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Bioinformatics analysis reveals
novel tumor antigens and
immune subtypes of skin
cutaneous melanoma
contributing to mRNA
vaccine development
Ronghua Yang1†, Jia He2†, Deni Kang1, Yao Chen1, Jie Huang1,
Jiehua Li3*, Xinyi Wang1* and Sitong Zhou3*

1Department of Burn and Plastic Surgery, Guangzhou First People’s Hospital, Guangzhou Medical
University, Guangzhou, Guangdong, China, 2Department of Burn Surgery, The First People’s Hospital
of Foshan, Foshan, Guangdong, China, 3Department of Dermatology, The First People’s Hospital of
Foshan, Foshan, Guangdong, China
Introduction: Skin cutaneous melanoma (SKCM) is a common malignant skin

cancer with high mortality and recurrence rates. Although the mRNA vaccine is a

promising strategy for cancer treatment, its application against SKCM remains

confusing. In this study, we employed computational bioinformatics analysis to

explore SKCM-associated antigens for an mRNA vaccine and suitable

populations for vaccination.

Methods: Gene expression and clinical data were retrieved from GEO and TCGA.

The differential expression levels and prognostic index of selected antigens were

computed via GEPIA2,while genetic alterations were analyzed using cBioPortal.

TIMER was utilized to assess the correlation between antigen-presenting cell

infiltration and antigen. Consensus clustering identified immune subtypes, and

immune characteristics were evaluated across subtypes. Weighted gene co-

expression network analysis was performed to identify modules of immune-

related genes.

Results: We discovered five tumor antigens (P2RY6, PLA2G2D, RBM47, SEL1L3,

and SPIB) that are significantly increased and mutated, which correlate with the

survival of patients and the presence of immune cells that present these antigens.

Our analysis revealed two distinct immune subtypes among the SKCM samples.

Immune subtype 1 was associated with poorer clinical outcomes and exhibited

low levels of immune activity, characterized by fewer mutations and lower

immune cell infiltration. In contrast, immune subtype 2 showed higher

immune activity and better patient outcomes. Subsequently, the immune

landscape of SKCM exhibited immune heterogeneity among patients, and a

key gene module that is enriched in immune-related pathways was identified.
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Conclusions:Our findings suggest that the identified tumor antigens could serve

as valuable targets for developing mRNA vaccines against SKCM, particularly for

patients in immune subtype 1. This research provides valuable insights into

personalized immunotherapy approaches for this challenging cancer and

highlights the advantages of bioinformatics in identifying immune targets and

optimizing treatment approaches.
KEYWORDS
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Introduction

Skin cutaneous melanoma (SKCM) is the most lethal and

aggressive form of cutaneous malignancy, with a rapidly

increasing incidence rate worldwide (1). It accounts for more

than 80% of skin cancer deaths, and the primary environmental

risk factor for its development is ultraviolet (UV) (2). Currently,

the availability of standard treatment options for SKCM

includes surgical resection, chemotherapy, and radiation therapy.

The 5-year survival for localized SKCM is 99%, but it decreased to

20% when the cancer cells have metastasized. Recently, treatment

options for patients with metastatic SKCM have significantly

improved by application with immune checkpoint blockade

and targeted therapies (BRAF and MEK kinase inhibitors) (3).

Despite emerging new diagnosis and treatments, the clinical

outcome of SKCM patients is still poor, with severe side effects

and a high risk of drug resistance (4, 5). Thus, new and precise

therapeutic methods are needed to improve the prognosis of

SKCM patients.

In recent years, immunotherapies for SKCM, including

Cytotoxic T Lymphocyte Antigen-4 (CTLA-4) blockade,

Programmed death-1 (PD-1) blockade, talimogene laherparepvec

(T-VEC), cytokines, vaccines, adoptive T cell transfer, and other

strategies, have increased rapidly (6). SKCM is an ideal

immunotherapeutic candidate because of its high level of

lymphocytic infiltration in both primary lesions and metastatic

sites (7). In addition, patients with metastatic SKCM have large
rtal; CDF, cumulative
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heterogeneous tumor microenvironments, resulting in their

heterogeneities of response to immunotherapy (8). Hence, SKCM

is sensitive to immune modulation.

