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Introduction: Recent studies of adult sepsis patients demonstrate the existence

of two subphenotypes that differ in risk of mortality: a hyper-inflammatory

subphenotype with a high risk of mortality, and a hypo-inflammatory or “not

hyper-inflamed” subphenotype with a relatively lower risk of mortality. We

recently investigated the association of organ dysfunction with ex vivo immune

profiling in sixty (60) critically ill adult patients with sepsis. In this secondary

analysis we measured cytokine biomarkers with an automated, microfluidic

immunoassay device (Ella™) and sought to investigate the functional immune

profiles of patients in the hyper/hypo-inflammatory subphenotype groups.

Methods: Subjects were consecutively identified adults, older than 18 years, and

enrolled within 48 hours of sepsis onset. Whole blood cytokine analysis was

performed in all patients. Additionally, ex vivo cytokine production was measured

following 4h of stimulation. Cytokine concentrations were measured using the

Ella™ automated immunoassay system.

Results: Subjects were divided into hypo-inflammatory (42 patients) and hyper-

inflammatory (18 patients) subtypes using a previously validated parsimonious

model based on concentrations of IL-6, TNFR1 and bicarbonate. The hyper- and

hypo-inflammatory clusters demonstrated a near four-fold difference in 30-day

mortality (44.4% vs 11.9%, p=0.0046). Following 4h of ex vivo stimulation with

LPS, TNF production was lower in the hyper-inflammatory group as compared

with the hypo-inflammatory group (p=0.0159). Ex vivo phorbol 12-myristate 13-

acetate (PMA)-stimulated IFN-g production (4h) by whole blood did not differ

between groups.
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Abbreviations: CINS, critically ill and non-septic;

chemokine ligand 8 (AKA, IL-8); IFNg, interferon-gam

(AKA, CXCL8); LPS, lipopolysaccharide, or endotoxin

myristate 13-acetate; TNF, tumor necrosis factor; TNFR1

receptor 1.
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Conclusions: These data further validate the use of IL-6, TNFR1 and bicarbonate

to discern inflammatory sub-groups of patients with critical illness. They also

confirm the observation that the presence of the hyper-inflammatory

subphenotype is often accompanied by a compensatory anti-inflammatory

response syndrome. Future investigations should focus on prospective

validation of this panel for prognostic enrichment of clinical research studies.
KEYWORDS
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Introduction

Sepsis is characterized by dynamic disruptions in the immune

system, often leading to an increased susceptibility to secondary

infections, long-term health complications, and death (1–5).

Biomarkers have shown significant promise in prognostication

following acute respiratory distress syndrome (ARDS) (6–10) and

sepsis (11, 12): interleukin (IL)-6, IL-8 (otherwise known as C-X-C

motif ligand-8 or CXCL8), and tumor necrosis factor receptor 1

(TNFR1). Furthermore, these biomarkers have helped to identify

a hyper-inflammatory subphenotype of ARDS and sepsis,

characterized by increased mortality as compared with its hypo-

inflamed counterpart (10, 13).

Our prior investigation has synthesized existing evidence

regarding the prognostic value of whole blood responses to ex

vivo lipopolysaccharide (LPS) stimulation of blood in sepsis (14).

Reduced TNF production following LPS stimulation remains a

hallmark of “immunoparalysis,” a state of immune dysfunction

characterized by diminished immune capacity to respond effectively

to infections (1, 15, 16). Patients in this state are at a substantially

higher risk for developing secondary infections and death (17).

However, an exclusive focus on LPS responses may overlook other

vital components of immune function, such as lymphocyte count

and activity (14, 18).

Both immunoparalysis, indicated by reduced ex vivo

cytokine production, and hyper-inflammation, characterized by

elevated levels of IL-6, IL-8 and TNFR1, are associated with

worse outcomes in sepsis. To investigate the apparent paradox

between these two states, we examined the relationship between

inflammatory subphenotypes as determined by plasma cytokine

and bicarbonate concentrations during critical illness, and ex vivo

cytokine production.
CXCL8, C-X-C motif

ma; IL-8, interleukin-8

Na; PMA, phorbol 12-

, tumor necrosis factor
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Materials and methods

Methodological approach and participant
selection

This is a secondary analysis of a recently published study (19).

Ethical approval was obtained from the Human Studies Protection

Office of the Penn State College of Medicine (#15328, 7/30/2020).

