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Single-cell RNA sequencing
reveals adrb1 as a sympathetic
nerve-regulated immune
checkpoint driving T cell
exhaustion and impacting
immunotherapy in esophageal
squamous cell carcinoma
Qun Li, Shuning Xu, Yulin Ren, Cheng Zhang, Ke Li
and Ying Liu*

Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan
Cancer Hospital, Zhengzhou, China
Background: Esophageal squamous cell carcinoma (ESCC) presents significant

health challenges due to its aggressive nature and poor prognosis from late-

stage diagnosis. Despite these challenges, emerging therapies like immune

checkpoint inhibitors offer hope. b1-adrenergic signaling has been implicated

in T cell exhaustion, which weakens the immune response in ESCC. Blocking this

pathway could restore T cell function. Recent advances in single-cell RNA

sequencing (scRNA-seq) have enabled deeper insights into tumor

heterogeneity and the immune landscape, opening the door for personalized

treatment strategies that may improve survival and reduce resistance to therapy.

Methods:We combined scRNA-seq with bulk RNA analysis to explore adrenergic

receptor signaling in ESCC, focusing on changes before and after neoadjuvant

therapy. We identified ADRB1+ T cells through data analysis and experimental

validation. Copy number variation (CNV) analysis detected malignant cells within

scRNA-seq data, while intercellular interaction analysis examined

communication between cell populations. Deconvolution of TCGA data

revealed key immune populations, which were integrated into a prognostic

model based on the adrenergic receptor signaling pathway and differentially

expressed genes.

Results: The adrenergic receptor signaling pathway was found in various

immune cells, including T cells. scRNA-seq analysis revealed increased ADRB1

expression in T cells after neoadjuvant therapy. Immunofluorescence confirmed

colocalization of ADRB1 with T cells, and fluorescence-activated cell sorting

(FACS) showed that ADRB1 expression was elevated alongside exhaustion

markers, while immune function markers were reduced. CNV analysis

highlighted malignant cells in the tumor microenvironment, and intercellular

interaction analysis explored ADRB1+ T cells’ role in immune support.

Deconvolution of TCGA data identified ADRB1+ T cells, SPP1+ macrophages,

and CD44+ malignant cells, all of which were prognostically significant. A
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1520766/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1520766/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1520766/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1520766/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1520766/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1520766/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1520766/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1520766&domain=pdf&date_stamp=2025-05-08
mailto:zlyyliuying1664@zzu.edu.cn
https://doi.org/10.3389/fimmu.2025.1520766
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1520766
https://www.frontiersin.org/journals/immunology


Li et al. 10.3389/fimmu.2025.1520766

Frontiers in Immunology
prognostic model constructed from the intersection of the adrenergic receptor

signaling pathway and differentially expressed genes following neoadjuvant

therapy showed a significant prognostic effect.

Conclusions: ADRB1 expression increases after neoadjuvant therapy in ESCC and

correlates with poor prognosis. Our findings suggest ADRB1 as a potential

prognostic biomarker and therapeutic target for post-neoadjuvant immunotherapy.
KEYWORDS

esophageal squamous cell carcinoma, adrenergic receptor, single-cell RNA sequencing,
ADRB1 + T cells, prognosis
1 Introduction

Esophageal squamous cell carcinoma (ESCC) is a common and

aggressive form of esophageal cancer that primarily originates from

the squamous epithelial cells lining the upper and middle sections of

the esophagus (1, 2). ESCC is one of the twomain pathological types

of esophageal cancer, the other being esophageal adenocarcinoma,

which typically affects the lower esophagus (3, 4). ESCC accounts

for roughly 90% of esophageal cancer cases worldwide. The

prevalence of ESCC varies by region, with high rates observed in

East Asia, parts of Africa, and some areas in South America (5).