Among tumor immunotherapies, tumor vaccines are full of

potential and attractive. Therapeutic tumor vaccines are designed to

stimulate the immune system against specific tumor antigens to

control tumor progression, efficiently eliminate cancer cells, develop

adequate antitumor immunological memory, and prevent non-

specific or adverse reactions (9). According to the antigen form,

tumor vaccines are classified into peptide, tumor cell, dendritic cell,

DNA, and RNA type (10). With significant technological

development, mRNA vaccines represent a promising alternative

to conventional vaccine approaches due to their high efficacy, safety

profile, easy manufacture, and safe administration (11). The mRNA

tumor vaccines are usually prepared by the template mRNA of

translated proteins. After injection into the body, mRNA tumor

vaccines activate the protein synthesis system of human cells to

synthesize specific antigen protein, which followed induces the

immune response and targets tumor cells (12). The mRNA

vaccines cause innate and adaptive immune responses to enhance

the antitumor effects of B and T cells. In the immune cells,

exogenous mRNA activates innate immune response through

Toll-like receptors to detect pathogen-associated molecular

patterns (PAMPs); In the non-immune cells, RIG-1 and MDA5

sense the exogenous mRNA and then induce an IFN I-mediated

immune response. For adaptive immune response, antigen-

presenting cells take up the encoded proteins of exogenous

mRNA and present the antigens to CD4+ T cells, and followed

promotes antitumor CD8+T cell and B cell responses (13, 14).

Based on the unique characteristics exhibited by individual tumors,

cancer vaccines have the capability to effectively deliver targeted

therapy. In 2021, Huang et al. explored novel antigens for

developing mRNA vaccines, and investigated immunotyping for

identifying suitable cancer patients for vaccination (15, 16).

Subsequently, researchers utilized similar methods to obtain a

complex immune landscape for mRNA vaccine treatment of

various cancers and define appropriate vaccination patients.

Therefore, utilizing vaccination as a potential approach can

address the challenges presented by tumor heterogeneity and offer

personalized treatment for cancers (17).
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Recently, several preclinical and clinical trials of mRNA vaccine

therapeutics have been proven effective in multiple tumors, including

SKCM. One mRNA vaccine based on six SKCM-specific antigens

(Melan-A, MAGE-A1, MAGE-A3, Survivin, GP100, and Tyrosinase)

has shown an increase of vaccine-specific T cells in phase I/II clinical

trials in metastatic SKCM patients (18). Another mRNA vaccine

targeting antigens (CD40L, TLR4, CD70 plus tyrosinase or MAGE-

A3 or MAGE-C2 or gp100) treated recurrent SKCM patients

demonstrating its favorable immune activation (19). Treated with

mRNA vaccine targeting 20 tumor neoantigens, patients with resected

SKCM showed the risk of recurrence/death was significantly reduced

compared to pembrolizumab monotherapy (20, 21). Due to tumor

heterogeneity and complex immune microenvironment, research on

effective anti-SKCM mRNA vaccines and identification of suitable

cancer vaccination patients remain viable.

In recent years, bioinformatics has become crucial in the

identification and development of tumor vaccines. Traditional

vaccine design methods are often time-consuming, costly, and

have high failure rates due to the extensive research needed to

identify target antigens and establish immunological correlations.

In contrast, in silico approaches leverage computational tools and

databases to efficiently identify promising vaccine candidates.

Recent advancements in bioinformatics have facilitated the

creation of vaccine candidates capable of eliciting strong immune

responses against a variety of human pathogens (22). By utilizing

comprehensive databases, researchers can access a wealth of

experimentally validated vaccine components, which are crucial

for informed vaccine design (23, 24). Moreover, high-throughput

screening methods and sophisticated computational algorithms

have emerged as powerful bioinformatics protocols for predicting

novel vaccine candidates and identifying immune epitopes that

engage immune cells effectively (25). Hence, how to utilize

bioinformatics strategies to optimize vaccine development and

enhance antigen selection is a promising research direction.

In this study, potential antigens associated with patient survival

and infiltration of antigen-presenting cells were firstly identified for

SKCM mRNA vaccines by bioinformatics analysis. SKCM patients

were then classified according to immune-associated genes. The

immune phenotype of each immune subtype was next determined

by mutational status, expression profiles of immune checkpoints

and immune cell death modulators. Following, the immune

landscape of SKCM elucidated considerable heterogeneity among

individual patients. Finally, WGCNA can identify key gene

modules. Altogether, our findings provide a theoretical basis for

mRNA vaccines development and highlights the personalized

treatment strategies for SKCM.
Methods

Data collection and preprocessing

Data on gene expression (fragments per kilobase million,

FPKM) data, genomic mutation, and the corresponding clinical

features of 472 patients with SKCM were obtained from The Cancer

Genome Atlas (TCGA, https://www.cancer.gov/tcga) and
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downloaded from UCSC Xena (https://xena.ucsc.edu/). Next, the

RNA-sequencing data and clinical information of 78 SKCM

samples were collected from Gene Expression Omnibus (GEO,

GSE54467) database. GPL6884 probes were utilized to map the

GSE54467 dataset, and gene expression was normalized by R

package “limma” for further analysis.