Procedures were followed in accordance with ethical standards

established by the Human Subjects Protection Office and with the

Helsinki Declaration of 1975. The Modified Early Warning Scoring

(MEWS) scoring-based algorithm was used to identify critically ill

patients with possible sepsis (20, 21) from November 2021 to

August 2023. Dual, independent investigator reviews ensured

unbiased selection of patients meeting inclusion criteria from

electronically flagged patient records. Informed consent was

obtained from patients having decision-making capacity, or from

the legally authorized healthcare representatives of patients lacking

decision-making capacity.
Inclusion and exclusion parameters

Eligible septic candidates were consecutively identified adults,

>18 years, within 48 hours of critical illness onset. Sepsis was

defined by Sepsis-3 criteria, namely a change in SOFA score of

two or more in the setting of clinically suspected or

microbiologically proven infection (22). Non-survivors were

defined as those deceased within 30 days post-enrollment.

Patients exhibiting active hematologic malignancies and those

receiving immune-altering therapies were excluded.
Clinical variables and data retrieval

Clinical data, including whole blood counts and cell

differentials, were retrieved from hospital records and post-

discharge interviews. Illness severity was measured using

Charlson Comorbidity Index (23) and APACHE II score (24–26).
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Outcomes included organ dysfunction via SOFA score; 30-day

mortality, readmission, and infection rates. Secondary infection

was defined using the CDC/NHSN definitions (27). Blood

samples were collected early, within 48h of ICU admission, for

leukocyte analysis, cytokine analysis, and cytokine quantification

after ex vivo stimulation tests, with supernatants frozen for

later analysis.
Cytokine analysis

Whole blood was collected in sodium heparin tubes and ex vivo

cytokine production was performed on the day of collection. Plasma

was separated by centrifugation (400 g x 5 min). Plasma was

aliquoted and stored at -80°C until subsequent batch analysis.

Cytokines were measured using the Ella™ microfluidic

automated immunoassay system (Bio-Techne, MN). Biomarkers

were measured by batch analysis by Ella™ using custom

manufactured 32 sample x 4 analyte cartridges (28-45)

(Supplementary Table 1). Plasma samples were thawed and

diluted 1:10 with sample diluent 13, and 50 µL of diluted sample

were loaded into each sample inlet, and data was acquired utilizing

the Simple Plex Runner software v.3.7.2.0 (ProteinSimple).
Ex vivo stimulation and cytokine
quantification

Whole blood was collected in sodium heparin tubes. As

previously described (19) 50 mL whole blood was diluted ten-fold

in HEPES-buffered RPMI media, then exposed to designated

stimulants (46, 47). Whole blood samples from each study

participant were exposed to separate conditions: (1) 500 pg/mL

lipopolysaccharide (LPS) from Salmonella enterica strain abortus

equi, or (2) 10 ng/mL phorbol 12-myristate 13-acetate (PMA) with

1 mg/mL ionomycin. Following incubation for 4 hours at 5% carbon

dioxide and 37 °C, and subsequent centrifugation, supernatants

were frozen at -80 °C until the time of analysis. The Ella™

automated immunoassay system (Bio-Techne, Minneapolis, MN)

was used for triplicate measurement of interferon-gamma (IFN-g),
tumor necrosis factor (TNF), and interleukin (IL)-6. Data

was acquired utilizing the Simple Plex Runner software

v.3.7.2.0 (ProteinSimple).
Intracellular cytokine staining

Multicolor flow cytometry was performed on a 17-color Becton

Dickinson (BD) FACSSymphony. Blood was obtained from three

separate healthy adult controls, ages 40-50, on the morning of

stimulation. After 3h of ex vivo stimulation, brefeldin A was added

to cause cytokine accumulation in cells. After 4h whole blood cells

were surface stained with fluorescent-labeled antibodies (BD or

BioLegend) and intracellular staining for TNF and IFN-g was

performed using Cytofix/Cytoperm (BD) kit.
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Statistics

Using Prism (v9.5) and JMP® Pro (v18.0.2), with a significance

threshold of 0.05, we summarized variables descriptively. Continuous

variables’ distributions were evaluated via histograms, probability

plots, and normality tests. Demographic comparisons between

groups utilized Chi-square and two-sample t-tests. Due to the non-

normal distribution of the cytokine data, log10 transformation was

applied before modeling. Designation of the inflammatory group

(hypo-inflammatory vs. hyper-inflammatory) was determined using

a parsimonious mathematical model with IL-6 (pg/mL), TNFR1

(pg/mL) and bicarbonate (mEq/L) values as variables that was

previously validated for patients with ARDS (7).
Results

Study population and inflammatory
clusters

In the primary study, we enrolled a total of 60 individuals with

sepsis. Detailed demographic profiles and clinical outcomes of these

patients have been previously described (19). Multiple cytokines

were measured in sepsis patients using custom Ella™ cartridges.

