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Macrophages are vital sentinels in innate immunity, and their functions cannot be

performed without internal metabolic reprogramming. Mitochondrial dynamics,

especially mitochondrial fusion and fission, contributes to the maintenance of

mitochondrial homeostasis. The link between mitochondrial dynamics and

macrophages in the past has focused on the immune function of

macrophages. We innovatively summarize and propose a link between

mitochondrial dynamics and macrophage metabolism. Among them, fusion-

related FAM73b, MTCH2, SLP-2 (Stomatin-like protein 2), and mtSIRT, and

fission-related Fis1 and MTP18 may be the link between mitochondrial

dynamics and macrophage metabolism association. Furthermore, post-

translational modifications (PTMs) of mtSIRT play prominent roles in

mitochondrial dynamics-macrophage metabolism connection, such as

deacetylates and hypersuccinylation. MicroRNAs such as miR-150, miR-15b,

and miR-125b are also possible entry points. The metabolic reprogramming of

macrophages through the regulation of mitochondrial dynamics helps improve

their adaptability and resistance to adverse environments and provides

therapeutic possibilities for various diseases.
KEYWORDS
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1 Introduction

Macrophages are important sentinels in innate immunity. Classically activated

macrophages and alternatively activated macrophages play roles predominantly in

inflammatory processes and injury repair or parasitic diseases, respectively (1). It has

been reported that in vivo M1-like and in vitro classical activated macrophages and in vivo

M2-like and in vitro alternatively activated macrophage are not completely equivalent (2).

Undoubtedly, the different polarization forms of macrophages affect the immune
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regulation, which in turn determines the prognosis of host in

adverse environments. The fate of macrophages is interfered by a

variety of factors. For example: (1) Multiple signaling pathways and

factors affect macrophage polarization. For example, PI3K/AKT/

Rac-1 and peroxisome proliferator-activated receptor-g (PPAR-g)
are involved in macrophage anti-inflammatory (3), Janus kinase

(JAK)-signal transducer and activator of transcription (STAT) 1,

Adenosine 5’-monophosphate (AMP)-activated protein kinase

(AMPK)/nuclear factor kappa-B (NF-kB) signal pathways are

involved in macrophage inflammatory response (4–6). (2) Micro-

environmental nutrients and metabolites regulate macrophage

metabolism and thus affect its polarization. Such as serine by

regulating glutathione (GSH) synthesis (7), and g-aminobutyric

acid (GABA) perturbing macrophage oxidative phosphorylation

(OXPHOS) via succinate-flavin adenine dinucleotide (FAD)-lysine

specific demethylase1 (LSD1) (8) are involved in the regulation of

LPS or LPS+IFN-g induced macrophages. A creatine-related

metabolic pathway is involved in IL-4 induced macrophage

polarization (9). Endothelial cells secrete lactate through

glycolysis, and lactic acid, after ingestion by macrophages, affects

the acetylation of specific molecules through p300/CBP pathway,

increases endothelium permeability, and finally affects the course of

disease by regulating the polarization of macrophages (10, 11). (3)

In recent years, the role of epigenetic modifications in macrophage

polarization has been emphasized, which is also significant for

trained immunity (12, 13).

As we listed above, macrophages in different microenvironment

have different requirements for nutrients and immunity. Mitochondria

are important multifunctional organelles in macrophages, including

the core energy and metabolism stations (14), cell division (15, 16),

signaling platform (17) and other biological functions. Thus,

mitochondria have a non-negligible impact on macrophage fate

decision. Mitochondrial morphology involves a series of temporal

and spatial mitochondrial processes (18, 19), including fission and

fusion, as well as adaptive behaviors such as mitochondrial autophagy

(termly named as “mitophagy”) and mitochondrial transport, which

are closely related to the biological activities and are the adaptive

strategies of mitochondria in different cellular microenvironments.

Therefore, changes in morphology, quality and location of

mitochondria bestow macrophages energy supplementation and/or

immunomodulatory assistances.

Mitochondrial dynamics regulates macrophage immunity by

affecting macrophage immunity-related signals and pathways,

and their entanglement has been extensively reviewed elsewhere

(14, 18, 20, 21). LPS-activated macrophages benefit fragmented

mitochondria for its increased mitochondrial fission through

Stat2 promoting dynamin-related protein 1 (DRP1) Ser616

phosphorylation (22). Subsequent mitochondrial remodeling,

such as fragmentation, loose cristae structure, and reduced

membrane potential [DY(m)], promotes their function to ROS

production, which further facilitate the pro-inflammatory

response of macrophages (22). Inhibition of pyruvate

dehydrogenase kinase (PDHK) in macrophages can promote

mitochondrial fusion and reduce inflammatory stress (23).
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Reparative macrophages show the aggregation of elongated

mitochondria and induce mitochondrial fusion (24). Interferon

regulator 1 (IRF1), a transcription factor that coordinates the

expression of multiple inflammatory genes, it plays a key role in

the removal of damaged mitochondria, macrophage autophagy, and

inflammation control (25). Studies have also shown that IRF1 plays

a bidirectional role in regulating mitochondrial dynamics,

responding to TLR-induced macrophage mitochondrial fusion or

fission in macrophages via a cascade reaction with CHIP (a HSC70-

interacting protein) monoubiquitination translocation or

ubiquitination degradation (26). Apart from IRF1, extracellular

signal-regulated kinase (ERK1/2) is probably another bond in the

mitochondrial morphological network that adapt to the

polarization of macrophage. For one part, ERK1/2 is related to

LPS induced polarization in RAW264.7 cells and THP-1

macrophages (27, 28), or alternatively activated macrophages in

patients with endometriosis or gastric cancer-liver metastasis (29,

30). For another, ERK1/2 probably participates in the inhibition of

mitochondrial-dependent apoptosis (31) and facilitates

mitochondrial biogenesis in virtue of promoting CREB

phosphorylation and finally increasing PGC1a (PPARg co-

activator 1 alpha, a mitochondrial biogenesis regulator) (32).

However, ERK1/2 is proved to induce fragmented mitochondria

by phosphorylating DRP1 at S616 to induce mitochondrial fission

(33, 34), and mediate MFN1 (Mitofusin 1) T562-phosphorylation

(35) to decrease mitochondrial fusion. Reviewed by Sabouny R. and

Shutt T. E. concluded protein kinase A (PKA), protein kinase B

(AKT) and cyclic adenosine monophosphate (cAMP) work

effectively in facilitating hyperfused mitochondria, while ERK1/2

and Ca2+ promote fragmented mitochondria (20). Unfortunately,

this paper does not correlate these mitochondrial morphology

regulating signaling molecules with the polarization state of

macrophages, but we predict that mitochondrial dynamics have

connection with macrophage immunity. More significantly, Xie

et al. reviewed and speculated that mitochondrial dynamic network

regulation (e.g., MFN1/2) probably participate in the release of IFN-

b (type I interferons) and activation of the inflammasome NLRP3 in

macrophages (21). In conclusion, mitochondrial dynamic networks

regulating the immune responses of macrophages have been

extensively summarized, so we will not dwell on it.

In addition to the immune-related factors and/or pathways

mentioned above in geared to mitochondrial dynamics and

macrophage polarization, macrophage immunity is closely

associated with intracellular metabolism. As all accepted, the high

plasticity of macrophages is reflected in OXPHOS and glycolysis

dependent metabolic switch, which supports the determination of

the polarization fate of macrophages under different stimulations

(36). In IL-4 induced macrophages, OXPHOS is the dominant

metabolic state, accompanied by a complete tricarboxylic acid cycle

(TCA) cycle and enhanced electron transport chain (ETC), while

LPS+IFN-g activated macrophages prefer to use glycolysis (37).

Recently, it was uncovered that mitochondrial dynamics can reflect

different polarization phenotype of macrophages. Classically

activated macrophages show glycolysis and discrete mitochondria,
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however, OXPHOS metabolically active macrophage has elongated

mitochondria (38). Based on this mitochondrial dynamics tether to

macrophage metabolism coincident with polarization states,

mitochondrial subcellular imaging has potential to monitor

metabolic progression of macrophages and ultimately instruct

clinical treatment. The conclusion above depends on

mitochondrial fluorescence confocal imaging and ImageJ macro

tools to analyze its mass (foodprint), branching, network

morphology and size and other traits (38). In addition to these

intuitive and visual methods, the fusion and fission of mitochondria

take place under the coordination of complex life activities in cells.

For example, the guanosine triphosphatases (GTPase) proteins

MFN1 and MFN2 are responsible for fusion, and DRP1 is

responsible for fission (39). In addition, mitochondrial dynamics

have been shown to induce metabolic reprogramming in skeletal

muscle atrophy or liver tumors (40), suggesting that mitochondrial

dynamics have significant impacts on the fate of body health.

Whether there are deeper connections between mitochondrial

dynamics and macrophage metabolism, we will discuss those in

the following part.
2 Mitochondrial fission and
macrophage metabolism

2.1 Mitochondrial fission event

As we discussed above, cytosolic protein DRP1 is the primary

regulate factor during mitochondrial fission (39). The post-

translational modification (PTM) of DRP1 has been extensively

summarized and annotated (41), such as ubiquitination,

phosphorylation, palmitoylation, O-GlcNAcylation (OGA), etc.

Different PTM or the same type of modifications occurs at

different sites may have completely opposite effects on the

reconciliation of mitochondrial state. Therefore, it is of great

significance to study PTM.