Subsequently, a total of 2,006 immune-related genes,

including immune cell-specific genes, cytokines together with

their respective receptors, antigen processing and presentation-

associated genes, and others were acquired from the IMMPORT

database (https://immport.org). We selected immune cell death-

related genes and immune checkpoint-related genes from previous

publications (15, 16).
GEPIA and survival analysis of
candidate antigens

The online database Gene Expression Profiling Interactive

Analysis (GEPIA2) (http://gepia2.cancer-pku.cn/), which

combined the TCGA dataset and the Genotype-Tissue Expression

(GTEx) database, was employed for gene expression analysis.

Differentially expressed genes (DEGs) were selected by ANOVA

analysis with |log2FC| >2 and q-value <0.01 and their chromosomal

distribution was plotted. Based on the Kaplan-Meier method with a

median cutoff, overall survival (OS) and disease-free survival (DFS)

were estimated and then tested by the log-rank test. P-value < 0.05

was considered statistically significant.
cBioPortal database analysis

The cBio cancer genomics portal (cBioPortal, http://

www.cbioportal.org) database was utilized to analyze the genetic

variation in TCGA-SKCM patients. Data on microsatellite

instability and tumor mutation burden in SKCM were obtained.

Statistical significance was determined by P-value < 0.05.
Immune cell infiltration estimation with
TIMER analysis

The relationship between potential tumor antigens and antigen-

presenting cells, including B cells, macrophages, and dendritic cells,

was investigated by Tumor IMmune Estimation Resource (TIMER,

https://cistrome.shinyapps.io/timer/) database. Purity adjustments

were performed using Spearman’s correlation analysis. P-

value<0.05 was signifcant.
Development and validation of the
immune subtypes

The “ConsensusClusterPlus” R package was used to distinguish

the immune subtypes according to the expression profiles of 2,006

immune-related genes. Specifically, the 1,000 bootstraps were
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performed with 80% patients resampling and “1-Pearson

correlation” as the distance metric. a range of cluster number

from 2 to 9 were tested for clustering analysis, and the optimal

number was determined by evaluating the consensus matrix and the

consensus cumulative distribution function (CDF). The prognostic

significance of these two immune subtypes was evaluated through

Kaplan-Meier survival analysis. Furthermore, we compared the

distribution of tumor mutational burden (TMB), mutation

counts, and microsatellite instability (MSI) between the immune

subtypes. The differentially expression level of immune checkpoints

and immune cell death modulators were also compared between the

immune subtypes.
Analysis of cellular and molecular
characteristics in the immune subtypes

A total of 28 immune signatures representing diverse immune

cell types, functions, and pathways were acquired for analysis. We

employed the ssGSEA algorithm via the R package “GSVA” to

comprehensively calculate the relative abundance of each immune

signature within the respective SKCM samples. The ImmuneScore,

StromalScore, and ESTIMATEScore were determined by the

“ESTIMATE” package.
Construction of immune landscape

According to the immune gene expression profile, the

dimensionality reduction analysis using the graph learningbased

method was performed by the “monocle” R package to visualize the

distribution of each patient. The maximum number of components

was set to 2. Then, the discriminative dimensionality reduction with

trees (DDRTree) method was utilized for dimension reduction. The

immune landscape was displayed with the function plot cell

trajectory, and each immune cluster was plotted with a particular

color. The similarity of immune status among patients was

determined via the pseudo-time analysis. Moreover, we explored

the correlation among 28 immune cells and individual principal

components (PCA1 and PCA2) through Pearson correlation

analysis, and the differences in the abundance of immune cells

were calculated with the appliance of the Wilcoxon test. Survival

analysis was conducted in four distinct state subtypes.
Weighted gene co-expression
network analysis

The co-expression modules of immune-related genes were

obtained using the “WGCNA” R package. In order to construct a

correlation adjacency matrix, the soft-thresholding power was

selected according to the scale-free network topology criterion.

