggests a complex interaction

between the microbe–gut–brain axis and psychiatric disorders such

as anxiety (199), obsessive–compulsive disorder (200), and

depression (201). One study found that blood levels of cytokines,

including IL-6 and TNF-a, were significantly higher in depressed

patients than in healthy controls (202), and that these pro-

inflammatory cytokines, especially IL-6, IL-1b, and TNF-a,
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promote the production of Th17, which has been implicated in

depression and other CNS disorders closely associated with them

(203). The products of Th17 cells, IFN-g, and IL-17A contribute to

microglia proliferation, polarization, and activation (204, 205), which

could promote neuroinflammation, whereas microglia are the main

source of cytokines in all glial cells in the CNS (206). Microglia are

polarized to an M1 phenotype, releasing ROS and pro-inflammatory

cytokines, including IL-1 b, IL-6, and TNF-a (207).

SCFAs are the main mediators of the microbial–gut–brain axis

in the pathophysiologic process of depression. Chronic stress

accompanied by dysbiosis of the gut flora interferes with the

metabolism of SCFAs and accelerates the dysfunction of the

microbial–gut–brain axis in depress ion. SCFAs have

neuroprotective roles and are involved in the complex biological

mechanisms and pathological processes involved in the onset and

progress ion of depression including chronic cerebral

hypoperfusion, neuroinflammation, epigenetic modifications, and

neuroendocrine alterations, which are summarized in this section,

with a focus on their inflammatory contributions.

Bilateral common carotid artery occlusion (BCCAO) has been

used to establish a rat model of depression, and recent studies have

evaluated the role of SCFAs in depression. Xiao et al. demonstrated

that the intestinal flora of BCCAO rats was disturbed, and that the

reduction of SCFA-producing flora led to cognitive impairment and

depression-like behaviors in the hippocampus of BCCAO rats. Xiao

et al. showed that the intestinal flora of BCCAO rats was disturbed,

and the reduction of some representative SCFA-producing flora led

to the reduction of SCFA in the hippocampus of BCCAO rats,

which, in turn, led to cognitive deficits and depressive-like behavior

(208). In contrast, researchers have found that SCFAs can reduce

hippocampal neuroinflammation and neuronal apoptosis induced

by depression models through inhibition of NF-kB and activation

of the ERK1/2 pathway, with concomitant improvements in

cognitive decline and degenerative processes (208).

Gut microbial-derived SCFAs can play a crucial role in anti-

inflammatory actions through direct and indirect mechanisms, as

they maintain gut–brain permeability and sustain inputs to the CNS

to maintain microglia homeostasis (209). In the CNS, propionate

protects the blood–brain barrier (BBB) via FFAR3 on the surface of

endothelial cells (210), whereas in the intestinal barrier, SCFAs,

especially acetate, propionate, and butyrate, are more protective of

the intestinal barrier (211). Butyrate enhances the expression of

aromatic hydrocarbon receptor and hypoxia-inducible factor 1a
(HIF-1a), and upregulates the levels of IL-12 (212), a protective

cytokine that helps to resist inflammatory stimuli and maintain

intestinal homeostasis, through modulation of mammalian target

proteins of rapamycin and signal transducers and activators of

transcription. These findings suggest that SCFAs exert an inhibitory

neuroinflammatory effect from an indirect mechanism by

maintaining intestinal homeostasis. SCFAs have direct anti-

inflammatory effects on microglia proliferation (213) and

activation by binding to FFARs. SCFAs could bind to GPR41 on

microglia, modulate microglia proliferation and inflammation, and

inhibit pro-inflammatory signaling pathways by inhibiting NF-kB
and activating Erk1/2 (208). In microglia, butyric acid also activates
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the GPR109A-mediated signaling pathway to downregulate the NF-

kB signaling pathway, inhibits the production of pro-inflammatory

enzymes (inducible nitric oxide synthase and cyclooxygenase-2)