The overall prognosis for esophageal cancer remains relatively

poor, primarily due to the disease’s tendency to be diagnosed at

advanced stages when symptoms become more apparent. For

esophageal cancers detected in the early stages, the 5-year survival

rate can range from 40% to 50% (5). In cases where the cancer has

spread to nearby tissues or regional lymph nodes, the 5-year

survival rate decreases to around 20% to 30% (5). Treatment

strategies for locally advanced ESCC often includes a combination

of surgery, chemotherapy, and radiation. Despite the challenges,

ongoing research into new therapies, such as immune checkpoint

inhibitors and molecular targeted therapies, continues to offer hope

for better management and improved survival rates for esophageal

cancer patients in the future (6–8).

T cell exhaustion is a state of functional decline due to

prolonged antigen exposure, often seen in the tumor

microenvironment (TME) (9, 10). Exhausted T cells exhibit

reduced cytokine production, limited proliferative capacity, and

high expression of inhibitory receptors like programmed cell death

1 (PD-1) and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-

4), all of which impair their ability to attack cancer cells effectively

(11–14). Consequently, T cell exhaustion poses a major barrier to

successful cancer immunotherapy.

The ablation of b1-adrenergic signaling has gained attention as a

potential therapeutic strategy to mitigate T cell exhaustion in cancer

(15). b1-adrenergic receptors (b1-ARs), which are primarily involved

in cardiovascular function and stress responses, are also expressed on

immune cells, including T cells (16–18). These receptors are activated
02
by stress hormones such as norepinephrine, which are often elevated

in cancer patients due to the physical and psychological stress

associated with the disease (19). Chronic stimulation of b1-ARs in
T cells can promote a state of exhaustion by increasing the expression

of inhibitory receptors and reducing T cell functionality (20). This

adrenergic signaling helps create an immunosuppressive

environment within tumors, which can hinder the effectiveness of

the body’s immune response and immunotherapies.

The ablation or inhibition of b1-adrenergic signaling, using b1-
AR antagonists (commonly known as beta-blockers), may prevent

or reverse T cell exhaustion. By blocking b1-ARs, the exhaustion

markers on T cells can be reduced, potentially restoring their

proliferative and cytotoxic abilities (20, 21). This approach is

being explored as an adjunctive strategy to enhance the efficacy of

existing cancer therapies, including immune checkpoint inhibitors.

Targeting b1-AR signaling may help reshape the TME, fostering a

more active and resilient immune response against cancer cells.

Although studies have shown that endogenous expression of

ADRB1 by T cells in melanoma leads to depletion of CD8+ T cells, it

is still unknown whether endogenous stress response also exists in

ESCC to directly regulate the differentiation and function of T cells

during immune response.

Single-cell RNA sequencing (scRNA-seq) has transformed

cancer research by providing an unprecedented level of detail on

individual cell behavior, gene expression, and interactions within

tumors. This powerful technology enables the study of cellular

heterogeneity, which is crucial for understanding cancer

progression, treatment resistance, and therapy response (22, 23).

In the context of ESCC and neoadjuvant therapy, scRNA-seq offers

valuable insights that can guide personalized treatment approaches

and improve patient outcomes (20, 24, 25).

For ESCC, scRNA-seq provides critical insights into the cellular

and molecular landscape of the tumor. ESCC is highly

heterogeneous, with significant variations in gene expression

between different tumor regions and individual cells (26–28). By

applying scRNA-seq, researchers can identify specific cell subtypes

and states within ESCC tumors that contribute to aggressiveness,

metastatic potential, and resistance to therapies (29–31).
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Moreover, by profiling immune cells within ESCC tumors, scRNA-

seq has shed light on the mechanisms of immune evasion, highlighting

interactions between cancer cells and immunosuppressive cells like

regulatory T cells (Tregs) and myeloid-derived suppressor cells

(MDSCs) (32–34). This knowledge can inform the development of

therapies targeting the tumor microenvironment, potentially

enhancing immune responses against ESCC.

Neoadjuvant therapy, which includes chemotherapy, radiation,

or targeted therapies administered before surgery, aims to reduce

tumor size and eliminate micrometastatic disease (35–37). In ESCC,

scRNA-seq has revealed changes in gene expression profiles of

cancer cells and identified immune cells that are enriched or

depleted after therapy, providing clues to the mechanisms behind

therapeutic resistance (38).