Using a previously validated parsimonious classifier model (7)

based on IL-6, TNFR1 and bicarbonate levels, subjects were

divided into two clusters: hyper-inflammatory (defined by

elevated IL-6, TNFR1 and low bicarbonate levels, n=18, red), and

hypo-inflammatory (n=42, blue) groups (Figure 1). The classifier

model is a logistic regression-based model comprised of IL-6,

sodium bicarbonate and TNFR1. For the model, IL-6 and TNFR1

were log-transformed after the addition of one (+1). The coefficients

used for the model were detailed in previous manuscripts (7, 48).

We used the validated cutoff of 0.5 for this analysis.

Not surprisingly, TNFR1, IL-8 and IL-6 levels were significantly

(***p<0.001) different between the inflammatory subphenotypes

(Figure 1A). Also not surprisingly, given that bicarbonate is part

of the validated model, bicarbonate levels were significantly

lower in the hyper-inflammatory cluster (Figure 1B). 30-day

mortality was almost four-fold higher (p=0.0046) in the hyper-

inflammatory (44.4%) group than the hypo-inflammatory (11.9%)

cluster (Figure 1B).
Functional immune responses

We investigated the “functional immune response” by

quantifying the amount of cytokines produced by whole blood

in response to precise amounts of immune stimulation. We

quantified total TNF production after 4h of ex vivo stimulation

of fresh whole blood with LPS. Interestingly, patients from

the hyper-inflammatory cluster demonstrated lower ex vivo

TNF production as compared to the hypo-inflammatory group

(407±442 vs 729±637 pg/mL, p = 0.0159 (Figure 2A). As a side

experiment, we investigated what cell types were producing TNF in
frontiersin.org
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response to LPS stimulation using intracellular cytokine staining

(ICS)(Supplementary Figure 1). Patients with sepsis had reduced

TNF production as compared to healthy controls (Supplementary

Figures 2, 4). While CD15+ neutrophils produced some TNF, by far

the largest producers of TNF in the ex vivo assay are CD14+

monocytes (Supplementary Figures 2–4).

To control for the potential impact of leukopenia on TNF

production, we normalized TNF levels to monocyte counts

calculated using daily complete blood count with automated

differential cell count analysis. TNF production per monocyte (pg

TNF/106 cells) did not differ between the inflammatory clusters. In

contrast to TNF production in response to LPS stimulation, the total

amount of IFN-g production (pg/mL) following PMA/ionomycin

stimulation did not differ between the hyper- and hypo-inflammatory

groups (Figure 2C), nor was there a difference after normalizing to

lymphocyte count (pg IFN-g/106 cells) (Figure 2D).
Discussion

We have recently described the prognostic value of rapid,

functional immune profiling to predict organ dysfunction
Frontiers in Immunology 04
in critically il l patients (19). This secondary analysis

extends our prior investigation by examining the relationship

between previously-described, hyper- and hypo-inflammatory

subphenotypes of sepsis (11, 12) and ex vivo TNF production in

our cohort (6–10, 12). By combining measurements of IL-6 and

TNFR1 levels in whole blood, combined with bicarbonate levels,

with ex vivo production of cytokines in response to stimulation of

whole blood, we observed that hyper-inflamed patients produce less

TNF following ex vivo LPS stimulation, as compared with hypo-

inflammatory sepsis patients. Ex vivo TNF production by whole

blood has typically been ascribed to monocytes (49). We were able

to confirm this using intracellular cytokine staining (Supplementary

Figures 1–4). The white blood cell and absolute monocyte counts

were not different between the inflammatory subphenotypes.

Therefore, we expected to see less TNF production per monocyte

in the hyper-inflammatory sub-group, but this result was not

significant (p=0.138, Wilcoxon two-sample test). This is likely due

to our sample size being underpowered to detect the difference.

Furthermore, the AMC was based on automated differential counts

from the clinical laboratory which can be fairly inaccurate (50).