and pro-inflammatory cytokines (TNF-a, IL-1b, and IL-6) in

microglia, and prevents the onset and progression of

neuroinflammation. Markers reflecting the anti-inflammatory

status of microglia IL-10 and CD26 were elevated after butyrate

treatment, suggesting a neuroprotective effect of SCFAs in vivo (214,

215). SCFAs also enhance mitochondrial biogenesis (79) by

protecting hippocampal neurons from damage to mitochondrial

membrane potential and ROS accumulation (216). It follows that

complex interactions between neuroinflammation and anti-

inflammation via the SCFA-mediated microbiota–gut–brain axis

are involved in the pathophysiology of depression.
6.8 Polycystic ovary syndrome

Recent studies have shown that chronic inflammation is a risk

factor for PCOS, and patients with PCOS are in a state of chronic

low-grade inflammation (217), in which inflammatory factors, such

as IL-6 and TNF-a, are consistently elevated, and this chronic low-

grade inflammation promotes the development of ovarian and

metabolic dysfunction in PCOS (218). In addition, higher

concentrations of these cytokines and chemokines can lead to the

development of reproductive abnormalities with multiple negative

effects. On the one hand, abnormal expression of inflammatory

factors in the peripheral circulation and ovarian tissues of patients

with PCOS induces immune dysfunction and ovulation disorders

(219). Dysfunction of the immune system affects follicular

development or ovulation (220). On the other hand,

inflammatory factors are increased in patients with PCOS, which

alters the level of AMH and leads to disorders of glycolipid

metabolism (221). Thus, suppression of inflammatory responses

is very necessary.

With the deepening research on the pathogenesis of PCOS and

its chronic inflammatory state, it has been found that a variety of

signaling pathways are involved in the initiation and progression of

inflammation (222), among which the more important ones such as

PI3K/AKT, MAPK, and AMPK signaling pathways, and the SCFAs

have anti-inflammatory roles in PCOS, but these signaling

pathways have been reported less frequently in the study of

SCFAs. Recent studies have shown that SCFA in PCOS

inflammation-related currently has these regulatory mechanisms,

such as NF-kB (195, 223), NLRP3 inflammatory vesicles (73, 224),

and gamma aminobutyric acid (GABA) (225), but the specific

inflammatory pathway mechanisms have not been specifically

studied. However, surprisingly, it has been found that SCFAS play

an ameliorative role in PCOS to ameliorate inflammation through

epigenetic mechanisms. N6-methyladenosine (m6A) is one of the

most common forms of RNA modification in mammals (226).

Researchers find that m6A modifications can affect cellular

inflammation by regulating inflammation-related genes (227). For

example, the RNA methyltransferase METTL3 regulates the NF-kB
inflammatory pathway by upregulating the level of m6A
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modification of TRAF6 (228). The addition of butyric acid led to

a decrease in FOSL2 m6A methylation level and mRNA expression

through inhibition of METTL3 expression and was accompanied by

a decrease in NLRP3 and inflammatory factors IL-6 and TNF-a
expression, whereas FOSL2, as an AP1 family member, participates

in the immune response and promotes the expression of

inflammatory factors (229). Furthermore, it has been shown that

Clostridium perfringens reduces METTL3-mediated m6A

modification by inhibiting the Hippo pathway and activating the

Yes-Associated Protein (YAP) signaling pathway (230). Butyric acid

activates YAP in human intestinal smooth muscle cells (231).

However, whether butyric acid inhibits METTL3 through the

YAP pathway or affects METTL3 expression through other

proteins requires further study.
6.9 Stroke

It has been shown that stroke may alter the composition of the

gut flora, trigger inflammatory responses and microglia activation,

and induce dysbiosis of the gut microbiota, which may influence the

deterioration of functional stroke outcomes (232, 233). However,

commensal bacterial colonization has a protective effect on the

brain after stroke (232), and decreasing the number of pathogenic

bacteria that inhibit neuronal apoptosis, oxidative stress, and

cerebral infarct volume and increasing the number of beneficial

bacteria can prevent neurological deficits (234), in which SCFAs

play an important role. SCFAs are mediators between the

microbiome and the brain and help to regulate prognostic

outcomes after ischemic stroke (235). The gut microbiota plays

an important role in microglia function, especially through SCFA as

a mediator of microbiota–microglia communication (233).