Mitochondrial fission is a multifactor derived biological event

(Figure 1, right). Endoplasmic reticulum (ER)-Mitochondrial

signaling plays a key role in mitochondrial fission, involving

special regions of the ER called mitochondria-associated

membranes (MAMs) (42). The ER tubule wraps mitochondrial

tubule physically to form the earlier fission event (43), constitutes a

subsequent assembly site and assists fission in an actin-dependent

manner. In recent years, it has been found that acetylation of actin

regulates actin polymerization via inverted guanidine protein 2

(INF2) located in the ER, and that mitochondria-localized myosin

19 (Myo19) collaborates with INF2 and spiretype actin nucleation

factor 1 (Spire1C) to regulate actin assembly (44–46). Actin-

depolymerizing protein cofilin1 acts as a reverse regulator to

balance INF2/Spire1C in mitochondrial actin dynamics (47). Mff

(the tail-anchored mitochondrial fission factor) controls midzone

fission, leading to mitochondrial proliferation, while mitochondrial

outer membrane protein fission 1 protein (Fis1) regulates

peripheral fission, leading to mitochondrial autophagy (48).

MiD49/51 (N-terminally anchored mitochondrial dynamics
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proteins, 49 kDa and 51 kDa) is responsible for Drp1 recruitment

to the mitochondrial OM in the form of inactive dimer, and Drp1-

MiD is essential for Drp1 assemble and subsequent cytochrome c

(cyt c) release and cristae remolding during apoptosis (49).

Mechanically, Hidenori et al. demonstrated visually through TEM

that WT and Mff-KO cells showed abnormal mitochondria with

balloon or lamella-less cristae, while most mitochondria in MiD49/

51-KO and Drp1-KO cells retained lamellar cristae structure after

apoptosis induction (49). This suggests that induced cristae

stabilization in MiD49/51-KO and Drp1-KO cells leads to

resistance to cyt c release (49). It was further demonstrated that

MiD51’s N-SA, a mutation in the N-terminal OMM targeting signal

anchor of MiD51, is necessary to correctly pinpoint the Drp1-

MiD51 complex in the proximity of the crista-remodeling system

under apoptotic signal, thereby modulating cristae junction

disruption to release cyt c (49). In mammals, classical dynamin 2

(DYN2) assists DRP1 in promoting mitochondrial fission (40). In

addition, cortactin, Arp2/3 (Actin-related protein 2/3) complex (50)

and Myosin II also works in mitochondrial fission (51).

Little is known about mitochondrial IM fission events.

Interestingly, mitochondrial protein 18 kDa (MTP18) induces

fission along with Drp1 and Fis1 (52). Because located on IMM

(mitochondria inner membrane), MTP18 may drive the IM fission

assembly, which is only a speculation and needs experimental proof.

In recent years, studies have shown that MTP18 deficiency can

reduce mitochondrial division, and two microRNAs negatively

regulate MTP18 (miR-652-3p and miR-668) (53).

In the ROS induced cardiac mitochondrial fission, MTP18

interfered with Drp1 accumulation but failed to mediate fission

alone when Drp1 expression was scarcely (54). Therefore, MTP18

must collaborate with other factors to promote fission.

Mitochondrial fission is a complex biological process. We have

summarized the current knowledge of fission-regulating proteins

(Table 1), hoping to describe mitochondrial fission more

comprehensively, but the existing content is far from sufficient.

More research is still needed on mitochondrial fission,

especially IMM.
2.2 The connection between mitochondrial
fission and macrophage metabolism

Preliminary studies of mitochondrial dynamics are usually

performed in fibroblasts and/or stem cells (66, 84). Nowadays,

mitochondrial dynamics have also been found to be crucial to the

fate determination of macrophages. The classical cognition of

macrophage metabolism is that glycolysis is the metabolic state of

LPS-induced macrophages, and OXPHOS is extremely important for

resting macrophages (85). The mitochondria of LPS (0.5 µg/mL)

-induced BMDMs rapidly displayed small punctate and fragmented

forms within 2 h, and remain in a fission state after 12 h of

stimulation, and the expressions of Mfn1, Mfn2, Fam73a, and

Fam73b are decreased, the dephosphorylation of Drp1 is enhanced

(26). Mitochondria in IL-4-induced BMDM are tubular in fusion

state, and Fam73b expression is elevated (26). Under the two
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completely different metabolic states of macrophages (glycolysis and

OXPHOS), mitochondria also present extremely different

morphology. Whether the dynamic changes of mitochondria can

directly represent the metabolism of macrophages, or whether there

are some ways to correlate these two phenotypes, we will analyze the

argument in the following article.

In the process of mitochondrial fission, excessive activation of

DRP1 leads to mitochondrial dysfunction, which is manifested as

increased permeability of OM, decreased ATP production, and

increased release of ROS and cyt c, thus leading to cell apoptosis

(86). Therefore, mitochondrial fission is closely related to cell

metabolism (Figure 2).

The crystal structure of MiD51, an adaptor protein of

mitochondria, shows its ability to bind to ADP (87). MiD51

greatly promotes the hydrolytic activity and oligomerization of

Drp1 in the presence of ADP, and then promoted mitochondrial
Frontiers in Immunology 04
fission, while when ADP absence, it inhibits the hydrolytic activity

of Drp1 GTPase, which fully indicated the objective relationship

between mitochondrial fission and cell metabolism (88, 89). MiD51

has been shown to regulate basal or glucose-induced oxygen

consumption and insulin secretion levels in both mouse and

human pancreatic islet cells (90). Unfortunately, there are few

studies about MiD51 functions in macrophages at present, and

the relationship between MiD51 and macrophage metabolism is

also a study of far-reaching significance. Fis1, another key protein

associated to mitochondrial fission, is up-regulated in LPS (10 µg/

mL)-induced rat alveolar macrophage, and simultaneously causes

cellular SOD (superoxide dismutase) decrease and MDA

(malondialdehyde) increase, suggesting that Fis1 is involved in

the aggravation of oxidative damage in macrophages (91).

Whether the changes of SOD and MDA directly related to Fis1

was not explored in this article.
FIGURE 1

Mitochondrial fusion and fission events. (a) Fusion of OMM. ①IMS protein ARL2 promotes mitochondrial fusion during constitutive activation, and its
downstream ELMOD2 is a necessary effector. ARL2 and ELMOD2 work upstream of MFNs. ②When MFN1/2 appear on two opposite membranes of
mitochondria, it causes the fusion of OMM. ③Inhibition of OMM protein SLC25A46 promotes the stability of MFN1 and MNF2, which further
promotes hyperfusion. ④SIRT5 overexpression promotes the increase of MFN2 and promotes fusion. ⑤At a certain time point when MFNs bind
mitochondria together, MitoPLD modifies the lipid surface of the opposite mitochondrial OM in a PA-dependent manner for subsequent
mitochondrial fusion. MitoPLD anchors on OM and hydrolyzes CL to produce PA. PA is converted into DAG by absorption of Lipin 1b, which
ultimately contributes to mitochondrial fusion. ⑥Integrin protein FAM73A/B promotes the formation of mitoPLD dimer and inhibits its degradation.
⑦MTCH2 is a direct regulator of fusion, by regulating tBID and promoting the interaction between tBID and Bax, thereby inducing MOMP and
accelerating apoptosis. ⑧MTSO1 is mainly located in the cytoplasm and is involved in OM fusion, but the specific mechanism is unknown. (b) Fusion
of IMM. ①GTPase OPA1 contributes to IM fusion. Specifically, IMM fusion is dependent on L-OPA1 and its hydrolyzed form S-OPA1, and L-OPA1
alone is sufficient to promote mitochondrial fusion. ②OMA1 and YME1L are involved in the hydrolysis of L-OPA1 to produce c-, e- and d-type s-
OPA1, respectively. ③IM fusion occurs asymmetrically. As long as OPA1 on one side and a sufficient concentration (15%-20%) of CL on the other
side, these two elements bridge to promote fusion. S-OPA1 facilitates the bridging. ④SIRT3 promotes deacetylation of OPA1 at K926/931 to promote
fusion. ⑤Up-regulated SIRT4 is accompanied by higher levels of L-OPA1 expression, a phenomenon that could also be repeated by inhibiting miR-
15b. ⑥SIRT5 overexpression promotes the increase of OPA1, which contributes to mitochondrial fusion. ⑦SLP-2 cooperates with L-OPA1 to promote
hyperfusion. (c) Initiation of mitochondrial fission. ER tubules wrap mitochondria to form early fission events. (d) Subsequent fission events. ①Located
on the ER, INF2 recruits actin and forms a complex with Spire1c to promote mitochondrial contraction with the assistance of myosin II. ②The actin
depolymerase protein cofilin1 acts as a reverse regulator to balance the effects of INF2/Spire1C. ③Cortactin and ARP2/3 complex regulate actin
assembly on OMM and affect Drp1 dynamics and mitochondrial fission. Plentiful receptors on the OMM are involved in fission regulation. ④Drp1-Mff
promotes GTPase-dependent shrinkage and breakage of fission helical rings. ⑤Drp1-MiD has been shown to promote MFN2 independent fusion by
blocking Drp1. ⑥The activity of MiD51 is low when combined with Fis1, so Fis1 indirectly promotes fission. ⑦MTP18, located in the IMM, induces
fission together with Drp1 and Fis1. Whether MTP18 plays a role in IM fission remains unknown. (Arrows represent promotion and dots
represent inhibition.).
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Recently, DRP1 has been confirmed to be involved in the

differentiation of osteoclasts and the regulation of bone loss (92).