We then recognized co-expression modules using the bottom-up

algorithm and dynamic tree cut method to estimate module
Frontiers in Immunology 04
eigengenes (MEs) and quantify module similarity. Univariate Cox

regression analysis was performed to investigate the prognostic

value of different modules. Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment

analysis were employed to annotate the functions of the module

genes that are closely related to the immune subtypes.
Reverse transcription quantitative real-time
PCR (RT-qPCR)

The study obtained discarded normal skin tissue from two patients

with skin wounds during the excision of damaged skin, along with

tumor tissue from one patient diagnosed with SKCM. Total RNA was

extracted from two normal skin tissues and SKCM tissue for using the

Trizol reagent (Invitrogen, United States) as the manufacturer’s

instructions. Reverse transcription of the obtained RNA was done

using the First-Strand cDNA Synthesis Super Mix for qPCR along with

a one-step gDNA remover (AmeriDx, United States). SYBR Green-

based real-time qPCRwas performed using the specific primer pairs for

each target gene (Supplementary Table S1). The relative changes in

gene expression were determined using the 2-DD CT method.
Statistical analysis

R software (version 4.1.1) and its corresponding R packages

were performed for statistical data analysis. The Wilcox test was

implemented to compare data between the two groups, while the

Kruskal-Wallis test was conducted to compare three or more

groups. Survival analysis performed by the Kaplan-Meier method

with log-rank test and univariate Cox regression analysis.

Correlations were determined by Spearman’s analysis. A two-

tailed P-value < 0.05 was considered statistically significant.
Results

Screening potential tumor antigens
of SKCM

The workflow of this research is presented in Supplementary

Figure S1. To explore candidate tumor-specific antigens in SKCM

for mRNA vaccine development, we first detected 6,460

dysregulated expressed genes. Among them, 1,109 genes

potentially encoding tumor-associated antigens were unregulated

(Figure 1A). Then, 7,364 mutated genes were selected after

analyzing altered genome fraction and mutation counts in each

sample (Figures 1B, C). Of note, genes with the highest frequency in

both altered genome fraction and mutation counts were observed as

TTN, MUC16, DNAH5, BRAF, PCLO, LRP1B, ADGRV1, CSMD3,

PKHD1L (Figures 1D, E). Finally, a total of 516 genes were

identified as potential target antigens through the combination

analysis of the expression and mutation data of SKCM patients.
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Identification of prognosis associated
SKCM tumor antigens

Subsequently, the 516 candidate genes obtained above were used

for survival analysis to develop prognostically relevant antigens. We

discovered 109 genes closely linked to the overall survival (OS) and

disease - free survival (DFS) of SKCM patients. Further analysis

indicated five genes, including P2RY6, PLA2G2D, RBM47, SEL1L3,
Frontiers in Immunology 05
and SPIB, were positively correlated with the level of infiltration of B

cells, macrophages, and dendritic cells (DCs) (Supplementary Figure

S2). Interestingly, patients with higher expression levels of these five

genes had significantly better OS and DFS than those with lower levels

(Figures 2A–E). Hence, five potential tumorspecific antigens (P2RY6,

PLA2G2D, RBM47, SEL1L3, and SPIB) were identified for developing

SKCM-mRNA vaccines. Subsequently, we examined the mRNA

expression of five candidate genes by analyzing normal skin tissue
FIGURE 1

Identification of candidate neoantigens in SKCM. (A) Chromosomal distribution of up-and down-regulated genes in SKCM. (B, C) Samples
overlapping in altered genome fraction (B) and mutation counts (C). (D, E) Top ten genes with highest frequency in altered genome fraction (D) and
mutation counts (E).
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from the margins of skin wounds in two patients and tumor tissue

from one patient diagnosed with SKCM. RT-qPCR revealed

significantly elevated expression levels of P2RY6, PLA2G2D, SEL1L3,

and SPIB in the SKCM tissue compared to normal tissue. These results

not only validate our bioinformatics findings but also underscore the

potential of these genes as biomarkers for mRNA vaccine development

in SKCM (Figure 2F).
Construction and validation of immune
subtypes in SKCM

Immunotyping was supported to reflect the immune status of the

tumor microenvironment and thus assist in identifying suitable

patients who benefit from vaccination. Therefore, consensus

clustering was performed in TCGA-SKCM samples in accordance

with corresponding 2,006 immune-related genes to identify different

immune subtypes. The optimal cluster number was determined (k =

2) by the delta area and CFD curves; Ultimately, two immune

subtypes were defined and referred as immune subtype 1 (IS1) and

immune subtype 1 (IS2) (Figures 3A, B). Principal component

analysis and consensus matrix revealed distinct separations between

the two immune subtypes (Figures 3C, D). The SKCM patients in IS2
Frontiers in Immunology 06
had a better survival prognosis than those in IS1 (Figure 3E). Further