SCFAs regulate microglia inflammation, glucose metabolism,

maturation, and activation through activation of GPCRs or

inhibition of HDACs, and affect the maintenance of the BBB

(236). Studies have shown that the lack of butyrate-producing

bacteria and low fecal butyrate levels are possible factors for

increased risk of stroke (237). In a rat model of MCAO,

researchers found that the gut microbiome stimulated a protective

immune response in the brain after stroke, providing evidence that

the gut microbiome plays a protective role in the brain region after

experimental stroke (232). SCFAs have been identified as key

regulators of intestinal immune cells, and in the context of

neuroinflammation, SCFAs alter the balance between pro-

inflammatory Th1 and Th17 cells and anti-inflammatory Treg

cells (238). In mice, low levels of SCFAs, especially butyrate, were

observed during middle cerebral artery occlusion (239), whereas

high levels of gut microbiota metabolites, especially butyrate,

acetate, and propionate, improved prognosis after ischemic

stroke (240).

Several studies have demonstrated the contribution of SCFA to

BBB integrity and glial function in ischemic stroke animals.

Butyrate improved neurological function and significantly

reduced ischemic lesions in aged rats after ischemic stroke. In

addition, butyrate reduced the expression of occludin and ZO-1,
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thereby favoring the reduction of BBB permeability (241). Some

scholars investigated the effects of sodium butyrate on ischemic

stroke in middle-aged rats and found that treatment with sodium

butyrate further inhibited the MCAO-induced increase of IL-1b, IL-
17A, and IL-18 in the ischemic hemispheric brain lysates (cortex

and striatum), and reduced the ischemia-induced upregulation of

IL-1b and IL-18 in the circulation, which suggests that sodium

butyrate, as an HDAC inhibitor, has a powerful anti-inflammatory

effect and can exert neuroprotective effects (242). In another

experimental animal model using adult male rats, high levels of

SCFAs, particularly sodium butyrate, reduced infarct volume and

improved neurological function and attenuated apoptosis through

activation of the PI3K/Akt pathway at 24 and 72 h after MCAO

(243). A study in male and female rats demonstrated that

microbiota-derived SCFA modulate post-stroke recovery by

affecting systemic and brain-resident immune cells, optimizing

recovery and cortical reorganization, modulating plasticity and

synaptic function, and improving motor function (244). It has

been shown that a young microbiome can be restored even a few

days after ischemic stroke, largely through the action of SCFA to

reduce inflammation and promote recovery in older animals (245).

Although there are many studies on the effectiveness of SCFA for

stroke treatment, there are many gaps in the specific mechanisms

and associated inflammatory-immune aspects of the pathways, and

future studies could explore the exact mechanisms by which SCFAs

exert their beneficial effects after stroke.
6.10 Inflammatory bowel disease

IBD, including Crohn’s disease and ulcerative colitis, is

characterized by an abnormal inflammatory response in the

components of the intestinal flora that play an important role

(246). Disturbed and ecologically dysfunctional intestinal flora is

a typical feature of IBD, where butyrate-producing bacteria (e.g.,

Faecalibacterium, Roseburia hominis, and Bifidobacterium) are in

lower abundance, resulting in reduced butyrate levels (247, 248). It

has been shown that inflammation reduces the responsiveness of

the intestinal epithelium to butyrate and the ability to uptake

butyrate in patients with IBD (249). Thus, intestinal inflammation

may reduce the levels of butyrate-producing bacteria and the

utilization of butyrate. Recent evidence suggests that healthy

individuals at high genetic risk for IBD have reduced numbers of

Roseburia spp. in their gut flora (250). Mouse studies have shown

that the anti-inflammatory effects of F. prausnitzii in experimental

IBD are directly mediated by butyrate downregulation of the pro-

inflammatory IL-6–STAT3–IL-17 signaling pathway through

HDAC1 inhibition and transcriptional repression that

simultaneously promotes Foxp3 expression, thereby maintaining

Treg cells (251). Thus, dysregulation of SCFA levels in the gut may

be an important susceptibility factor for IBD.