Furthermore, scRNA-seq can guide the development of

biomarkers that predict neoadjuvant therapy responses. By

identifying gene expression signatures associated with treatment

sensitivity, scRNA-seq helps to personalize therapy regimens based

on individual tumor characteristics (25, 39, 40). This precision

medicine approach can maximize treatment efficacy, reduce

unnecessary side effects, and improve overall survival rates. This

study combined single-cell transcriptomics and massive RNA

sequencing to investigate the role of ADRB1+ T cells after

neoadjuvant therapy for ESCC. ADRB1+ T cells were found to

up-regulate immune checkpoint genes after neoadjuvant therapy,

and immunological interactions with other cells occurred. A

prognostic model based on adrenergic receptor signaling

pathways and cell type characteristics stratifies patients according

to risk, demonstrating the potential of ADRB1+ T cells as prognostic

indicators of ESCC.
2 Materials and methods

2.1 Datasets source

The single cell transcriptome sequencing data of ESCC before

and after neoadjuvant therapy were obtained from China National

Center for Bioinformation/Beijing Institute of Genomics, Chinese

Academy of Sciences (accession number: OMIX005710) (39). Data

are available at https://ngdc.cncb.ac.cn/omix/release/OMIX005710.

The bulk RNA-seq data and matching clinicopathological data of 82

ESCC patients were acquired from TCGA (ESCA) (https://

portal.gdc.cancer.gov/).
2.2 Dimensionality reduction, clustering
and differential expression analysis of
scRNA-seq data

We used the Scanpy Python package (version 1.9.2) (41) to load

the cell-by-gene count matrix and preprocess the data with a modified

standard pipeline. First, raw gene counts were normalized for

sequencing depth using scanpy.pp.normalize_per_cell, followed by

logarithmic transformation with scanpy.pp.log1p. We then identified
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10,000 highly variable genes using scanpy.pp.highly_variable_genes,

with the flavor parameter set to ‘seurat_v3’ to align with Seurat v3

practices. Dimensionality reduction and batch effect correction were

performed with the scVI model (parameters: n_layers = 2, n_latent =

30) from scvi-tools, treating donor information as a batch effect and

percent_mito as a numeric covariate. Next, we built the neighborhood

graph with scanpy.pp.neighbors (k = 10) and applied the Leiden

algorithm (resolution = 1) for cell clustering. Marker genes were

detected primarily through a t-test for differentially expressed genes

(DEGs) between clusters, using sc.tl.rank_gene_groups (method = ‘t-

test_overestim_var’, corr_method = ‘benjamini-hochberg’) with p-

values corrected by the Benjamini-Hochberg method, selecting the top

100 genes. DEGs were further filtered to ensure a log2 fold change

above one, presence in at least 10% of cells, and a Bayes factor greater

than two.
2.3 Adrenergic score, HLA score and
Exhaust T score

Adrenergic genes, HLA genes and Exhaust T genes were used as

inputs to calculate Adrenergic score, HLA score and Exhaust T

score through ‘scanpy.tl .score_genes ’ model from the

package scanpy.
2.4 Human esophageal cancer tissue
immunofluorescence staining

Tumor tissue was performed on formalin-fixed, paraffin-

embedded (FFPE) tumor samples retrospectively collected from

16 patients who had received neoadjuvant chemotherapy at Henan

Cancer Hospital. Tissue usage was approved by the Medical Ethics

Committee of Henan Cancer Hospital under protocol number

2023-053-001.

In brief, consecutive 4-mm thick sections were deparaffinized,

rehydrated, and subjected to antigen retrieval using EDTA solution.

Endogenous peroxidase activity was blocked with a 1% hydrogen

peroxide solution in methanol at room temperature for 30 minutes.

Nonspecific binding was minimized by blocking with 0.3% BSA in

TBST, followed by incubation with primary antibodies, including

anti-CD8A (1:200, A0663, Abclonal) and anti-ADRB1 (1:100,

SE36730, SAB), overnight at 4°C.