These results support the exist ing paradigm of a

concurrent systemic inflammatory (SIRS) and compensatory anti-
FIGURE 1

Defining inflammatory subphenotypes by IL-6, TNFR1 and bicarbonate. Sepsis patients were divided into hyper-inflammatory (red) and hypo-
inflammatory (blue) groups using IL-6, TNFR1 and bicarbonate levels based on a previously validated model (48). The association of other cytokines
with the inflammatory groups is shown, with cytokines listed in order of increasing significant differences between the groups (A). Bicarbonate, the
non-cytokine variable in the model, by definition, was significantly different (***p<0.001) between the groups (B). Mortality in the hyper-
inflammatory group was significantly higher than the hypo-inflammatory group (44.4% vs 11.9%, **p<0.01) (C). Comparisons between the groups
were performed using t-tests (A, B) and chi-squared tests (C). *p<0.05.
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inflammatory (CARS) response in acute sepsis (15, 51). In our

cohort, being in the hyper-inflammatory subgroup increased the

30-day risk of mortality nearly 4-fold. Further research needs to be

performed to develop strategies rapidly identify this group, and to

provide anti-inflammatory interventions. The ongoing NICHD

supported PRECISE trial (52) is examining the role of IL-1

blockade using anakinra to decrease organ dysfunction. It is also

plausible that targeted anti-inflammatory agents may restore ex vivo

TNF production.

Our work adds to a growing body of literature that

demonstrates the value of IL-6, IL-8 and TNFR1 concentrations

for prognostic enrichment of clinical cohorts. IL-6 and IL-8 are very

tightly correlated: R2 0.95 in our cohort of sepsis patients. While IL-

6 is described as one of the big three pyrogens (IL-1, IL-6, TNF), IL-

1 and TNF seem to be the main drivers of inflammation, while IL-6
Frontiers in Immunology 05
serves as a quality biomarker (53). IL-8, more correctly named

CXCL8 (54), is a chemokine secreted by toll-like receptor-

expressing cells. It binds to CXCR1 with a higher affinity as

compared with CXCR2, and it functions as neutrophil

chemoattractant (55). TNFR1 is one of two TNF receptors that

are cleaved from cell surfaces following TNF signaling. TNFR1 is

ubiquitously expressed, whereas the expression of TNFR2 is

restricted to immune cells (56, 57). The use of TNFR1 as a

prognostic biomarker of mortality in critical illness is well

established. Elevated TNFR1 levels likely reflect both prior and

ongoing TNF signaling following a pro-inflammatory insult (58).

The role of the ex vivo TNF production assay for clinical use is

unclear (14). In the present study ex vivo TNF did not predict 30-

day mortality. The assay is likely a better predictor of risk of

secondary infection, but this study was underpowered to detect
FIGURE 2

Comparison of functional immune profiling as determined by ex vivo cytokine production between inflammatory subphenotypes. Total TNF
production (4h) was significantly (*p=0.016) lower in the hyper-inflammatory cluster (A), but not when corrected for absolute monocyte count (C).
Ex vivo IFN-g production did not differ between the inflammatory clusters in total (B), or after correction for absolute lymphocyte count (D).
Significance was determined using non-parametric (Wilcoxon signed-rank) testing.
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any association. While the ex vivo TNF production assay is

relatively easy to perform, it is time intensive and requires a 4h

incubation step. Also, comparisons of the assay results across

laboratories is not standardized.

The methods for conducting ex vivo LPS-stimulated TNF

production assays vary across laboratories and investigators (14).

Our laboratory utilizes the same LPS source (Salmonella enterica)

and dose (500 pg/mL) as Dr. Hall from Nationwide Children’s

Hospital (15, 16). As a result, our TNF measurements may differ

from those obtained by other sepsis research laboratories. The same

limitation is also true of the PMA/ionomycin-induced IFN-g assay.
The chief limitation of the present study is the relatively small

sample size, which likely limited our ability to detect some

significant differences between the two subphenotypes.

Strengths of our study include the use of a rapid, established and

semi-automated immunoassay system for cytokine measurement

directly from plasma, and of supernatants for the ex vivo

stimulation assays. Because of the Ella™ system’s attributes,

which include high sensitivity, a large dynamic measurement

range, rapid analysis, and high reproducibility (19, 46, 47), we

envision the proliferation of its use as a clinical instrument for

on-site cytokine measurements in the near future. Future studies

should focus on the rapid differentiation of the two subphenotypes

with targeted interventions.
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