SCFA can suppress intestinal inflammation by inhibiting

excessive signaling by TLR. High intake of dietary fiber increases

the level of SCFA in the intestine and effectively reduces the degree

of TLR-mediated inflammation (252). It is important to note that
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TLR4 and TLR2 may be key targets of SCFA in preventing IBD

(253). In particular, sodium butyrate, an HDAC inhibitor, can

inhibit the expression of TLR4 (254). In IBD patients, butyrate

has also been found to inhibit TLR2-mediated inflammatory factor

release (255). Butyrate also reduces the expression level of

junctional proteins (256). In addition, SCFA activates NLRP109

inflammasome by binding to the receptors GPR3 and GPR43A,

ultimately maintaining intestinal health in mice (257). Further

studies have shown that SCFA maintains intestinal health by

regulating NLRP3 inflammasome assembly and attenuation.

Epidemiologic evidence suggests that gut flora disruption due to

antibiotic use early in life is associated with an increased risk of

developing IBD (258), particularly in the first year of life, as

antibiotic use may cause intense and prolonged microbial

disruption at a critical time and have long-term effects on the

immune system, increasing its risk of future IBD. Further evidence

(259) suggests that SCFA production is more affected by antibiotics,

with studies in mice showing that SCFA levels are significantly

reduced during antibiotic use, and that rebuilding of the flora after

antibiotic treatment leads to overactivation of intestinal

macrophages, which, in turn, leads to a long-term pro-

inflammatory T-cell response. In this model, supplementation

with SCFAs, specifically butyrate, prevented macrophage

dysfunction and eliminated pro-inflammatory T-cell responses.

SCFA enemas have been shown to be effective in reducing

symptoms in a subgroup of patients with ulcerative colitis (260).

Butyric acid enemas also reduce the Disease Activity Index in these

patients, but subsequent trials have demonstrated minimal effects

on colonic inflammatory parameters (261). A preliminary trial

investigated the efficacy of encapsulated butyrate as an adjuvant

to conventional therapy in maintaining remission in patients with

Crohn’s disease and ulcerative colitis (262). Adjunctive butyric acid

therapy reduces fecal levels of the intestinal inflammatory marker

calreticulin, stimulates the growth of butyric acid-producing

bacteria, and improves quality of life in patients with ulcerative

colitis. It is important to note, however, that SCFA alone is unlikely

to be a universal solution for diseases associated with microbial

ecological dysbiosis, and not all nutritional strategies known to be

effective in Crohn’s disease have been associated with elevated

butyrate or SCFA levels. For example, the first-line treatment for

Crohn’s disease in children is pure enteral nutrition, an approach

that results in reduced microbial diversity and lower butyrate levels

(263). Thus, further research is needed to determine whether

strategies that increase SCFA will improve overall treatment

outcomes (264).
7 Prospects for treatment
and challenges

With the current advances in the field of intestinal flora

research, modulation of SCFA levels holds promise for use in

prevention strategies for inflammatory Mets and maintenance of

remission of disease progression. There are many ways to increase
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SCFA levels in the gut, the most advanced of which are butyric acid

administration and modulation of butyric acid metabolism using

prebiotics and probiotics. Other routes such as specific diets, fecal

bacteria transplantation, and genetically modified bacteria

administration have also reached the preclinical or clinical

trial stage.
7.1 Direct supplementation of SCFA

Oral (262)or rectal administration (265) increases local butyric

acid levels or suppositories, and enema application results in

increased levels of intestinal luminal and portal venous butyric

acid. However, this process does not increase butyric acid levels in

the peripheral blood due to a first-pass effect in the liver. Whereas

probiotics have received increasing attention in recent years, there

have been reviews summarizing information about F. prausnitzii, R.