After rinsing with PBS, sections were treated with secondary

antibodies—Alexa Fluor 488-conjugated anti-mouse IgG (A21202)

and Alexa Fluor 555-conjugated anti-mouse IgG (A31570) from

Invitrogen—for 60 minutes at room temperature. Following PBS

washes, the sections were mounted using Vectashield mounting

medium with DAPI.
2.5 Immunoblotting

Tumor tissues were lysed in RIPA buffer containing protease

inhibitors. Proteins were then separated by SDS-PAGE and
frontiersin.org

https://ngdc.cncb.ac.cn/omix/release/OMIX005710
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://doi.org/10.3389/fimmu.2025.1520766
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2025.1520766
transferred onto a PVDF membrane for immunoblot analysis. The

membranes were incubated with primary antibodies at a 1:1000

dilution. Protein bands were visualized using the SuperSignal West

Pico Kit, following the manufacturer’s instructions (Thermo Fisher

Scientific, Pierce).
2.6 Flow cytometry

Human esophageal tumor tissues were collected from patients

before and after neoadjuvant therapy, minced with razor blades in a

cell culture dish, and digested in dissociation buffer (10×) consisting

of 40 ml RPMI/DMEM (Gibco) with 1% penicillin–streptomycin

(Gibco), 1 mM NaPyr (Gibco), 25 mM HEPES (Lonza), 400 mg

collagenase IV (Sigma), 400 mg soybean trypsin inhibitor (Thermo

Scientific), 50 mg Dispase II (Sigma), and 20 mg DNase (Sigma) for

30 minutes at 37°C. The samples were then filtered through a 70 mm
cell strainer, centrifuged at 420 rcf for 4 minutes at 4°C, and

resuspended in RPMI with 10% FBS before being plated for staining.

For flow cytometry staining, cells were incubated with a viability

dye (Ghost Dye Red 780, Tonbo) in PBS for 5 minutes at room

temperature, followed by incubation with the specified surface

antibodies for 30 minutes on ice in PBS supplemented with 1.2%

FBS. For intracellular cytokine staining, tumor cells were stimulated

with ionomycin (Cell Signaling, final concentration of 1 mg/ml) and

PMA (Sigma, final concentration of 50 ng/ml) for 5 hours in the

presence of brefeldin A (GolgiPlug, BD Biosciences; 0.5 ml/ml) and

monensin (GolgiStop, BD Biosciences; 0.325 ml/ml) for 4 hours at

37°C. Following staining, cells were resuspended in PBS with 2 mM

calcium and 2% FBS and incubated with 10 mM noradrenaline or

adrenaline for 15 minutes.
2.7 Copy number variation analysis

The evaluation of copy number variation (CNV) in scRNA-seq

data was performed using the inferCNV R package (version 1.18.0),

available from the Broad Institute’s GitHub repository (https://

github.com/broadinstitute/inferCNV). This tool facilitates the

differentiation of cancerous cells from healthy ones by examining

chromosomal regions and gene expression to identify variations in

copy number. Cells exhibiting elevated CNV scores were classified

as malignant.
2.8 Cell communication

The CellChat R package (version 1.5.0) (42) was employed to

quantitatively infer and analyze cellular interactions derived from

scRNA-seq data. To examine changes in intercellular communication

strength, the “netVisual_diffInteraction” function was applied, while

the “identifyCommunicationPatterns” function was used to assess the

number of distinct communication patterns. Various visualization

methods, including scatter plots and heatmaps, were implemented to

visually analyze the signals exchanged by each cell.
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2.9 Running deconvolution on ESCC
samples using CIBERSORT

Bulk RNA-seq deconvolution and cell type estimation was

performed using CIBERSORTx and the MQC genes signature

matrix (43). MQC genes signature matrix comprises 14 genes,

derived from aqueous humor outflow pathways in eyes of human

scRNA-seq data, to distinguish 15 human cell types.
2.10 Single-sample gene set enrichment
analysis

The ssGSEA algorithm was based on MQC genes. We employed

the ssGSEA algorithm via GSVA (44) packages (version: 1.40.1) to

comprehensively assess the MQC characteristics of every sample

included in the study.
2.11 Independent prognostic evaluation of
the risk score and the construction of
nomogram