analysis of the subtype distribution of TCGA-SKCM patients with

different stages indicated patients in IS1 were associated with the

higher stage compared with those in IS2 (Figure 3F). Afterwards, the

same clustering method was applied to validate in the GSE54467

cohort (Figure 3G). Consistent with our results obtained from the

TCGA cohort, patients in IS2 had a longer survival time and a larger

proportion in stage I (Figures 3H, I). These observations suggested

that novel immune subtypes identified in this study could be used as

effective prognostic biomarkers in SKCM patients.
The mutational status in immune subtypes

Recent research demonstrated that the TMB and the frequency

of somatic mutations were considered as predictors of

immunotherapy response (26, 27). We calculated the TMB,

mutation counts, and MSI between IS1 and IS2. Results showed

that the TMB and the number of mutations in IS1 were lower than

those in IS2, while there were no detectable differences in MSI

(Supplementary Figures S3A–C). Moreover, we summarized the

mutation landscape of the two subtypes, and the top 30 genes with

the highest mutation frequencies were drawn in the waterfall plot
FIGURE 2

Relationships of five potential antigens with prognosis and their expression in SKCM tissue. (A-E) Kaplan-Meier OS and DFS curves comparing the
groups with high and low expressions of P2RY6 (A), PLA2G2D (B), RBM47 (C), SEL1L3 (D), SPIB (E). (F) RT-qPCR of SKCM and normal tissues. mRNA
quantification of P2RY6, PLA2G2D, RBM47, SEL1L3, and SPIB was normalized to GAPDH.
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(Supplementary Figure S3D). Together, these findings indicated

that TMB and mutation counts could serve as potential indicators

for mRNA vaccine treatment, and different immune subtypes

exhibited specific mutational characteristics.
Association of immune subtypes with
immune modulators

Immune cell death is a type of regulated cell death that induces

adaptive immunity and creates an inflamed, immunologic tumor

environment (28). Immune checkpoints refer to molecules that act

as gatekeepers of immune responses (29). Thus, immune
Frontiers in Immunology 07
checkpoints and immune cell death modulators are of remarkable

importance in anticancer immunity and influence the mRNA

vaccine’s efficacy. We compared the expression levels of immune

checkpoints and immune cell death modulators in different

immune subtypes. A total of 25 immune cell death modulators

were detected in the TCGA cohort, while 21 immune cell death

modulators were found in the GSE54467 cohort. The overall

expression levels of these immune cell death modulators in IS2

were higher than in IS1. Notably, CXCL10, IFNAR1, FPR1,

IFNAR2, and TLR4 presented the most significant differences

between the immune subtypes (Supplementary Figures S4A, B).

Furthermore, 46 and 37 immune checkpoints were detected in the

TCGA and GSE54467 cohorts, respectively. The same general
FIGURE 3

Identification and validation of immune subtypes of SKCM. (A) Consensus clustering CDF for k = 2 to k = 9. (B) delta area of immune-related genes
in TCGA cohort. (C) Principal component analysis of the distribution of each sample in two subtypes. (D) Heatmap representing consensus clustering
matrix of TCGA-SKCM samples for k=2. (E) Kaplan-Meier curves displaying OS of SKCM immune subtypes in TCGA cohort. (F) Different stage
distribution of SKCM patients between the IS1 and IS2 immune subtypes. (G) Heatmap for sample clustering in the GSE54467 cohort. (H) Survival
analysis of immune subtypes in the GSE54467 cohort. (I) Distribution of different stages in the two immune subtypes in the GSE54467 cohort.
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trends of gene expression changes of these immune checkpoints

were discovered in different immune subtypes. Most selected

immune checkpoints, including ADORA2A, BTLA, CD160,

CD200R1, CD244, CD274 (PD-L1) and others, were highly

expressed in IS2 (Supplementary Figures S4C, D). In conclusion,

immunophenotyping reflects the expression levels of immune

checkpoints and immune cell death modulators and can be taken

as biomarkers for mRNA vaccines.
Cellular and molecular characteristics of
immune subtypes