hominis, and Clostridium spp. A large number of studies have been

conducted on the role of probiotics in modulating intestinal

inflammation, not the least of which are beneficial aspects for

Mets (33). Thanks to advanced technologies in macrogenomics

and metabolomics, researchers can improve the application of

prebiotics and probiotics by analyzing and predicting metabolic

networks and other interactions between individual bacterial

species (266). Surprisingly, this allows one to go beyond

traditional natural strains and obtain genetically engineered

probiotics through transgenic technology, such as E. coli strains

producing increased levels of butyric acid, which have

demonstrated efficacy in decreasing disease activity and intestinal

damage in colitis models (267). However, the relative effectiveness

of genetically modified probiotics compared to natural probiotics is

unknown, and there is a lack of clinical trials in this area (268).
7.2 Indirect complementary therapies

Fecal flora transplantation aims to replace dysbiotic flora with

healthy flora. In the context of Mets, transferring the gut flora of a

lean individual to a patient with Mets, there have been several studies

demonstrating its mechanism of action and clinical efficacy, such as

epigenomic effects on host immune cells through methylation of

AFAP1, which can lead to improvements in insulin resistance and

mitochondrial function. However, compared to diet and prebiotics

and probiotics, fecal flora transplantation has little appeal in patients

with Mets, and thus dietary interventions offer a more viable

pathway. The use of a diet rich in plant fiber may also enhance the

growth of SCFA-producing bacteria (269) or be enriched with

fermentable prebiotics such as resistant starch (270). In the case of

Mets, maternal metabolism is closely related to that of her offspring

due to the genetic nature of Mets, and it has been shown that

maternal high-fat diet exacerbates inflammatory responses and Mets,

disrupts intestinal barrier function, and alters the gut microbiota of

the offspring (271). Therefore, intervening in maternal SCFA levels

during pregnancy is gradually becoming a research direction for
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future development, but it is often unethical to test the effects of

pharmaceutical compounds or other therapies on pregnant women;

thus, the therapeutic benefits of pregnancy-specific diets may be

substantial. Several recent studies have demonstrated direct beneficial

effects on offspring and alteration of cognitive and social deficits (272)

in offspring through a high-fiber diet by promoting Treg cell

differentiation (273). In this context, targeting bifidobacteria may

be a therapeutic option, as they can utilize human milk

oligosaccharides in breast milk to generate SCFAs, thereby

preventing systemic inflammation and immune dysregulation

(274). It has also been shown that preventing allergies and atopy by

supporting bifidobacteria or a high-fiber diet during pregnancy has a

strong potential to counteract the intergenerational effects of

microbial dysbiosis that may be induced by antibiotics during

pregnancy or the early postpartum period (275).

Since SCFAs are involved in both substance metabolism and

enterobacterial products, it is unclear whether the benefits of the

SCFA-centered therapies described above are related only to the

presence of SCFAs or microbial metabolites themselves. In the future,

we can focusmore on themechanistic level and useHDAC inhibitors or

GPCR ligands more selectively to study these biological effects, to find

more fine-grained targets, to find out the specific mechanism of their

action with the help of SCFA, and to treat inflammatory Mets by

targeting interventions through their biological effects at a higher level.
8 Conclusion

Considerable progress has been made in the last decades to

better understand the fundamental role of gut flora in health and

disease. It is now well established that SCFA, a gut flora derivative, is

important in regulating inflammation-associated factors in Mets

and its complications such as NAFLD, PCOS, and neurological and

cardiovascular diseases. Numerous efforts have been made by basic

and clinical translational researchers to determine whether

supplementation with SCFA can alleviate or even reverse Mets. In

this paper, we summarize the pathways of effect of SCFA in

modulating immuno-inflammation in inflammatory Mets; analyze

the pathomechanisms of obesity-induced chronic low-grade

inflammation leading to oxidative stress, mitochondrial

dysfunction, and epigenetic alterations; and itemize the

mechanisms of inflammation in the various components and

complications of Mets and the roles of SCFA therein;

furthermore, we highlight the future directions of research and

knowledge gaps.