It is well known that osteoclast differentiation involves a series of

comprehensive metabolic reprogramming such as OXPHOS,

glycolysis and fatty acid synthesis (93). Therefore, Drp1 regulation

of osteoclast differentiation is closely related to macrophage

metabolism regulation. However, it remains unclear whether there

is a causal relationship between metabolic changes and

mitochondrial dynamics. A large number of literature research to

mitochondrial fission is associated with macrophage inflammatory

state, including the mice BMDM and humanmonocytes THP-1 cells
Frontiers in Immunology 05
(22, 94, 95), but those research mainly focus on macrophage

inflammatory signals, including inflammatory pathways or

mediators, however, the metabolic changes of macrophages are

worth exploring. In human monocytes, pro-apoptotic protein BIK

and mitochondrial fission process 1 protein MTP18 correlate

apoptosis with mitochondrial dynamics through the miR-125b

(96). In monocyte derived macrophages, pro-inflammatory activity

of macrophages are correlated with the decrease of BIK and MTP18

and the increase of miR-125b (96). Moreover, miR-125b induces

mitochondrial fusion by silencing MTP18 and reduces the OXPHOS

of macrophages (96).
TABLE 1 Mitochondrial dynamics related proteins and their location.

Protein Homologs Location Effects in mitochondrial dynamics References

DRP1 – Cytoplasm Fission↑ (55)

INF2 – ER Fission↑ (46, 56)

Spire1C – Mitochondria Fission↑ (46, 56)

Cofilin1 – Cytoplasm actin cytoskeleton regulation, Fission↓ (47)

Mff – OMM Fission↑ (57–59)

MiD49/MiD51 – OMM Fission↑ (49, 57, 58)

Cortactin – Cytoplasm actin cytoskeleton regulation (60)

Arp2/3 complex – Cytoplasm actin cytoskeleton regulation (60)

Myosin II – Cytoplasm (60)

MTP18 – IMM Fission↑ (52)

Fis1 – OMM Fission↑ (52)

FUNDC1 – MEM Fission↑/↓ (61, 62)

MFN1/MFN2 Fzo OMM OM Fusion↑ (63, 64)

SLC25A46 Ugo1 OMM OM Fusion↑ (65)

IMMT Fcj1 IMM cristae junctions↑ (65)

MTCH2 – OMM MOMP↑, apoptosis↑ (66–68)

MSTO1 Ftsz Cytoplasm Related to fusion (69)

MtioPLD – OMM OM Fusion↑ (70)

Lipin 1b – OMM Fission↑ (71)

FAM73A/B Miga OMM OM Fusion↑ (72)

OPA1 Mgm1 IMM IM Fusion↑ (63, 73, 74)

OMA1 – IMM Cut L-OPA1 to S-OPA1 form c and e (75)

YME1L – IMM Cut L-OPA1 to S-OPA1 form d (75)

ARL2 – IMS ARL2[Q70L]Fusion↑
ARL2[T30N]Fusion↓

(76)

ELMOD2 – Mitochondrial matrix Fusion↑ (77, 78)

SLP-2 – IMM Hyperfusion↑ (79)

SIRT3 – Mitochondria Fusion↑ (80, 81)

SIRT4 – Mitochondria Fusion↑ Fission↓ (82)

SIRT5 – Mitochondria Fusion↑ (83)
“↑” indicates increase and “↓” indicates decrease.
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Mitochondrial fission-related proteins have been studied more

rarely on cell metabolism, let alone on macrophage metabolism

(Table 2, Figure 2). Surprisingly, we find that micro-RNA (e.g.,

miR-125b) could be used as a breakthrough point to study the effect

of mitochondrial fission on the metabolism of macrophages, which

provides a good idea for subsequent research.
3 Mitochondrial fusion and
macrophage metabolism

3.1 Mitochondrial fusion event

Mitochondrial fusion largely divides into OMM fusion and

IMM fusion (21, 103, 104). During mitochondrial fusion, the

mixing of contents facilitates the transmission of information

[e.g., mtDNA (105)] and leads to the rapidly dilution of

cytoplasmic contents (106), which helps to rescue dysfunctional

mitochondria. MFN1 and MFN2 are responsible for OMM fusion

and optic atrophy 1 (OPA1) is responsible for IMM fusion (63). The

fusion of two mitochondria occurs first in OM and then in IM (the

inner membrane) (Figure 1, left).

3.1.1 OMM fusion
About mitochondrial fusion and fission-related proteins were

first discovered in yeast (107), drosophila (108), etc. Later,
Frontiers in Immunology 06
homologous proteins were found in humans and/or other

mammals. MFN1 and MFN2 involved in OMM fusion in

mammals are homologies of fuzzy onions (Fzo) (64). Similarly,

Ugo1 is a OMM protein that coordinates the fusion events of OMM

and IMM, but no obvious homologues of Ugo1 have been found in

higher eukaryotes (109). The discovery of SLC25A46, a member of

the mitochondrial solute carrier family 14 (SLC25), which matched

Ugo1 in yeast (Schizosaccharomyces japonicus), confirmed that the

OMM and IMM can fuse independently in mammalian cells (65).

SLC25A46 may be recruited to the OMM as a pre-fission factor and

interact with the IMM remodeling protein mitofilin (Fcj1), the

IMMT homolog of mammal (65). Knocking down SLC25A46

causes delay in mitochondrial fission or elongation (65), reduced

expression of SLC25A46 increases the stability of MFN1 and MFN2

(110), which both leading to mitochondrial hyperfusion.

Interestingly, SLC25A46 mutation also results in hyperfusion of

mitochondria, but with down-regulated OXPHOS, because

excessive fusion seriously damages the subcellular structure of

mitochondria, showing that the cristae structure is destroyed or

even disappeared (111).

Mitochondrial carrier homolog 2 (MTCH2, SLC25A50),

located at OMM, is a direct regulator of mitochondrial fusion/

elongation in mouse embryonic fibroblasts (MEFs) and embryonic

stem cells (ESCs) (66). As an effective binding partner of BID,

MTCH2/MIMP (Met-induced mitochondrial protein) interacts

with truncated BID (tBID) at OMM, promoting tBID
FIGURE 2

Connection between mitochondrial fission/mitophagy and macrophage metabolism. ①MiR-125b induces mitochondrial fusion by silencing MTP18
and reduces OXPHOS of macrophages by inhibiting BIK, reducing the pro-inflammatory activity of macrophages. ②Mitochondrial fission-related
receptor Fis1 is upregulated in LPS (10 µg/mL)-induced rat alveolar macrophages, accompanied by a decrease in cellular SOD and an increase in
MDA. SOD is capable to catalyze the disproportionation of O2•- to H2O2. Therefore, Fis1 may be involved in aggravated macrophage oxidative
damage. ③LPS (0.2 µg/mL) enhances the expression of CTL1, promotes the choline uptake mediated by CTL1, and remodels macrophage lipid
metabolism, such as reducing Mito-PC, and increasing Mito-SM. Impaired choline uptake disrupts mitochondrial ATP synthesis and triggers AMPK
activation to promote DRP1-driven mitophagy.
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translocation to mitochondria and ultimately inducing OMM

permeabilization (MOMP) to accelerate apoptosis (67, 68).

Similar to Ftsz of prokaryotic (69), MSTO1 (Misato homolog 1),

mainly located to the cytoplasm, is a protein involved in the fusion

and network formation of OMM (69). Currently, MSTO1 is only

known to be related to the fusion of OMM. It is worth exploring

how MSTO1 participates in the fusion process, whether there is

structural interaction with OMM, or whether MSTO1 promotes the

mitochondrial fusion by enhancing the chemotaxis of other factors.

Intriguingly, remolding membrane phospholipid content may

affect mitochondrial fusion. For example, mitochondrial

phospholipase D (MitoPLD) belongs to Phospholipase D (PLD)

signaling enzyme superfamily. A series of metabolic cascades

catalyzed by MitoPLD results in mitochondrial tubular

morphology, that is, promote mitochondrial fusion. Concretely,

due to the special N-terminal domain, MitoPLD is anchored on

OMM, which can hydrolyze cardiolipin (CL) on the surface of

mitochondria to generate phospholipid acid (PA) (70). At certain

points in time whenMFNs tethered mitochondria together, MitoPLD

modifies the lipid surface of the OM of the opposite mitochondria in

a PA-dependent manner to perform the subsequent steps of

mitochondrial fusion (70). Later studies found that PA absorption

phosphatase (Lipin 1b) produced by MitoPLD hydrolysis converts

PA into diacylglycerol (DAG) and terminates the lipid-signaling

pathway of browning activated by PA (71). The catalytic domain of

Lipin 1b locates at the tip of small mitochondria, or in a spot-like

manner on tubular mitochondria, converting long mitochondrial

tubules into medium-size fragments (71). Lipin 1b facilitates
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mitochondrial fission (71), and likewise, skeletal muscle of Lipin-1-

deficient patients and extensor digitorum longus muscle of Lipin-1-

deficient fatty liver dystrophy mice have been observed with

mitochondrial aggregation or large shape (112–114). In conclusion,

MitoPLD promotes mitochondrial fusion by lowering Lipin 1b
through PA generation. On the other hand, PA generated by the

MitoPLD is converted to DAG, which eventually leads to the increase

of DAG. An animal study revealed that DAG probably reduces body

fat mass by stimulating thermogenesis in brown adipose tissue (BAT)

while inducing lipolysis in white adipose tissue (WAT) (115). From a

more macroscopic perspective, MitoPLD shows that there is a

correlation between cell metabolism and mitochondrial dynamics.