Patient data was sourced from the TCGA-ESCA (ESCC)

dataset, with variables and risk scores assessed through univariate

and multivariate Cox regression analyses. A nomogram was

constructed using the rms package (version: 6.2-0) to visualize

independent variables for potential clinical application in predicting

the prognosis within the training cohort. The nomogram’s

performance was evaluated with both the Decision Curve

Analysis (DCA) and calibration curves.
2.12 Statistical analysis

All statistical analyses were performed using R software (version

4.3.0) and R studio (version 1.4.1717). Using the Wilcoxon test to

compare ADRB1 gene expression levels in patients before and after

neoadjuvant therapy, tumor stemness scores of malignant cells before

and after neoadjuvant therapy, and ADRB1+ T cell scores across

patients with different clinical characteristics in the TCGA cohort. A

two-tailed P value <0.05 was considered statistically significant.
3 Results

3.1 Overview of b1-ARs in scRNA-seq data
of ESCC

b1-ARs in immune cells have been shown to interfere with their

immune function through endogenous stress responses. Therefore,

to explore the expression of b1-ARs related genes before and after

ESCC neoadjuvant chemotherapy, we analyzed single cells from 22

baseline and 24 post-neoadjuvant chemo-immunotherapy samples

of stage II/III ESCC patients (38). After batch removal and rigorous
frontiersin.org

https://github.com/broadinstitute/inferCNV
https://github.com/broadinstitute/inferCNV
https://doi.org/10.3389/fimmu.2025.1520766
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2025.1520766
data filtering, we obtained 238,209 cells, including 12 major cell

types (Figure 1A). These major cell types were annotated based on

canonical cell-type marker genes reported in prior studies

(Figure 1B). The 12 cell types include immune cells (T cells, mast

cells, B cells, plasma cells, and mononuclear phagocytes), stromal

cells (endothelial cells, mural cells and fibroblasts), epithelial cells
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(malignant cells and normal epithelial cells), Schwann cells and

erythrocytes. Through the analysis of the sample source and tissue

distribution of single cells, it was found that the distribution of cells

is relatively uniform among patients (Supplementary Figures S1A,

B). Subsequently, we analyzed the distribution of patients’

treatment status in each cell type, and found that immune cells
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FIGURE 1

Single-cell landscape of adrenergic receptor in ESCC before and after neoadjuvant therapy. (A) Uniform manifold approximation and projection
(UMAP) visualization of annotated cells in cell atlas of ESCC tumors. EC, Endothelial cells; MP, mononuclear phagocytes. (B) Dot plot showing
marker genes for ESCC cell populations. The dot size represents the proportion of cells expressing a gene. Color denotes the scaled expression
level. (C) Bar chart showing the Jensen–Shannon divergence scores of each cell population. (D-F) UMAP plots showing expression of adrenal
receptor pathway-related genes, T-cell exhaust-related genes and HLA-related genes enriched in ESCC cancer cells, respectively.
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were significantly elevated in patients after treatment

(Supplementary Figures S1C, D).