Since the response to mRNA vaccine correlates with the tumor

immune microenvironment, the single-sample gene set enrichment
Frontiers in Immunology 08
analysis (ssGSEA) algorithm was employed to score 28 immune-

related signatures to evaluate the enrichment of immune cell

components in two immune subtypes across the TCGA and

GSE54467 cohorts. Interestingly, most immune cells were more

enriched in IS2 than in the IS1 subtype (Figures 4A–D). In addition,

the eva luat ion of the immune s ta tus of the tumor

microenvironment by the ESTIMATE algorithm indicated that

the IS2 subtype had remarkably higher immune, stromal, and

estimate scores than IS1 both in the TCGA and GSE54467

cohorts (Figures 4E–J). Hence, IS2 was identified as an immune-

hot phenotype, while IS1 was an immune-cold phenotype. These

suggest that SKCM patients in the IS1 subtype with immune-cold

phenotype might be suitable candidates for the mRNA vaccines

we studied.
FIGURE 4

Cellular and molecular characteristics in different subtypes. (A, B) Heatmaps of 28 immune cell signatures between immune subtypes in the TCGA
(A) and GSE54467 (B) cohorts. (C, D) Boxplot showing differential expression of immune cells in the TCGA (C) and GSE54467 (D) cohorts. (E, F) The
estimate scores were assessed in the TCGA (E) and GSE54467 (F) cohorts. (G, H) The immune scores were evaluated by the ESTIMATE algorithm in
the TCGA (G) and GSE54467 (H) cohorts. (I, J) Comparison of the immune scores in each immune subtype by using the ESTIMATE algorithm in the
TCGA (I) and GSE54467 (J) cohorts. *p < 0.05 ,**p < 0.01 and ***p < 0.001.
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The immune landscape of SKCM

We further constructed the immune landscape of individual

SKCM patients by integrating the immune gene expression profiles

(Figure 5A). Moreover, each immune subtype could be divided into

two subgroups according to the distribution location in the immune

landscape (Figure 5B). Principal component 1 was negatively

correlated with most immune cells, while principal component 2

had a positive correlation with those immune cells besides effector

memory CD4 T cell (Figure 5C). Then, the patients were divided

into seven states and their survival curves showed the immune

landscape had an excellent prognostic effect (Figures 5D, E).

Collectively, the immune landscape we constructed could

precisely identify the immune components of each patient and

evaluate their prognoses, which contribute to developing

personalized therapeutic cancer mRNA vaccines.
Weighted gene co-expression network
analysis of characteristic genes for
SKCM immunotyping

The WGCNA was employed to identify the genes associated

with suitable vaccination clusters. In the scale-free network, the

optimal soft threshold was chosen at 2 and determined by

connectivity (Figure 6A). After calculating the eigengenes for each

module, we picked five gene modules (Figure 6B). Next, the

relationship between the five modules and immune subtypes was
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explored, and the close association between the turquoise module

and IS2 was observed (Figure 6C). Besides, univariate Cox analysis

revealed that the turquoise module had a distinct correlation with

the prognosis of SKCM (Figure 6D). Patients with high gene

expression scores in the turquoise module survived longer than

those with low scores (Figure 6E). Genes in the turquoise module

were listed in Supplementary Table S2. Functional enrichment

analysis for genes from the turquoise module demonstrated

immune response-related pathways were involved, such as

inflammatory response, leukocyte activation, cytokine-cytokine

receptor interaction, and positive regulation of immune response

(Figure 6F). Additionally, metascape analysis revealed the relevance

among these pathways and showed in Figure 6G. In summary,

genes in the turquoise module might serve as the marker for

selecting patients suitable for mRNA vaccine.
Discussion

SKCM is one of the most aggressive skin malignancies

originating from melanocytes with a poor prognosis. Although

several therapies are available in treatment of SKCM, the

prognosis is still unsatisfactory. Immunotherapy, including

checkpoint inhibitors, targeted therapies, and antibody-drug

conjugates, is the most modern treatment option for advanced

SKCM and is continuing to develop (30). In particular, the

application of mRNA vaccines is regarded as a promising

immunotherapeutic strategy based on preclinical and clinical
FIGURE 5

Construction of the immune landscape for SKCM. (A) Immune landscape of SKCM. Each point represents a patient, and the immune subtypes are
color-coded. (B) Immune landscape of the subclusters of immune subtypes. (C) Heatmap of two principal components with 28 immune cell
signatures. (D, E) Immune landscape of patients from three extreme locations (D) and their prognosis (E).
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trials with impressive efficacy (21). Unfortunately, there are few

studies on mRNA vaccines for SKCM. It is approved that

bioinformatics analysis can accelerate the identification and

selection of potential tumor antigens with high specificity and

immunogenicity for mRNA vaccines by analyzing extensive

datasets related to genetic expression and variation information.