Moreover, mammalian FAM73A (Miga1) and FAM73B

(Miga2) were discovered as orthologs of drosophila mitoguardin

(miga) gene (72). As membrane integrins on OMM, MIGA1 and

MIGA2 promote the formation of MitoPLD dimers and inhibit its

degradation (72). Therefore, miga acts downstream of MitoPLD,

and both miga and MitoPLD act downstream of MFNs to promote

mitochondrial fusion. In addition to the effect on mitochondrial

morphology, miga is also involved in the regulation of DY(m),

mitochondrial ATP and ROS production (72). Therefore,migamay

be a pleiotropic factor that affects mitochondrial morphological

dynamics and cell metabolism.

3.1.2 IMM fusion
Mgm1, the first member of the Dynamin family identified in

yeast, is required for mitochondrial fusion of IMM and is also

associated with the structure maintenance of crista (116), and the
TABLE 2 The effects of mitochondrial dynamics related protein in cell metabolism.

Protein Cell Type Metabolic Changes References

DRP1 HepG2 cells ATP production↓, ROS↑, cyt c↑ (86)

MiD51 Pancreatic islet cells Regulate basal or glucose-induced oxygen
consumption and insulin secretion levels

(90)

Fis1 Rat alveolar macrophages Cellular oxidative damage↑ (91)

MTP18 Human monocytes Correlate with apoptosis (96)

MiR-125b Monocyte derived macrophages, THP-1 OXPHOS↓(Fusion↑) (96)

FAM73b BMDMs Basal OXPHOS↑ (26)

MTCH2 BMSC,
LPS stimulated RAW264.7

ROS↓,TCA↑ (84) (97)

YME1L cYKQ
OMA1 active

Cardiomyocytes Shift from lipid metabolism to the
glucose metabolism

(98)

SLP-2 MEF OXPHOS↑ (79)

SIRT3 Fibroblasts OXPHOS↑ (80, 99)

BMDM OXPHOS↑ (100)

SIRT4 Fibroblasts Mitochondrial respiration↓ (82)

TAM FAO↓ (101)

SIRT5 MDA-ME-231, C2C12 a-KG↓,TCA↓ (83)

BMDM, PM OXPHOS↑ (102)
“↑” indicates increase and “↓” indicates decrease.
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human homolog ofMgm1 is OPA1 (73). OPA1 is a dynamin-related

GTPase that plays an important role in promoting fusion of IMM,

maintaining cristae structure, promoting IMM structure and integrity

(74) and controlling apoptosis (117, 118). OPA1 exists in two forms,

namely, membrane-bound Long-OPA1 (L-OPA1) and Short-OPA1

(S-OPA1), the hydrolysate of L-OPA1 limited to the membrane

space. Mitochondrial fusion is believed to depend on the presence of

both L- and S-OPA1 (119), and various stress conditions destroy

these complexes and trigger the complete transformation of L-OPA1

into S-OPA1, thus inhibiting mitochondrial fusion (119, 120). In

recent years, it has been found that the L-OPA1 is sufficient to

mediate mitochondrial fusion and has anti-apoptotic properties

(121). Therefore, the morphology of OPA1 has a great influence on

mitochondrial morphology.

The proteolytic sites S1 and S2 of OPA1 are encoded by exons 5

and 5B, respectively (122). The IM peptidase OMA1 and i-AAA

protease YME1L cut OPA1 separately at S1 and S2, resulting in the

aggregation or transformation of L-/S-OPA1 and interfering with

mitochondrial fusion. The OMA1 cleaves L-OPA1 in S1 to generate

S-OPA1 forms c and e (75). InOma1 knockout cells, fusion ability is

preserved in the presence of L-OPA1, while the c and e forms of S-

OPA1 are blocked, thus maintaining the tubular mitochondrial

network and protecting cells from apoptosis (121). L-OPA1 protein

in Yme1l knockout cells is equivalent to that in WT cells, but S-

OPA1 accumulates due to OMA1 hydrolysis (121). This

unbalanced processing of OPA1 results in the mitochondrial

fragmentation, which also indicates that S-OPA1 may be involved

in mitochondrial fission. According to the current conclusions, L-

OPA1 is beneficial for promoting mitochondrial fusion, while S-

OPA1 appears to be detrimental to mitochondrial fusion. However,

S-OPA1, despite its lack of fusion function, has recently been shown

to maintain cristae and mitochondrial energy through its GTPase

activity (123), to some extent facilitating cell survival under stress.

Intriguingly, IM fusion has a different pattern from OM fusion.

This is mainly reflected in the fact that OM fusion requires MFNs to

appear on two opposite membranes, while for IM fusion, OPA1

regulates the fusion in an asymmetric way, which occurs as long as

the unilateral IM contains OPA1 (124). Speaking of asymmetric

regulation of OPA1, we have to mention a negatively charged acidic

phospholipid CL. CL is enriched in IMM, and as long as there is

sufficient concentration (15%-20%) on the other side of the

mitochondria, L-OPA1 and CL pair to induce membrane-tethering

and further induce mitochondrial fusion (125). S-OPA1 promotes the

bridging between L-OPA1 and CL (125). However, fusion does not

occur when the CL concentrations are low on the opposite or both

sides of OPA1 (125). At this time, the interrelationship of homotypic

trans-OPA1 mediates tethering of IM, which is conducive to the

formation and maintenance of cristae (125). CL is re-assigned from

IMM to OMM during the induction of damage signals such as

mitochondrial damage and depolarization (126). In aging

mitochondria, CL is oxidized by cyt c peroxidase and the content

of CL decreases (127). Therefore, this regulatory mode of OPA1-

CLhigh bridging contributes to the specificity of mitochondrial fusion

and may be involved in preventing the fusion of healthy

mitochondria with damaged/senescent mitochondria and
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improving the efficiency of cells. However, the mechanism by

which OPA1 combined with CL to regulate mitochondrial fusion

remains unclear and needs to be explored experimentally.

In addition, CL is required for optimal activity of a variety of

mitochondrial carrier proteins. For instance, CL endows ADP/ATP

carrier (AAC) 2 with optimal activity by promoting the stable

association between AAC2 and respiratory supercomplexs, and

reduces the travel distance of cyt c between ETC complex III and IV,

contributing to the efficiency of OXPHOS (128). AACs are responsible

for the exchange of ADP/ATP, specifically the transfer of ATP formed

by OXPHOS from IMM to the intermembrane space (IMS) (129). In

addition to regulating ATP production (coupled energy conversion) in

mitochondria, AAC is shown to mediate the uncoupled energy

conversion (130). Therefore, in the process of regulating

mitochondrial fusion with OPA1, CL is likely to associate

mitochondrial dynamics with cell metabolism by influencing AACs.

3.1.3 IMS proteins participated fusion
ARL2 (ADP-ribosylation factor (ARF) like 2) exists in the IMS

and is uniformly distributed along the mitochondria in a spot-like

pattern with MFN1/2 (76). The dominant negative mutation of

ARL2[T30N] results in a decrease in mitochondrial fusion rate

(24h) and a loss of specific mitochondrial motility (30h), and the

dominant activating mutant ARL2[Q70L] leads to a significant

increase in mitochondrial tubular structure (48h), independent of

its effect on microtubules (76). Although there are some differences

in the dynamics of cellular effects, as indicated activation time in

parentheses, ARL2 generally promotes mitochondrial fusion during

constitutively activation, and its reversal of mitochondrial

fragmentation in the absence of fusion factors requires the

presence of OPA1 and at least one MFN (76).

Richard A. et al. conducted the above systematic studies on

ARL2 also found ELMOD2 (ELMO domain containing 2), which is

essential for ARL2 to exert its active functions (131). ELMOD2 is an

ARL2 GTPase-activating protein (GAP) that acts downstream of

ARL2, and its influence on mitochondrial morphology is

independent of GAP activity (77). In MEFs with MFN1 or MFN2

deficiency, the effect of ELMOD2 on the reverse of mitochondrial

fragmentation is to a lower degree than that of ARL2, and ELMOD2

and ARL2 have no significant effect in MFN1 and MFN2 double-

knockout cells (78). This also suggests that ARL2 and ELMOD2

both act upstream of MFNs, and ARL2 activation without

ELMOD2 cannot induce mitochondrial elongation, so ELMOD2

is an effector necessary for ARL2 to promote mitochondrial

elongation and tubular structure maintenance (77). Interestingly,

ELMOD2 and ARL2, as well as MFN1, MFN2, and MitoPLD, are all

located in a regular spot-like discrete distribution along the

mitochondria forming bands (77), suggesting that they may form

some special complexes in the mitochondria to function together, or

there are unknown binding domains on the mitochondria, which

recruits these factors to alter mitochondrial dynamics.

In the process of mitochondrial fusion, various elements of OM,

IM, and IMS work together to change the dynamics of mitochondria,

forming a complex and precise regulatory network (Table 1.). Among

them, CL and DAG are involved in the metabolic regulation of
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OXPHOS and lipid metabolism, respectively, suggesting that

mitochondrial dynamics is related to cell metabolism.
3.2 The association between mitochondrial
fusion and macrophage metabolism

As we can see in Figure 1, a large number of proteins play a role

in mitochondrial fusion and together maintain this complex

biological process. Among them, no matter the OM proteins

FAM73b, MTCH2, or mtROS are found to be involved in

macrophage metabolism, while the relationship between IM

proteins involved in fusion and macrophage metabolism still

needs to be studied (Figure 3).