However, there are still many obstacles and problems from

laboratory to clinical applications, especially in terms of the precise

effects of different types and concentrations of SCFA in different

components and complications, and the sensitivity of different cells

to SCFA. Although the effects exerted by the metabolites of specific

flora can be analyzed by the latest technology, the substance activity

and duration are also issues to be taken into consideration, and the

discovery of different targets of SCFA, the use of their targeting

mechanisms to guide the treatment of new drugs, and the
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collaboration of multiple fields including metabolism,

microbiology, immunology, genetics, and therapeutic diets will

determine the routes of administration and dosages to obtain

SCFAs as an anti-inflammatory and anti-immune mechanism in

Mets. The optimal benefit of SCFAs in Mets could provide a

refreshing opportunity for future prevention and treatment of Mets.
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Diet-dependent gut microbiota impacts on adult neurogenesis through mitochondrial
stress modulation. Brain Commun. (2020) 2:fcaa165. doi: 10.1093/braincomms/fcaa165

80. Su S-H, Wu Y-F, Lin Q, Zhang L, Wang D-P, Hai J. Fecal microbiota
transplantation and replenishment of short-chain fatty acids protect against chronic
cerebral hypoperfusion-induced colonic dysfunction by regulating gut microbiota,
differentiation of Th17 cells, and mitochondrial energy metabolism. J Neuroinflamm.
(2022) 19:313. doi: 10.1186/s12974-022-02675-9

81. Wu H, Wang Y, Li W, Chen H, Du L, Liu D, et al. Deficiency of mitophagy
receptor FUNDC1 impairs mitochondrial quality and aggravates dietary-induced
obesity and metabolic syndrome. Autophagy. (2019) 15:1882–98. doi: 10.1080/
15548627.2019.1596482

82. Su Z, Nie Y, Huang X, Zhu Y, Feng B, Tang L, et al. Mitophagy in hepatic insulin
resistance: therapeutic potential and concerns. Front Pharmacol. (2019) 10:1193.
doi: 10.3389/fphar.2019.01193

83. Tang Y, Chen Y, Jiang H, Nie D. Short-chain fatty acids induced autophagy
serves as an adaptive strategy for retarding mitochondria-mediated apoptotic cell
death. Cell Death Differ. (2011) 18:602–18. doi: 10.1038/cdd.2010.117

84. Cho JH, Chae CW, Lim JR, Jung YH, Han SJ, Yoon JH, et al. Sodium butyrate
ameliorates high glucose-suppressed neuronal mitophagy by restoring PRKN
expression via inhibiting the RELA-HDAC8 complex. Autophagy. (2024) 20:1505–
22. doi: 10.1080/15548627.2024.2323785

85. Hoshino A, Ariyoshi M, Okawa Y, Kaimoto S, Uchihashi M, Fukai K, et al.
Inhibition of p53 preserves Parkin-mediated mitophagy and pancreatic b-cell function
in diabetes. Proc Natl Acad Sci USA. (2014) 111:3116–21. doi: 10.1073/
pnas.1318951111

86. Wang S-H, Zhu X-L, Wang F, Chen S-X, Chen Z-T, Qiu Q, et al. LncRNA H19
governs mitophagy and restores mitochondrial respiration in the heart through Pink1/
Parkin signaling during obesity. Cell Death Dis. (2021) 12:557. doi: 10.1038/s41419-
021-03821-6

87. Ren J, Sun M, Zhou H, Ajoolabady A, Zhou Y, Tao J, et al. FUNDC1 interacts
with FBXL2 to govern mitochondrial integrity and cardiac function through an IP3R3-
dependent manner in obesity. Sci Adv. (2020) 6:eabc8561. doi: 10.1126/sciadv.abc8561

88. Li R, Xin T, Li D, Wang C, Zhu H, Zhou H. Therapeutic effect of Sirtuin 3 on
ameliorating nonalcoholic fatty liver disease: The role of the ERK-CREB pathway and
Bnip3-mediated mitophagy. Redox Biol. (2018) 18:229–43. doi: 10.1016/
j.redox.2018.07.011