Therefore, in this study, we utilized bioinformatics analysis to

discover neoantigens in SKCM and potential subpopulations for
Frontiers in Immunology 10
vaccination contributing to the development of personalized

vaccines for each patient.

Recent reports demonstrated that the tumor-associated

antigens are significantly overexpressed in cancers, which

influences the specific immune cell response to personalized

antigen immunization (31). Besides, alterations in genomes are

closely correlated with the metastasis and development of SKCM

(32). Therefore, aberrant expression and genetic alteration profiles
FIGURE 6

Identification of immune gene co-expression modules of SKCM. (A) Scale-free fit index (left) and mean connectivity (right) for various soft-
thresholding powers. (B) Dendrogram of immune genes clustered based on the average-linkage hierarchy clustering method. (C) Correlations
between modules and immune subtypes. (D) Prognostic analysis of 5 modules. (E) Survival analysis of patients with high and low scores for genes in
the turquoise module. (F) Top 20 of GO and KEGG functional enriched pathways of genes in the turquoise module. (G) Metascape analysis of top 20
functional enriched pathways.
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were constructed to reveal targetable antigens that may be

considered to treat SKCM. We then identified overexpressed five

SKCM antigens (P2RY6, PLA2G2D, RBM47, SEL1L3, and SPIB)

were associated with better prognosis and high infiltration of

antigen-presenting cells. In addition, our RT-qPCR analysis

showed high expression levels of P2RY6, PLA2G2D, SEL1L3, and

SPIB in SKCM tissue, indicating these antigens were promising

candidates for mRNA vaccine. However, the restricted sample size

inherently limits the reliability. Consequently, we intend to

augment our validation efforts in subsequent studies by

integrating a larger cohort of samples and exploring the

application of in vitro models to further substantiate our findings.

Although further clinical evaluation is required, present studies

have shown the potential role of these genes in immunotherapy.

P2RY6 is involved in modulating the immune response of multiple

inflammatory diseases. It is also considered a critical positive regulator

of skin tumorigenesis by the Hippo/YAP andWnt/b-catenin signaling
pathways (33). P2RY6 has been reported as a prognosis biomarker in

lung adenocarcinoma patients and is associated with the immune

microenvironment. These suggested that P2RY6 might be a novel

target for immunotherapy in SKCM. Additionally, PLA2G2D is an

immune- and metabolism-associated molecule identified as a

biomarker to predict the prognosis of cervical squamous cell

carcinoma. Patients with high expression levels of PLA2G2D

exhibited notable high infiltration of immune cells, especially T cells

and macrophages. PLA2G2D expression was positive with the

expression of immune checkpoints and impacted the immune

checkpoint blockade therapeutic efficacy (34). PLA2G2D and six

other BRAF-associated genes were used to develop a prognostic

signature for SKCM (35). Besides, RBM47 is a post-transcriptional

regulator of RNA during tumor progression. It is a key mediator

involved in the function of miR-25 in SKCM, suggesting that RBM47

is a promising target for treating SKCM (36). In addition, SEL1L3,

with the other three genes, was utilized to build a signature that can

predict survival and anti-CTLA4 immunotherapeutic responses (37).

Moreover, SPIB is a transcription factor mainly expressed in mature B

cells, plasma cell-like cells, and T cell precursor cells. It acts as a tumor

suppressor and exerts its anti-colorectal cancer effect by activating the

NF-kB and JNK signaling pathways through MAP4K1 (38).Taken

together, these findings suggest that the five genes we screened have

demonstrated potential as tumor antigens in various cancers, making

them promising candidates for the development of future mRNA

vaccines. Although these antigens show promise for vaccine

development due to their aberrant tumor expression, their high

expression in normal tissues may cause autoimmunity or immune-

related side effects. For example, PLA2G2D is highly expressed in

immune cells, and RBM47 in kidney and intestine (30, 32). Thus,

future studies should focus on assessing their normal tissue expression

to ensure tumor specificity and guide mRNA vaccine target selection.