3.2.1 FAM73b
Compared with wild type (WT) cells, FAM73b KO BMDMs

show a severe decline in the basal OXPHOS level and the

mitochondria are in a state of fragmentation (26). However, there

is almost no difference in ECAR between WT and FAM73b KO

BMDMs after LPS (0.5 µg/mL) stimulation and the difference in

OCR are converged (26). These results suggest that FAM73b KO

has little effect on the glycolysis ability of macrophages, and affects

OXPHOS mainly in the resting state. Therefore, we speculate that
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mitochondrial dynamics affect macrophage metabolism, but are

biased and depend on specific cell state.

3.2.2 MTCH2
In bone marrow mesenchymal stem cells (BMSCs), inhibition

of miR (microRNA)-150 mitigates LPS (0.5 µg/mL)-induced

apoptosis in RAW264.7 (84), suggesting that the metabolic status

of RAW264.7 is changed. The co-culture of BMSC also reduces ROS

production of RAW264.7 after LPS stimulation (84). Mitochondrial

respiratory chain is the main source of intracellular ROS, and the

antioxidant system of mitochondria is responsible for removing

ROS (132), so mitochondria play an important role in this process.

As expected, the inhibition of miR-150 leads to the expression of

MTCH2 (84), which is related to mitochondrial fusion (66). In

addition, it is indicated that increased MTCH2 promotes

mitochondrial transfer from BMSCs to RAW264.7 (84), so miR-

150 may regulate the metabolism of RAW264.7 by affecting the

morphology of transferred mitochondria. Unfortunately, this

research did not cover studies related to mitochondrial dynamics,

so this conclusion needs to be validated experimentally. On the one

hand, miR-150 has been shown to negatively regulate brown-like

transformation of white adipose tissue in inguinal peritoneum of

mice, so regulates metabolism (133). In AML (acute myelocytic

leukemia) cells, MTCH2 deletion has been shown to reduce glucose
FIGURE 3

The association of mitochondrial fusion with macrophage metabolism. ①FAM73b which promotes mitochondrial OM fusion, promotes OXPHOS of
resting macrophages, but has no effect on glycolysis, and neither OXPHOS nor glycolysis in inflammatory state. ②In the co-culture of BMSCs and
macrophages, inhibition of miR-150 increases the expression of OMM fusion-related MTCH2 and promotes the transfer of mitochondria from
BMSCs to macrophages (not shown in the figure). MTCH2 may enhance OXPHOS by promoting TCA cycle, thereby alleviating LPS (0.5 mg/mL)-
induced apoptosis. ③MtSIRT promotes mitochondrial fusion, in which SIRT3 promotes PDHA1 deacetylation at the K83 site, and activated PDHA1
catalyzes pyruvate production of acetyl-coA to promote OXPHOS, inhibit glycolysis, and reduce macrophage inflammation. ④SIRT5 knockdown
promotes PKM2 hypersuccinylation, reduces its pyruvate kinase activity, then induces PKM2 entry into the nucleus, and further persuading
macrophage inflammation. ⑤SIRT4 knockdown activates FAO by promoting the expression of lipid catabolism genes such as MCAD and CPT1, and
promotes the M2-like transformation of TAM through FAO-PPARd-STAT3. On the other hand, SIRT4 silencing increases the expression of IDH3a, cyt
c and other mitochondrial genes, so SIRT4 silencing contributes to the strengthening of mitochondrial OXPHOS. (Arrows represent promotion and
dots represent inhibition.).
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entry into the mitochondrial TCA cycle, thereby inducing

glutamine to maintain the TCA cycle in the form of oxaloacetate,

as well as reduced mitochondrial pyruvate levels and increased

nuclear pyruvate and pyruvate dehydrogenase (PDH) levels (97).

Further, in the cell nucleus, PDH converts pyruvate into acetyl-CoA

and increases histone acetylation. This series of metabolic changes

promotes the differentiation of AML (97). Therefore, we

hypothesized that MTCH2, which affected mitochondrial fusion,

is transferred from BMSCs to RAW264.7, which may promote TCA

circulation by affecting macrophage metabolism, thus enhancing

OXPHOS and alleviating LPS-induced apoptosis.

3.2.3 OMA1/YME1L
Cardiomyocytes-specific deletion of Yme1l (cYKO) in mice

inhibits the formation of S-OPA1 form d, and activated OMA1

accelerates the proteolysis of OPA1, leading to the accumulation of

S-OPA1 form c and e, triggering mitochondrial fragmentation and

leading to dilated cardiomyopathy and heart failure (98). The cYKO

shifts the cardiomyocytes from lipid metabolism to the glucose

metabolism, and this metabolic shift leads to heart failure in cYKO

mice (98). However, double knockout mice (additional OMA1-

deficient in Yme1l-/- mice) show normal cardiac function by

preventing OPA1 cleavage (98). The additional muscle specific-

knockout of Yme1l maintains cardiac function without restoring the

mitochondrial morphological defects of cYKO cardiomyocytes (98).

Interestingly, the loss of Yme1l in skeletal muscle systematically impairs

glucose homeostasis, inhibits insulin secretion, and thus reduces

cardiac glucose uptake, alters cardiac metabolism, and slows down

cellular involuntary metabolism, demonstrating the physiological

importance of tissue crossover disturbance (98). Metabolic

intervention in cYKO mice fed a high-fat diet replicates the

protective effect of hmYKO (heart and muscle-specific deletion of

Yme1l) mice (98). In conclusion, coordinated mitochondrial dynamics

or balanced mitochondrial fusion and fission plays a key role in cardiac

metabolism and cardiac function. YME1L and OMA1 are still lacking

in research in macrophages, but they affect mitochondrial dynamics by

shearing L-OPA1 to produce different forms of S-OPA1, which may

affect macrophage metabolism in this process, which also provides new

ideas for studying the macrophage metabolism regulation.

3.2.4 SLP-2
When mitochondria are exposed to selective stress in cells,

mitochondrial hyperfusion occurs prior to mitochondrial fission

(79). In this process, mitochondrial IM protein SLP-2 cooperates

with L-OPA1 and MFN1 to induce hyperfusion, which in turn

promotes the production of OXPHOS and ATP (79).

3.2.5 MtSIRT
Mitochondrial Sirtuins (mtSIRT), including SIRT3, SIRT4 and

SIRT5, are important parts of the sirtuin family (SIRT1-7) and

possess enzyme activity such as NAD+-dependent deacylases and

ADP-ribotransferase, which endowing mtSIRT with the function of

regulating energy metabolism (134).
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3.2.6 SIRT3
On the one hand, SIRT3 promotes mitochondrial function by

regulating the activity of metabolic enzymes, such as by binding to

NDUFA9 subunits of ETC complexes I and deacetylation to

maintain OXPHOS (99). SIRT3, on the other hand, directly binds

to OPA1 at its lysine site (K926 and/or K931) for deacetylation, and

enhances mitochondrial respiratory complex activity (80). Since

mitochondrial morphology depends on the integrity of the coiled-

coil domain at C-terminal of OPA1 (81), where these two acetylated

lysine residues of OPA1 located, therefore, SIRT3 deacetylation

promotes mitochondrial fusion (80). According to the TEM results,

in SIRT3-KO heart, mitochondria are mostly clustered together,

forming multiple island-like shapes, and the OMM is continuous,

but the IMM fusion is defective (80), which also is consist with the

function of OPA1 responsible for IMM fusion and reminds us that

OMM fusion can occur independently of IMM fusion.

3.2.7 SIRT4
Down-regulation of SIRT4 in aging chondrocytes was

accompanied by excessive fragmentation of mitochondrial

network, elevated ROS levels, and impaired DY(m) (135).

Overexpression of SIRT4 saved mitochondrial fragmentation and

restored mitochondrial homeostasis in aging chondrocytes (135).

Therefore, SIRT4 has the potential to promote mitochondrial

fusion. In addition to reported dehydrogenase activity (136, 137),

in fibroblast models, SIRT4 expression inhibits mitochondrial

respiration under basal conditions, resulting in reduced electron

transport system capacity (ETS) and DY(m) (82). The up-regulated

SIRT4 is accompanied by a higher level of mitochondrial fusion

regulatory factor L-OPA1 expression, resulting in a higher degree of

mitochondrial elongation/fusion and inhibiting mitochondrial

fission and autophagy (82), and this phenomenon can also be

repeated by upregulation of SIRT4 by inhibiting miR-15b (82).

Meanwhile, the overexpression of SIRT4 in Muller glial cells

increased the L-OPA/S-OPA1 ratio and MFN2 (138); SIRT4

positively regulates OPA1 and MFN1 in skeletal muscle (139); In

mammary epithelial cells, SIRT4 deletion reduces MFN1/2 and

increases DRP1 and Fis1 (140). Taken together, these evidences

support the role of SIRT4 in promoting mitochondrial fusion.

3.2.8 SIRT5
SIRT5 has deacetylase, deglutarylase and desuccinylase

activities and participate in a variety of intracellular metabolic

activities, such as the TCA, ETC, glycolysis, fatty acid b-oxidation
and other processes (141, 142). For tumor cells, SIRT5 supports cell

transformation and promotes breast carcinoma proliferation and

tumorigenesis (143). Therefore, functional evaluation of SIRT5

should refer to its specific cell environment. Glutamine is

converted into glutamate and ammonia in mitochondria by

glutaminase (GLS), and glutamate is converted into a-
ketoglutarate (a-KG) through glutamate dehydrogenase 1

(GLUD1) to participate in TCA (144). SIRT5 inhibits glutamine

metabolism and regulates ammonia production by desuccinylation
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of GLS at Lys245 and/or Lys32, thus affecting autophagy (83).