89. Bhujabal Z, Birgisdottir ÅB, Sjøttem E, Brenne HB, Øvervatn A, Habisov S, et al.
FKBP8 recruits LC3A to mediate Parkin-independent mitophagy. EMBO Rep. (2017)
18:947–61. doi: 10.15252/embr.201643147

90. Brand MD, Parker N, Affourtit C, Mookerjee SA, Azzu V. Mitochondrial
uncoupling protein 2 in pancreatic b-cells. Diabetes Obes Metab. (2010) 12 Suppl:2,
134–140. doi: 10.1111/j.1463-1326.2010.01264.x

91. Meng F, Sun N, Liu D, Jia J, Xiao J, Dai H. BCL2L13: physiological and
pathological meanings. Cell Mol Life Sci. (2021) 78:2419–28. doi: 10.1007/s00018-
020-03702-9

92. Ju L, Chen S, Alimujiang M, Bai N, Yan H, Fang Q, et al. A novel role for Bcl2l13
in promoting beige adipocyte biogenesis. Biochem Biophys Res Commun. (2018)
506:485–91. doi: 10.1016/j.bbrc.2018.10.034

93. Fujiwara M, Tian L, Le PT, DeMambro VE, Becker KA, Rosen CJ, et al. The
mitophagy receptor Bcl-2–like protein 13 stimulates adipogenesis by regulating
Frontiers in Immunology 19
mitochondrial oxidative phosphorylation and apoptosis in mice. J Biol Chem. (2019)
294:12683–94. doi: 10.1074/jbc.RA119.008630

94. Yang J, Manolio TA, Pasquale LR, Boerwinkle E, Caporaso N, Cunningham JM,
et al. Genome partitioning of genetic variation for complex traits using common SNPs.
Nat Genet. (2011) 43:519–25. doi: 10.1038/ng.823

95. Rönn T, Volkov P, Davegårdh C, Dayeh T, Hall E, Olsson AH, et al. A six
months exercise intervention influences the genome-wide DNA methylation pattern in
human adipose tissue. PloS Genet . (2013) 9:e1003572. doi : 10.1371/
journal.pgen.1003572

96. Feinberg AP, Irizarry RA, Fradin D, Aryee MJ, Murakami P, Aspelund T, et al.
Personalized epigenomic signatures that are stable over time and covary with body
mass index. Sci Transl Med. (2010) 2:49ra67. doi: 10.1126/scitranslmed.3001262

97. Soubry A, Schildkraut JM, Murtha A, Wang F, Huang Z, Bernal A, et al. Paternal
obesity is associated with IGF2hypomethylation in newborns: results from a Newborn
Epigenetics Study (NEST) cohort. BMCMed. (2013) 11:29. doi: 10.1186/1741-7015-11-29

98. Lin HV, Frassetto A, Kowalik EJ Jr, Nawrocki AR, Lu MM, Kosinski JR, et al.
Butyrate and Propionate Protect against Diet-Induced Obesity and Regulate Gut
Hormones via Free Fatty Acid Receptor 3-Independent Mechanisms. PloS One.
(2012) 7:e35240. doi: 10.1371/journal.pone.0035240

99. Hippe B, Remely M, Aumueller E, Pointner A, Haslberger AG. SCFA Producing
Gut Microbiota and its Effects on the Epigenetic Regulation of Inflammation. In: Liong
M-T, editor. Beneficial Microorganisms in Medical and Health Applications, vol. 28 .
Springer International Publishing, Cham (2015). p. 181–97.