By calculating the degree of cell heterogeneity of each type of

cell population before and after neoadjuvant therapy, we calculated

the Jensen-Shannon divergence (JSD) score dispersion of the cell

population. Through comparison, we found that the heterogeneity

of immune cells such as B cells, plasma cells, T cells and mast cells

decreased significantly after treatment, while stromal cells such as

endothelial cells, Schwann cells and mural cells increased

significantly (Figure 1C; Supplementary Table 1). In order to

detect the immune assistance and cell depletion status of different

cell types in ESCC, we calculated adrenal receptor pathway-related

genes, T-cell exhaust-related genes and HLA-related gene score,

respectively, and found that adrenal receptor pathway-related genes

were expressed in a variety of immune cells (Figure 1D). HLA-

related genes were mainly highly expressed in mononuclear

phagocytes and B cells (Figure 1E). T-cell exhaust-related genes

were significantly expressed in some T cells (Figure 1F), indicating

the presence of a population of exhausted T cells within the T cell

population. Furthermore, the cells with high exhausted T score also

showed high scores of genes related to the adrenergic receptor

signaling pathway.
3.2 Microenvironment of ESCC after
neoadjuvant therapy

To further investigate the microenvironment of ESCC after

treatment, we separated and finely annotated major cell

populations, including immune cells and stroma cells (Figures 2A,

B; Supplementary Figures S2A, B). To detect the degree of

dispersion between cells after treatment, we calculated JSD scores

for different cell types. The results showed that most cell types,

including ADRB1+ T cells, had increased cell dispersion after

treatment, indicating that intracellular information entropy

increased and cell differentiation increased, while B cell and Naïve

T cell had decreased divergence, indicating that these cells tended to

be homogeneous after treatment (Supplementary Figure S2C). In

addition, the JSD scores of all stromal cells increased after

treatment, indicating that different stromal cells became

unhomogeneous after treatment (Supplementary Figure S2D).

Subsequently, we examined cell proliferation after treatment, and

we found that the proliferation capacity of immune cells and

stromal cells was generally decreased after treatment (Figure 2C;

Supplementary Table 2).

A previous article reported that ADRB1 is a novel immune

checkpoint in colorectal cancer (20). Interestingly, we found a

group of T cells specifically expressing ADRB1 in T cells,

suggesting that this very exciting group of exhaust-related T cells

is also present in ESCC. In addition, ADRB1 expression in T cells

were upregulated after treatment (Figure 2D), suggesting that

neoadjuvant therapy promotes exposure to this immune

checkpoint in ESCC. Immunofluorescence confirmed that ADRB1

was expressed in CD8+ T cells and that its expression increased after

neoadjuvant therapy (Figure 2E). Through fluorescence-activated
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cell sorting (FACS), we found that after neoadjuvant therapy,

ADRB1 and T cell exhaustion-related gene PD1 were up-

regulated, while T cell function related gene IFN-Y was down-

regulated. These results indicate the presence of a subset of

exhausted T cells characterized by the expression of adrenergic

receptor ADRB1 in ESCC (Figures 2F, G). After neoadjuvant

therapy, these cells express more adrenergic receptor-related

genes, show an increase in cell numbers, and exhibit a decline in

cell function.
3.3 The identification of malignant cells

All epithelial cells are divided into classical epithelial cells and

unknown cells based on canonical marker genes. inferCNV was

then used to detect large-scale chromosomal copy number changes

in all epithelial cells using immune cells and stromal cells as

reference normal cells. The resulting heatmap illustrated the

relative expression intensities across each chromosome, this

unknown population expressing showed significant gains or

deletions of large segments of chromosomes relative to other

normal cells (Figure 3A). All epithelial cells were further isolated

for re-clustering analysis, and stem cell like CD44+ malignant cell

was found (Figure 3B; Supplementary Table 2). Calculating the

copy number scores for epithelial cells also revealed that malignant

cells had the highest scores (Figure 3C). JS divergence analysis

showed that both epithelial cells and malignant cells showed a

decrease of JSD score after treatment, indicating that the

heterogeneity of both epithelial cells and malignant cells was

reduced after neoadjuvant therapy (Figure 3D). By calculating the

proliferation of cells, we found that the vast majority of malignant

cells were in the G2M stage (Figure 3E). In addition, after treatment,

the proliferation of malignant cells showed a significant decline

(Figure 3F; Supplementary Table 2), and the tumor stemness score

also showed a significant decline after neoadjuvant therapy

(Figure 3G, Supplementary Table 2).
3.4 CellChat analysis among cell subtypes

To deepen our understanding of the communication network

between cell types, unravel the complexity of intercellular signaling,

and explore the functional and regulatory roles of key cell

subpopulations and signaling pathways in both physiological and

disease contexts, we employed CellChat for analyzing and

visualizing intercellular communication. Firstly, we constructed a

communication network among all subtype cells. To assess the level

of cellular communication, we evaluated the number of intercellular

connections, as indicated by the thickness of the connecting lines

(Figure 4A). To detect the contribution of cell subtypes to the input

and output of intercellular communication, a dot plot was used to

show the input and output signal strength of contributions from all

cell subclasses (Figure 4B).