However, SIRT3 but not SIRT5 is co-immunoprecipitation with

GLUD1 (83). After SIRT5 silencing or inhibition (by MC3482),

autophagy is promoted, the expressions of MFN2 and OPA1 are

decreased, and mitochondria are short-round shapes that cluster

around the nucleus (83). In contrast, SIRT5 overexpression leads to

the increase of MFN2 or OPA1, which is conducive to

mitochondrial fusion, with increased number of mitochondria,

elongated morphology, high DY(m), and reduced lactate

production (83). STIR5, which regulates glutamine homeostasis,

is also involved in mitochondrial dynamics regulation, suggesting

there is a correlation between cellular metabolism and

mitochondrial dynamics.

3.2.9 MtSIRT for macrophage metabolism
The relationship between SIRT3/4/5 and macrophage

metabolism has been emphasized in recent years. Generally

speaking, SIRT3 promotes OXPHOS and FAO (fat acid

oxidation), SIRT4 promotes glycolytic anabolism, and SIRT5

changes the metabolic state of macrophages by regulating PTM

of key metabolic enzymes (100, 101, 145, 146). For example, in

BMDM, SIRT3 deacetylates at Lys83 to activate PDHA1 (pyruvate

dehydrogenase E1 a), then PDHA1 catalyzes the decarboxylation

of pyruvate into acetyl-CoA and promotes OXPHOS, inhibits

glycolysis, which helpful for reducing inflammation of

macrophages (100). Interestingly, the ability of SIRT3 to

promote OXPHOS and support FAO may lead to immune

tolerance in monocytes (147). During the immune tolerance

process, the increased SIRT4 controls the expression of PDK1

and SIRT1, thereby transforming the FAO pathway into glucose

oxidation, promoting pyruvate to enter glycolysis, which is

conducive to restoring immune homeostasis (145). The

expression of SIRT4 is reduced in hepatocellular carcinoma

(HCC) tumor tissues (101). By increasing the expression of lipid

catabolisc genes, such as MCAD (medium chain acyl-CoA

dehydrogenase), CPT1 (carnitine palmitoyl transferase 1), etc.,

SIRT4 knockdown activates the FAO-PPARd (peroxisome

proliferator-activated receptor-d)-STAT3 signal pathway and

promotes the M2 markers (CD206, Arg-1) expression of TAM

(101). This has also proved that SIRT4 is not conducive to FAO

metabolic pathway from the opposite side. Moreover, SIRT4

silencing increases the expression of mitochondrial genes,

including PGC1a , EER-a , CytC , CoxV (mitochondrial

cytochrome oxidase V) and IDH3a (isocitrate dehydrogenase 3

alpha) in TAMs (101). PKM2 (M2-type pyruvate kinase), the

physiological substrate of SIRT5, is a key determinant of the

aerobic glycolytic transition of LPS-activated macrophages

(102). In LPS (0.1 µg/mL)-stimulated BMDM, SIRT5-

knockdown -regulated hypersuccinylation inhibits the pyruvate

kinase activity of PKM2, promotes PKM2 dimerization entering

into the nucleus, and ultimately mediates the up-regulation of IL-

1b (102). Similarly, SIRT5 promotes inflammation of primary

macrophages by promoting p65 acetylation (146). SIRT5 mediates

the deglutarylation of GLUD1 in IL-4-polarized BMDM, thereby

enhancing GLUD1 enzyme activity and promoting the production
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of aKG, which has a positive effect on the polarization of M2-like

macrophages (148). It has also been shown that after the

inhibition of SIRT5 by glutamine, PDH activity was enhanced

due to the inhibition of PDHA1 desuccinylation, which promoted

the polarization of IL-4 treated BMDM, and the glutamine

metabolite a-KG played a role in the inhibition of SIRT5

(149).This seems to be the opposite of the previous sentence in

which SIRT5 promotes a-KG production, possible causes include

different disease models (eosinophilic chronic rhinosinusitis or

burn sepsis) or different amounts of IL-4 stimulation (10 ng/mL or

50 ng/mL), but the specific reasons remain to be further explored

(148, 149).

Therefore, mtSIRT is an important link between cellular

metabolism and mitochondrial dynamics. SIRT3/4/5 promotes

mitochondrial fusion by affecting OPA1 or/and MFN2, which

produces different regulation on cell metabolism. SIRT3 promotes

mitochondrial respiration, while SIRT4 and SIRT5 inhibit

mitochondrial respiration in fibroblasts, MDA-ME-231 or C2C21.

As for macrophages, SIRT3/4/5 affect macrophage metabolism in

OXPHOS, glycolysis and FAO, illustrating that mtSIRT reconciles

the metabolic state of macrophages to meet their demands.

Unfortunately, these researches do not cover the change of

mitochondrial dynamics under the remolding of macrophage

metabolic state. Thence, there are complex regulatory

mechanisms for mtSIRT to reconcile cellular metabolism and

mitochondrial dynamics, and more researches are urgently

needed to unearth their connection.

In conclusion, mitochondrial fusion is driven by multifactor

and has undergone a biological process from OM fusion to IM

fusion. In addition to mitochondrial fusion-related proteins

regulating its morphology, DY(m), cristae formation, etc., some

proteins have been confirmed to be involved in regulating

macrophage metabolism (Table 2). However, there are few and

scattered articles relating mitochondrial dynamics to macrophage

metabolism, but we still conclude with a gratifying possibility.

Whether there is a direct connection between mitochondrial

fusion and macrophage metabolism and whether there is a logical

relationship such as primary and secondary or causality is worthy of

in-depth exploration.
4 Mitophagy and
macrophage metabolism

Mitochondrial dynamics is involved in the elimination of part

of damaged mitochondria and the maintenance of their own

structural and functional integrity. When fusion/fission fails to

meet the repair requirements, mitochondria are cleared by

selective autophagy, also known as mitophagy. As researchers

reviewed, the autophagosome mediated mitophagy is mainly

induced by the LC3 adaptor protein, with or without ubiquitin-

dependent or LC3 directly interacting with its receptor (150). In

addition, some studies have pointed out that mitophagy requires

Drp1 to break the mitochondrial network (151) or regulate PINK1/

Parkin pathways (152, 153). The overexpression of OPA1 in
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myocardial infarction model induces mitophagy, and then increases

the expression of antioxidant items (e.g., GSH, SOD), restores

mitochondrial DY(m), blocks the accumulation of cytoplasmic

cyt c, alleviates mitochondrial dysfunction, and ultimately saves

cardiomyocytes from further damage (154). Both phenomena

remind us that mitochondrial dynamics possibly participates in

the regulation of mitophagy. However, the internal relationship

between mitochondrial dynamics and mitochondrial autophagy

remains unclear. Meaningfully, Fun-14 domain containing

protein 1 (FUNDC1), a key receptor associated with

mitochondrial fission and mitophagy, was discovered. OPA1 and

DNM1L (DRP1 Dynamin 1-like) are core targets of FUNDC1

(155). In the process of hypoxia-induced mitophagy, FUNDC1

first acts on the MAMs and is enriched at the mitochondrial

associated membrane (MAM), and then recruits DNM1L/DRP1

and separates from CANX to promote mitochondria fission in

response to hypoxic stress (61). When Lys70 (K70) of FUNDC1 is

mutated to Ala (A) [not Arg (R)], the interaction of FUNDC1 on

OPA1 reduced and that of DNM1L is enhanced, which in turn

stimulates mitophagy (155). However, recent studies have found

that mitophagy caused by FUNDC1 protects the kidney from

ischemic damage by inhibiting DRP1-induced mitochondrial

fission (62). Therefore, the effect of FUNDC1 on mitochondrial

fission depends on the microenvironment of cells, illustrating the

metabolic state of cells may alter mitochondrial dynamics. In

addition, other connections between mitochondrial dynamics and

mitophagy deserve further investigation. On the other hand,

FUNDC1-deficient mice experienced increased liver damage,

accelerated adipose tissue macrophage infiltration and M1

polarization, and were accompanied by metabolic changes such as

up-regulation of genes associated with adipogenesis (156).

Overexpression of FUNDC1 inhibited the production of IL-1b
and ROS in BMDMs (157). Therefore, FUNDC1-mediated

mitochondrial autophagy has an effect on the reprogramming of

macrophage metabolic state. However, the existing body of research

predominantly focuses on FUNDC1’s canonical role in mitophagy

regulation during disease pathogenesis, wherein macrophage

metabolic parameters are occasionally measured as secondary

endpoints. This conspicuous gap in direct mechanistic

investigations positions the FUNDC1-macrophage metabolism

axis as a novel and scientifically significant area of investigation.