Tumor heterogeneity is one of the major factors of the low effect

of tumor vaccine. Only part of cancer patients gains benefits from

mRNA vaccines according to the clinical trials (39). To investigate

which subpopulation was suitable for vaccination, we identified two

immune subtypes in the light of the immune gene profile. SKCM

patients in IS1 exhibited better prognosis and a larger proportion in

low grade than those in IS2. Furthermore, samples in IS2 displayed
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higher levels of TMB, mutation number and MSI. Different genetic

mutation states were shown between subtypes IS1 and IS2.

Specially, TNN, MUC16, BRAF, DNAH5 carried the highest

frequency mutations. Reports demonstrated high-frequently

mutations in TNN and MUC16 had better prognosis and

immunotherapy efficacy than patients with the low-frequently

mutations or the wild-type genes in cancer patients (40, 41).

Previous research also found MUC16 had a higher mutation

frequency in SKCM patients, which affect immune-related

pathways and tumor-infiltrating immune cells resulting in better

prognosis (42). Notably, about 50% of people whose SKCMs have a

BRAF V600 mutation. BRAF V600 mutation-targeted therapies

with Dabrafenib, have be accepted as a standalone treatment for

advanced melanoma with this mutation (43). Therefore, these

genetic mutations contribute to SKCM heterogeneity and follow

take affect vaccine protection.

Importantly, the immune subtypes differed in the expressions of

immune checkpoints and immune cell death modulators which

could influence the efficacy of the mRNA vaccine. IS2 were

associated with a high expression level of most modulators we

examined. Recently studies suggested that the mRNA vaccine could

be less effective in patients with increased expression of immune

checkpoints, and more effective in those with upregulation of

immune cell death modulators (16). Therefore, patients in these

two immune subtypes generate different immune responses after

mRNA vaccination.

We further investigated the cellular and molecular

characteristics of the immune subtypes. IS1 was discovered to

have an immunologically cold phenotype with low expression of

immune signatures, while IS2 was characterized by an immune

“hot” phenotype. Patients in the immunologically cold phenotype

are considered to be lack of antigen-presenting cells and tumor

antigens, leading to T cell anergy and insensitivity to antigen

activation (44, 45). Interestingly, the immune “hot” tumor

displayed higher tumor sensitivity to immunotherapy because of

high levels of infiltrating immune cells (46). Hence, the application

of mRNA vaccines in immune “cold” patients may be an

appropriate therapeutic option to convert tumors into

immunologically cold phenotype.

The further immune landscape of SKCM revealed the

heterogeneity among individuals as well as within the same

immune subtypes. Next, the patients were divided into seven

states, and observed patients in states 1, 2, and 6 had significantly

worse survival than those in state 7 due to the relative immune-

suppressive tumor microenvironment. WGCNA discovered the

most relevant characteristic gene module. The functional

annotation manifested that genes in this key module were

enriched in immune-related pathways, supporting the follow-up

exploration of the potential biological mechanism of subtypes.

Despite the identification of potential SKCM antigens, the

development of personalized treatment using SKCM mRNA

vaccines remains a formidable challenge in clinical practice. The

application of tumor mRNA is confronted with numerous obstacles

that include difficulties in evaluating anti-tumor immunity induced

in vivo, immune evasion and resistance, as well as the

personalization of medication for individual patients (47, 48). To
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address these challenges, a more comprehensive approach to

subtyping can be established by integrating multi-omics analyses,

including genomics, transcriptomics, morphology, proteomics,

metabolomics, and immune subtypes, which can guide the precise

diagnosis and treatment of tumors (49). Furthermore, an in-depth

analysis of the molecular mechanisms underlying the in vivo

application of mRNA vaccines will be conducted, with the aim of

exploring the mechanisms of anti-tumor immunity, immune

evasion, and resistance.

This study provides valuable insights into the relationship

between potential tumor antigens and immune responses, but it

has notable limitations. The analysis primarily relies on

bioinformatics methods, which may not encompass all potential

antigen outcomes. While specific antigens have been identified,

further validation through in vitro and animal studies is essential to

confirm their immunogenicity and clinical relevance. Future work

will focus on detailed experiments to assess the immune responses

elicited by these antigens in various contexts, evaluating their

potential as effective mRNA vaccine candidates. This approach

will enhance our understanding of antigen immunogenicity and

contribute to optimizing vaccine design.
Conclusions

In conclusion, through comprehensive bioinformatics analysis,

P2RY6, PLA2G2D, RBM47, SEL1L3, and SPIB were determined to

be potential antigens for SKCM mRNA vaccines, specifically for

patients with IS1 tumors. These findings provide a novel insight for

the anti-SKCM mRNA vaccine and defining suitable patients

for vaccination.
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