The results showed that ADRB1+ T cells, as incoming cells, were

the most strongly regulated by other cells. Subsequently, the interaction
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between ADRB1+ T cells and all other cell subtypes was examined, and

the results showed that this group of T cells expressing immune

checkpoints had significant interaction with stem cell-like CD44+

Malignant cell (Figure 4C), indicating that this group of T cells had

the effect of directly killing malignant cells, especially stem cell-like
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malignant cells. The role of ADRB1+ T cells in the pathway associated

with antigen presentation and cell killing was then examined. The

results showed that ADRB1+ T cells mainly interact with NK and CD8+

T cells on the MHC-I signaling pathway and play an important role in

antigen presentation (Figure 4D). At the same time, ADRB1+ T cells
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also play an important role as a ligand cell in the IFN-II signaling

pathway, and its receptor cells include SPP1+ Macrophage (Figures 4E,

F). Subsequent analysis of CD44+ Malignant cell interaction showed

that this population had intercellular communication with most cells,
Frontiers in Immunology 08
among which ADRB1+ T cells communicated the most

(Supplementary Figure S3A). At the same time, tumor-associated

SPP1+ Macrophage interact with most cells on the SPP1 signaling

pathway (Supplementary Figures S3B, C).
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3.5 Single-cell data were deconvolved to
bulk TCGA cohort

To assess the impact of these interacting cells on patient

prognosis, as well as the prognostic role of the adrenergic

receptor pathway in ESCC, we used the expression matrix of

ADRB1+ T cells, CD44+ Malignant cell and SPP1+ Macrophage in

scRNA-seq data as a feature matrix deconvolution into the bulk

RNA-seq expression matrix of ESCC patients in TCGA data,

respectively (Figure 5A; Supplementary Table 3). The median was

used to group the deconvolution scores of different cell types, and

the results showed that the expression of all three groups of cells

could be a significant prognostic indicator for patients with ESCC

(Figures 5B–D). Subsequently, by analyzing the differences in the

ADRB1+ T cells deconvolution scores across various clinical

characteristics of the patients, the results revealed significant

differences in the risk scores across multiple clinical features

(Figure 5E). This indicates that ADRB1+ T cells not only have

prognostic value but also show higher risk scores in patients at more

advanced stages.
3.6 ADRB1 risk signature was associated
with prognosis

In order to examine the role of ADRB1+ T cells in the clinical

prognosis of patients before and after neoadjuvant therapy, we

intersected the genes up-regulated by ADRB1+ T cells after

treatment with the genes of the adrenergic receptor signaling

pathway, and then calculated the risk scores of ESCC patients in

the TCGA data using ssGSEA (Supplementary Table 4). Patients

were divided into high-risk and low-risk groups using the median

risk score as a threshold, and the Kaplan-Meier survival curve

showed significant differences in survival among different groups

(Figure 6A). On the basis of the results of univariate and

multivariate Cox regression analysis, the risk signature was

identified to be an independent prognostic factor for overall

survival (OS) (P < 0.05) (Supplementary Figures S4A, B). Using

Western blot to detect ADRB1 expression in tumor tissues of

patients after neoadjuvant therapy, the results showed that

ADRB1 expression in tumor tissues significantly increased

following the therapy (Figure 6B). Additionally, a correlation

analysis between OS and ADRB1 expression found that ADRB1

expression was significantly negatively correlated with OS

(Figure 6C; Supplementary Table 5). On the basis of four risk

factors, a nomogram was constructed to predict prognosis in

patients of training cohort (Figure 6D). The nomogram showed

that the ADRB1 risk model contributed the most to prognosis. The

1, 3, and 5-year survival calibration curves showed a good

consistency between logistic calibration outcomes and predicted

outcomes, which demonstrated a good calibration of the diagnostic

nomogram (Supplementary Figures S4C-E). In addition, the 1, 3,

and 5-year survival DCA curves demonstrated a preferable

positive net benefit, which suggested its strong clinical utility

(Figures 6E–G).
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ESCC remains a major clinical challenge, particularly given the

uncertainty in long-term survival outcomes despite the use of

neoadjuvant immune chemotherapy. Although clinical trials such

as ESCORT-NEO/NCCES01 indicate that combination

immunotherapy (e.g., camrelizumab) can improve pathological

complete response (pCR) rates in patients with locally advanced

ESCC, the long-term survival benefits remain inconclusive (45). Our

study suggests that elevated expression of ADRB1 after neoadjuvant

immune chemotherapy correlates with poorer prognosis in ESCC

patients, indicating that ADRB1 could serve as an important

biomarker for assessing the efficacy of this treatment strategy.