Choline transporter 1 (CTL1) -mediated choline uptake affects

mitochondrial phosphatidylcholine (PC) and sphingomyelin (SM)

(158). Impaired choline uptake disrupts mitochondrial ATP

synthesis and triggers AMPK activation to promote DRP1-driven

mitophagy (158). Moreover, LPS (0.2 µg/mL) enhances the

expression of CTL1 for 4h, and then promotes the choline uptake

of BMDM (158). After 24h of LPS treatment, the lipid metabolism

of macrophages (mainly occurring in mitochondria) is remodeled,

for example, mitochondrial PC (mito-PC) decreased and mito-SM

increased (158). In conclusion, it is reasonable to assume that

choline acts as a connecting factor between mitophagy and

macrophage metabolism. Besides, choline is considered to be a

water-soluble vitamin related to the B vitamins, which is involved in

the synthesis of acetylcholine and the formation of methyl donors in
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the methionine cycle in the body (159). Whether the above-

mentioned regulation of mitochondrial dynamics and

macrophage metabolism by choline is directly regulated or occurs

through these biosynthetic or oxidative processes is worth exploring

at this point (Figure 2).
5 The connection of macrophage
metabolism with “kiss and run”

In addition to the above-mentioned mitochondrial complete

fission and fusion, mitochondria have a transient fusion-fission

mode called “kiss and run”. This process can be completed in a very

short time (as short as 4 seconds), and relative to the longitudinal

alignment of fully fused mitochondria, transient fusions tend to

occur from oblique or lateral sites, so transient fusions always

preserve the original topology (160). During transient fusion, the

soluble contents of mitochondria undergo passive diffusion under

the MFNs- and OPA1-dependent action (160). Transient fusion

occurs in mitochondria on two microtubules, and DRP1 is recruited

when transient fusion occurs due to the force of motor proteins and

the tension of anchoring to the microtubules, causing transient

fission (160). Liu et al. also found that transiently fused

mitochondria maintain normal bioenergetics such as DY(m) and

respiration (160). To sum up, the “kiss and run” mode is similar to

that of athletes on two tracks. After a brief high-five, they exchange

part of the material, and then quickly separate without affecting

each other’s motivation.

The instantaneity of mitochondrial kiss and run enables it to

exchange or dilute part of its contents in the shortest time without

affecting mitochondrial metabolism. Although the role of kiss and

run in macrophage metabolism is currently lacking, we believe this

will be a meaningful research direction.
6 Metabolism-related diseases of
macrophages are linked to
mitochondrial dynamics

6.1 Atherosclerosis

Macrophage metabolic reprogramming determines the

progression of atherosclerosis. During the transition from early to

inflammatory progression of atherosclerosis, the proportion of M

[LPS+IFN-g]-like macrophages gradually increased, accompanied

by the increase in glycolysis, and in the regression stage of

atherosclerotic plaques, the proportion of M[IL-4]-like

macrophages increased with up-regulated FAO, and M(Ox)-like

macrophages with lower phagocytic migration ability are also

found (161).

In the dynamic regulation of mitochondria, mitophagy removes

damaged mitochondria and plays a role in preventing oxidative

stress and apoptosis (150), so mitophagy is crucial for

cardiovascular-derived cellular homeostasis (162). Studies have
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linked impaired mitophagy to atherosclerosis (163). For example,

treatment with the DRP1 inhibitor mdivi-1 reduces mitochondrial

fragmentation and attenuates atherosclerosis in diabetic ApoE-/-

mice (164). This is a very interesting point. Although the metabolic

state of macrophages in an atherosclerotic environment is variable,

we can treat atherosclerosis by regulating mitochondrial dynamic to

active mitophagy as an entry point.
6.2 Asthma

Asthma is a chronic inflammatory disease of the respiratory

system, which is divided into various phenotypes according to the

immune cells enriched in the airways (165). Macrophage function is

altered in asthmatic patients, including decreased phagocytic

capacity, increased production of inflammatory mediators, and

disturbed production of anti-inflammatory factors and so on,

moreover, there is substantial evidence that macrophages may

serve as therapeutic targets for asthma (165).

Metabolic alterations in human and mouse airway cells under

cigarette smoke (CS) suggest a vital role for mitochondria,

specifically, the mitochondrial TCA and OXPHOS are converted

to FAO, and mtROS increases with increasing damage, and the ATP

demand for cellular repair increases at this time (166). In chronic

obstructive pulmonary disease (COPD), studies have found

increased mitophagy in airway epithelial cells, and unfortunately,

no studies have linked mitochondrial dynamics to macrophage

therapy for asthma (167). We speculate, however, that the metabolic

reprogramming of macrophages by regulating mitochondrial

dynamics would be a possible strategy for the treatment of

asthma. Emerging mechanistic studies suggest that DRP1 is a key

amplifier in multifactorial asthma, establishing its therapeutic

potential through pathway regulation (168–170). Notably, in

recombinant DEK-induced mouse asthma models, DRP1

expression is significantly upregulated and physically interacts

with ATAD3A (169). Mechanistic inquiry revealed that inhibition

of ATAD3A mediates inhibition of DRP1, thereby resolving

mitochondrial oxidative stress by regulating mitophagy, and

achieving attenuation of airway inflammation (169). In

ovalbumin-induced asthma, mitochondrial fusion/fission

dysregulation promotes ROS production and intensifies the

activation of NLRP3 inflammasome (171). After Abscisic acid

treatment, NLRP3 activation was down-regulated, mitochondrial

fusion/fission markers such as OPA1, MFN2 and DRP1 were

decreased, and the expression of PPARg was further increased,

which inhibited airway inflammation (171). Studies have shown

that PPARg regulates FAO metabolism in macrophages (172).

Therefore, mitochondrial dynamics and metabolic adaptation are

key regulators of macrophage behavior in asthma.
6.3 Other diseases

A recent article summarizes the relationship between

mitophagy and macrophage-related chronic inflammatory and
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autoimmune diseases (173), including inflammatory bowel disease

(IBD), systemic lupus erythematosus (SLE), and primary biliary

cirrhosis (PBC). Although this article does not mention the role of

mitochondrial dynamics in IBD, SLE, and PBC, according to our

previous description of mitochondrial dynamics perturbation and

mitophagy, we believe that mitochondrial dynamics regulation may

be related to macrophages metabolic reprogramming through

disturbing mitophagy ultimately serves as a target for the

treatment of macrophage-related diseases.
7 Conclusion

Mitochondria are the factories of cell energy metabolism and

the key organelles to maintain body homeostasis (174). With the

change of cell microenvironment, mitochondria undergo a series of

dynamic changes, and form a complex regulatory network through

hyperfusion, elongation, fragmentation, etc. (18, 20), to adapt to or

meet the needs of cell metabolism and immunity. When the

dynamics of mitochondrial fission and fusion is unable to rescue

the cell, mitophagy occurs (150), thereby eliminating the damaged

mitochondria. Recently, researchers corrected some statements

about mitochondrial morphology, that is the hyperfused and

fragmented mitochondrial network are caused by the equilibrium

between fission and fusion processes, and thus affect mitochondrial

functional fitness, rather than described mitochondrial morphology

as single fusion and/or fission (20). The up-regulated fusion to

fission ratio promotes mitochondrial hyperfusion whether fusion

increases or fission decreases, or both, instead, when the ratio of

fusion to fission decreased, mitochondria tend to fragmentation.

Intrinsically, the equilibrium fluctuations described above are more

consistent with natural phenomena, but in order to describe

mitochondria in different states more intuitively, fusion and

fission are also used to describe the morphology of mitochondria

in this paper.

Macrophages are important members of the natural immunity,

and their polarization is accompanied by glycolysis and OXPHOS

metabolic programming (85). These metabolic changes are

inseparable from the regulation of mitochondria. Therefore,

previous studies focused on the associat ion between

mitochondrial metabolism and macrophage immunity, such as

the dual role of ERK1/2 on mitochondrial fission (35, 175, 176),

and the role of PKA and AKT on mitochondrial fusion (20).

Based on existing literature, we reviewed the dynamic changes

of mitochondrial dynamics during macrophages polarization and

the effects of mitochondrial dynamics on the functional diversity of

macrophages. In LPS-activated macrophages (M1 type or classically

activated), enhanced phosphorylation of DRP1 at Ser616 promotes

mitochondrial fission, reduced DY(m), and morphological changes

such as mitochondrial fragmentation and disorganized cristae (22).

During this process, the remodeled mitochondria redirect their

function towards increased ROS production, thereby driving the

transcription of inflammatory cytokines and exacerbating the

inflammatory response (22). On the other hand, mitochondrial

fission acts as an atypical regulator of macrophage functional
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plasticity. For example, DRP1-mediated mitochondrial fission is

required for the uptake of apoptotic cells by macrophages (177).

Mitochondrial fission promotes Ca2+ release from ER, activates

vesicular trafficking and cytoskeletal remodeling, enabling

macrophages to sequentially engulf multiple apoptotic cells

without functional exhaustion (177). Importantly, mitochondrial

fission and increased cytoplasmic calcium prompt protein kinase C-

q of macrophages to phosphorylate WIP (Wiskott-Aldrich

Syndrome Interacting Protein) during phagocytosis and are

necessary for therapeutic antibody-induced phagocytosis of live

tumor cells (178). Furthermore, by modulating metabolic pathways

through the inhibition of Glutamine-fructose-6-phosphate

transaminase 2 (GFPT2) in tumor cells, glutamine metabolism is

regulated, thereby restoring mitochondrial dynamics and

consequently influencing the phagocytic capacity of macrophages

(178). Mdivi-1 inhibits DRP1-dependent mitochondrial fission,

reduces mitochondrial reactive oxygen species (mito-ROS) and

NLRP3 inflammasome activation, thereby reducing macrophage

M1 polarization and down-regulating IL-6 and TNF-a release,

which is beneficial for alleviating atherosclerotic diseases (179).