100. Diamant M, Blaak EE, De Vos WM. Do nutrient–gut–microbiota interactions
play a role in human obesity, insulin resistance and type 2 diabetes? Obes Rev. (2011)
12:272–81. doi: 10.1111/j.1467-789X.2010.00797.x

101. Takahashi K, Sugi Y, Nakano K, Tsuda M, Kurihara K, Hosono A, et al.
Epigenetic Control of the host gene by commensal bacteria in large intestinal epithelial
cells. J Biol Chem. (2011) 286:35755–62. doi: 10.1074/jbc.M111.271007

102. Pushalkar S, Hundeyin M, Daley D, Zambirinis CP, Kurz E, Mishra A, et al. The
pancreatic cancer microbiome promotes oncogenesis by induction of innate and
adaptive immune suppression. Cancer Discovery. (2018) 8:403–16. doi: 10.1158/
2159-8290.CD-17-1134

103. Panpetch W, Kullapanich C, Dang CP, Visitchanakun P, Saisorn W,
Wongphoom J, et al. Candida administration worsens uremia-induced gut leakage in
bilateral nephrectomy mice, an impact of gut fungi and organismal molecules in
uremia. mSystems. (2021) 6:e01187–20. doi: 10.1128/mSystems.01187-20

104. Li X, He C, Li N, Ding L, Chen H, Wan J, et al. The interplay between the gut
microbiota and NLRP3 activation affects the severity of acute pancreatitis in mice. Gut
Microbes. (2020) 11:1774–89. doi: 10.1080/19490976.2020.1770042

105. Michielan A, D’Incà R. Intestinal permeability in inflammatory bowel disease:
pathogenesis, clinical evaluation, and therapy of leaky gut. Mediators Inflammation.
(2015) 2015:628157. doi: 10.1155/2015/628157

106. Brenchley JM, Douek DC. Microbial translocation across the GI tract. Annu
Rev Immunol. (2012) 30:149–73. doi: 10.1146/annurev-immunol-020711-075001

107. Li Z, Qiao L, Yun X, Du F, Xing S, Yang M. Increased risk of ischemic heart
disease and diabetes in inflammatory bowel disease. Z Gastroenterol. (2021) 59:117–24.
doi: 10.1055/a-1283-6966

108. Garcia Garcia De Paredes A, Rodriguez De Santiago E, Rodriguez-Escaja C,
Iborra M, Algaba A, Cameo JI, et al. Idiopathic acute pancreatitis in patients with
inflammatory bowel disease: A multicenter cohort study. Pancreatology. (2020) 20:331–
7. doi: 10.1016/j.pan.2020.02.007

109. Everhov Å.H, Erichsen R, Sachs MC, Pedersen L, Halfvarson J, Askling J, et al.
Inflammatory bowel disease and pancreatic cancer: a Scandinavian register-based
cohort study 1969-2017. Aliment Pharmacol Ther. (2020) 52:143–54. doi: 10.1111/
apt.15785

110. Jess T, Jensen BW, Andersson M, Villumsen M, Allin KH. Inflammatory bowel
diseases increase risk of type 2 diabetes in a nationwide cohort study. Clin Gastroenterol
Hepatol. (2020) 18:881–888.e1. doi: 10.1016/j.cgh.2019.07.052

111. Wang K, Baldassano R, Zhang H, Qu H-Q, Imielinski M, Kugathasan S, et al.
Comparative genetic analysis of inflammatory bowel disease and type 1 diabetes
implicates multiple loci with opposite effects. Hum Mol Genet. (2010) 19:2059–67.
doi: 10.1093/hmg/ddq078

112. Yilmaz B, Spalinger MR, Biedermann L, Franc Y, Fournier N, Rossel J-B, et al.
The presence of genetic risk variants within PTPN2 and PTPN22 is associated with
intestinal microbiota alterations in Swiss IBD cohort patients. PloS One. (2018) 13:
e0199664. doi: 10.1371/journal.pone.0199664

113. Campos-Perez W, Martinez-Lopez E. Effects of short chain fatty acids on
metabolic and inflammatory processes in human health. Biochim Biophys Acta (BBA) -
Mol Cell Biol Lipids. (2021) 1866:158900. doi: 10.1016/j.bbalip.2021.158900

114. Yang Q, Ouyang J, Sun F, Yang J. Short-chain fatty acids: A soldier fighting
against inflammation and protecting from tumorigenesis in people with diabetes. Front
Immunol. (2020) 11:590685. doi: 10.3389/fimmu.2020.590685
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