Zhang et al. found that certain genes can regulate the activity of

CD8+T cells, thereby affecting the anti-tumor immunity of patients

(46). The role of ADRB1 in T-cell exhaustion has also been well

established in various tumor types. The study demonstrated that the

sympathetic nervous system induces functional exhaustion in CD8+

T cells via the ADRB1 signaling pathway, thus diminishing the anti-

tumor immune response (20). Furthermore, ADRB1 signaling

contributes to T-cell exhaustion in the context of chronic

infections and tumors, facilitating immune escape (47). These

studies provide compelling evidence that ADRB1 is not only a

critical mediator of immune suppression within the tumor

microenvironment but also a potential therapeutic target to

enhance the efficacy of immune treatments.

The molecular mechanisms responsible for the upregulation of

ADRB1 expression following neoadjuvant treatment remain to be

fully elucidated. Tsai et al. (2020) suggested that chemotherapy and

immunotherapy might induce upregulation of ADRB1 on T cells,

enhancing their ability to adapt to the tumor microenvironment

(48). This could be attributed to the persistent stimulation of T cells

by tumor-associated inflammatory cytokines, such as IFN-g and IL-

6, which promote the proliferation of ADRB1+ T cells and drive

them into an exhausted state (49).

In the tumor microenvironment, cells are usually highly

heterogeneous, especially malignant cells. By identifying cell

subtypes and analyzing cell interactions, more accurate results are

often obtained than by analyzing a wide range of cell types (50–52).

Our study highlights the critical interaction between ADRB1+ T

cells, SPP1+ macrophages, and CD44+ malignant cells, providing

new insights into the immune microenvironment of ESCC. SPP1+

macrophages have been implicated in promoting tumor

progression and immune escape (53). Moreover, CD44+

malignant cells are widely recognized as crucial factors in

maintaining cancer stemness and immune suppression (54). Our

findings further suggest that ADRB1+ T cells may interact with

CD8+ T cells and NK cells via the MHC-I signaling pathway, while

also forming a complex immune-suppressive network with SPP1+

macrophages through the IFN-II signaling pathway. This network

could contribute to the development of immune therapy resistance.

The clinical targets identified through data analysis are ultimately

to be implemented into clinical applications, which is of great

significance for improving the accuracy of prognosis and guiding

treatment decisions (51, 52). ADRB1 as a potential therapeutic target
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has been validated in multiple studies. For example, the study

demonstrated that the use of ADRB1 inhibitors, such as atenolol,

can reverse T-cell exhaustion and enhance the anti-tumor effects of

PD-1 inhibitors (47). In addition, Qiao et al. showed that b-
Frontiers in Immunology 11
adrenergic receptor antagonists can improve immune therapy

responses in various cancer models (55). Therefore, for ESCC

patients with elevated ADRB1 expression after neoadjuvant

treatment, combining ADRB1 inhibitors with existing immune
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therapies could be a promising strategy to improve long-term

treatment outcomes.

Our study highlights the critical role of ADRB1 in the ESCC tumor

microenvironment, particularly in regulating T-cell exhaustion, tumor-

immune cell interactions, and immune therapy resistance. Elevated

ADRB1 expression could serve as an important marker of poor
Frontiers in Immunology 12
prognosis following neoadjuvant immune chemotherapy, and

ADRB1 inhibition may offer a novel therapeutic approach to

enhance the efficacy of immune treatments in ESCC. Future research

should further explore the clinical feasibility of ADRB1-targeted

therapies in ESCC and investigate their potential synergy with other

immune treatment strategies.
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