Importantly, it was found that following M1 polarization, the

mitochondrial ETC complex of macrophages was either partially

or completely suppressed, leading to impaired OXPHOS function,

and macrophages were unable to transform to M2 phenotype even

when exposure to IL-4 stimulation (180). However, macrophages

showed a tendency to increase M2 markers (e.g., CD206 and IL-10)

after DRP1 inhibition by Mdivi-1 (179), suggesting that

mitochondrial dynamics may acts as metabolic rheostats, allowing

macrophages to switch between polarized states. Alternatively

act ivated macrophages (M2-l ike) are predisposed to

mitochondrial fusion, produce elongated mitochondria, and have

high levels of FAO and OXPHOS (21). As previously discussed,

OPA1, MFN1/2, and other proteins participate in the dynamic

regulation of mitochondrial fusion (39, 125). Research has shown

that restoration of mitochondrial dynamics by up-regulation of

MFN1/2, which promotes mitochondrial fusion, successfully

inhibits pro-inflammatory macrophage polarization (181). The

fused mitochondria facilitate FAO and ATP synthesis, presenting

an optimal therapeutic strategy to promote M2 polarization in

chronic inflammatory conditions (181). However, the effect of

mitochondrial fusion-associated proteins on macrophage function

appears to be more complex than a simple M2-to-M1-type

conversion. Myeloid specific OPA1 deletion in mice leads to

mitochondrial network fragmentation and cristae disorganization

(182). Interestingly, macrophages deficient in OPA1 exhibit up-

regulated expression of M2 markers such as Arg1, Mrc1 and Retnla,

suggesting that OPA1 deletion promotes M2-like phenotype (182).

Paradoxically, under M2-polarized conditions, OPA1 deletion also

interferes with macrophage metabolism and immune pathways by

shifting macrophages to glycolytic metabolism and inability to

maintain ATP levels due to mitochondrial uncoupling (182).

OPA1 deletion also disrupts TCA cycle, resulting in succinate and

citrate accumulation and metabolic perturbation, which then

impairs NF-kB/p65 signaling and ultimately suppress the pro-

inflammatory response (182).
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Regulation of mitochondrial dynamics-associated proteins,

including DRP1 and OPA1, reshaped the metabolic profile of

macrophages (179, 182). DRP1-mediated mitochondrial fission

disrupts cristae morphology and enhances mito-ROS generation

(179). Elevated mito-ROS stabilizes hypoxia-inducible factor-1a
(HIF-1a), driving a metabolic shift toward glycolysis characterized

by increased glycolytic ATP production and enhanced glycolytic

flux (183). OPA1 deficiency induces macrophage dependency on

glycolysis; however, defective assembly of respiratory chain

supercomplexes and impaired ATP production compromise the

acquisition of the M1 phenotype, leading instead to the

manifestation of classical M2 characteristics (182). Enhancing

OPA1 activity or inhibiting its degradation restores OXPHOS

capacity (184). Thus, OPA1 functions as a “metabolic switch” in

macrophage polarization by orchestrating mitochondrial dynamics

and metabolic homeostasis. Consistently, we summarize and

induction that mitochondrial dynamics are closely related to

macrophage metabolism. A large number of mitochondrial

fission/fusion-related proteins have been shown to affect

macrophage metabolism. Among them, FAM73b (26), MTCH2

(84), SLP-2 (79), and mtSIRT (80, 82, 83, 100–102) related to

mitochondrial fusion, Fis1 and MTP18 related to mitochondrial

fission are closely related to macrophage metabolism. Specifically,

mitochondrial fusion tends to macrophage OXPHOS, while

mitochondrial fission tends to glycolysis and fat acid metabolism.

These proteins serve as the vinculum between mitochondrial

dynamics and macrophage metabolism. PTM plays an important

role in mitochondrial dynamics and macrophage metabolism,

especially in DRP1 (22, 41) and mtSIRT (100–102). MiRs are

involved in the regulation of macrophage polarization (185) and

mediate metabolic shifts (186). Although studies on the regulation

of macrophage metabolism by miRs are lacking, we suggest that

miRs may be the link through which mitochondrial dynamics

regulate macrophage metabolism (82, 84, 96).

In addition, we have conducted a comprehensive search for the

relationship between mitophagy (150, 154, 158, 159), mitochondrial

“kiss and run” (160) and macrophage metabolism. Although

relevant research is insufficient, it still needs to be verified.

Mitocytosis, a recently discovered new mitochondrial quality

control mechanism, has the ability to maintain mitochondrial

homeostasis in macrophages (187). As mitocytosis is a newly

discovered mechanism, its impact on macrophage metabolism is

currently unknown, but it would be an interesting research

direction. Study of Chen et al. revealed that the antimalarial drug

chloroquine (CQ), as an anti-tumor immunomodulator,

transformed TAM from M2 to tumor killing M1 phenotype

(transformed TAM to tumor-kil l ing macrophages) by

reprogramming the transformation mechanism of TAM

metabolism from OXPHOS to glycolysis (188), which was a

strategy to improve the adaptability of macrophages in

immunosuppressed environment . This sugges ts that

mitochondrial dynamic regulation has huge potential to be used

as a means of metabolic reprogramming of macrophages to enhance

the resistance of macrophages in adverse environments such as

immunosuppression, thus contributing to host survival. On the
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1520814
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2025.1520814
other hand, we summarize the relationship between macrophage-

related chronic inflammatory diseases and autoimmune diseases

(including atherosclerosis, asthma) and mitochondrial dynamics,

and further suggest that mitochondrial metabolism regulation may

be an effective strategy for the treatment of these diseases. Overall,

the relationship between mitochondrial dynamics and macrophage

metabolism still requires a large amount of experimental input to

verify its logical relationship.
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Glossary

AAAC ADP/ATP carrier
Frontiers in Immunol
AKT Protein kinase B
AML acute myelocytic leukemia
AMP Adenosine 5’-monophosphate
AMPK AMP-activated protein kinase
ARL2 ADP-ribosylation factor (ARF) like 2
Arp2/3 Actin-related protein 2/3
BAT Brown adipose tissue
BMDM Bone marrow derived macrophages
BMSCs Bone marrow mesenchymal stem cells
cAMP Cyclic adenosine monophosphate
CANX Calnexin
CL Cardiolipin
COPD Chronic obstructive pulmonary disease
CoxV Mitochondrial cytochrome oxidase V
CPT1 Carnitine palmitoyl transferase 1
CQ Chloroquine
CS Cigarette smoke
CTL1 Choline transporter 1
Cyt c Cytochrome c
DAG Diacylglycerol
DNM1L DRP1 Dynamin 1-like
DRP1 Dynamin-related protein 1
ELMOD2 ELMO domain containing 2
ER Endoplasmic reticulum
ERK Extracellular signal-regulated kinase
ESCs Embryonic stem cells
ETC Electron transport chain
ETS Electron transport system
FAO Fat acid oxidation
Fis1 Mitochondrial fission 1 protein
FUNDC1 Fun-14 domain containing protein 1
Fzo fuzzy onions
GABA g-aminobutyric acid
GAP GTPase-activating protein
GFPT2 Glutamine-fructose-6-phosphate transaminase 2
GLS Glutaminase
GLUD1 Glutamate dehydrogenase 1
GSH Glutathione
GTPase Guanosine triphosphatases
HCC Hepatocellular carcinoma
IBD Inflammatory bowel disease
IDH3a Isocitrate dehydrogenase 3 alpha
IFN-b Type I interferons
IM The inner membrane
IMM Mitochondrial inner membrane
IMS The intermembrane space
ogy 20
INF2 Inverted formin 2
IRF1 Interferon regulator 1
JAK Janus kinase
L-OPA1 Long-OPA1
MAM Mitochondrial associated membrane
MCAD Medium chain acyl-CoA dehydrogenase
MDA Malondialdehyde
MEFs Mouse embryonic fibroblasts
Mff Mitochondrial fission factor
MFN1/2 Mitofusin 1/2
MiD N-terminally anchored mitochondrial dynamics proteins
Miga Mitoguardin
MIMP Met-induced mitochondrial protein
MiR MicroRNA
Mito-PC Mitochondrial PC
MitoPLD Mitochondrial phospholipase D
Mito-ROS Mitochondrial reactive oxygen species
Mito-SM Mitochondrial SM
MOMP OMM permeabilization
MSTO1 Misato homolog 1
MTCH2 Mitochondrial carrier homolog 2
mtDNA Mitochondrial DNA
MTP18 Mitochondrial protein 18 kDa
MtSIRT Mitochondrial sirtuins
NF-kB nuclear factor kappa-B
OGA O-GlcNAcylation
OM The outer membrane
OMM Mitochondrial outer membrane
OPA1 Optic atrophy 1
OXPHOS Oxidative phosphorylation
PA Phospholipid acid
PBC Primary biliary cirrhosis
PC Phosphatidylcholine
PDH Pyruvate dehydrogenase
PDHA1 Pyruvate dehydrogenase E1 a
PGC1a PPARg co-activator 1 alpha
PKA Protein kinase A
PKM2 M2-type pyruvate kinase
PLD Phospholipase D
PPAR-g peroxisome proliferator-activated receptor-g
PPARd Peroxisome proliferator-activated receptor-d
PTM Post-translational modification
RIP1 receptor-interacting protein kinase 1
SAM S-adenosylmethionine
SLE Systemic lupus erythematosus
SLP-2 Stomatin-like protein 2
SM Sphingomyelin
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SOD Superoxide dismutase
Frontiers in Immunol
S-OPA1 Short-OPA1
Spire1C Spiretype actin nucleation factor 1
STAT signal transducer and activator of transcription
Stat2 Signal transducers and activators of transcription 2
TAM Tumor-associated macrophage
ogy 21
tBID Truncated BID
WAT White adipose tissue
WT Wild type
a-KG a-ketoglutarate
DY(m) Membrane potential
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