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Unraveling the spatial and
signaling dynamics and splicing
kinetics of immune infiltration
in osteoarthritis synovium
Chuan Wang1†, Zevar Zeng2†, Tao Wang1, Zhihong Xie1,
Jian Zhang1, Wentao Dong1, Fei Zhang1* and Wuxun Peng1*

1Emergency Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China, 2School of Life
Sciences, Sun-Yat-sen University, Guangzhou, China
Introduction: Osteoarthritis (OA), a debilitating joint disorder characterized by

synovial inflammation and immune myeloid cell infiltration, currently lacks a

comprehensive spatial and transcriptional atlas. This study investigates the spatial

dynamics, splicing kinetics, and signaling pathways that drive immune infiltration

in OA synovium.

Methods: We integrated single-cell RNA sequencing (scRNA-seq) data from 8

OA and 4 healthy synovial samples with spatial transcriptomics using Spatrio.

Spatial transition tensor (STT) analysis decoded multistable spatial homeostasis,

while splicing kinetics and non-negative matrix factorization (NMF) identified

gene modules. CellPhoneDB and pyLIGER mapped ligand-receptor interactions

and transcriptional networks.

Results: Re-annotation of scRNA-seq data resolved synovial cells into 27

subclasses. Spatial analysis revealed OA-specific attractors (8 in OA vs. 6 in

healthy samples), including immune myeloid (Attractor3) and lymphoid

infiltration (Attractor4). Key genes OLR1 (myeloid homeostasis) and CD69 (T-

cell activation) exhibited dysregulated splicing kinetics, driving inflammatory

pathways. Myeloid-specific transcription factors (SPI1, MAF, NFKB1) and

lymphoid-associated BCL11B were identified as regulators. Computational drug

prediction nominated ZILEUTON as a potential inhibitor of ALXN5 to mitigate

myeloid infiltration.

Discussion: This study delineates the spatial and transcriptional landscape of OA

synovium, linking immune cell dynamics to localized inflammation. The

identification of OLR1 and CD69 as spatial homeostasis drivers, alongside

dysregulated signaling networks, offers novel therapeutic targets. These

findings advance strategies to modulate immune infiltration and restore

synovial homeostasis in OA.
KEYWORDS

osteoarthritis synovium, immune infiltration, spatial and signaling dynamics, splicing
kinetics, spatial transition tensor
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Introduction

Osteoarthritis (OA) is a prevalent and debilitating joint disorder

characterized by the progressive degradation of articular cartilage,

subchondral bone changes, and synovial inflammation, ultimately

leading to pain and impaired mobility (1, 2). The synovial membrane,

which lines the joint cavity, plays a pivotal role in maintaining joint

homeostasis by producing synovial fluid that lubricates and nourishes

the cartilage (3–5). In OA, the synovial membrane undergoes

significant pathological changes, including hyperplasia and

infiltration by immune cells, particularly myeloid cells such as

macrophages and monocytes (6–8). These myeloid cells are key

mediators of inflammation and tissue remodeling, contributing to

the chronic inflammatory environment observed in OA joints (9–11).

Recent advances in single-cell RNA sequencing (scRNA-seq) have

revolutionized our understanding of tissue heterogeneity and cellular

interactions by enabling high-resolutionmapping of cellular states and

their spatial organization within tissues (12–14). However, spatial

transcriptomics sequencing data for osteoarthritis are lacking. Existing

studies have only explored the mechanisms of osteoarthritis at the

cellular level (15). The etiology of osteoarthritis is a spatially regulated

process and revealing perturbations in regions or cells spatially

involved in osteoarthritis can help us optimize osteoarthritis

medication and deepen our understanding of the mechanism (16, 17).

In this study, we first re-annotated the existing single-cell data

on osteoarthritis, adjusting the subpopulation resolution from 7

major classes to 27 subclasses. The finer mapping of osteoarthritis

cells helps us to refine the cellular mechanisms of OA. To obtain the

spatial location of osteoarthritis cells in the synovium, we used the

rheumatoid arthritis (RA) synovial membrane spatial profile as a

reference atlas to project the single cells spatially using spatrio. We

also computed the splicing kinetics of each cell with OA, and the

local splicing kinetics of the projected atlas were divided into spatial

attractors. Finally, we constructed gene modules on the spatial atlas

using non-negative matrix (NMF) decomposition, and we

investigated the spatial signaling flow signal with transcript factor

in normal synovium and synovium in osteoarthritis based on the

ligand-receptor database CellPhoneDB (Figure 1a).

Specifically, we identify significant spatial attractor in the synovial

membrane architecture and extensive infiltration of myeloid cells in

OA compared to healthy controls. Through detailed transcriptional

profiling, we reveal key differentially expressed genes (DEGs) and

transcription factors (TFs) driving the inflammatory and remodeling

processes inOA.We thenprediceted the potential drugZILEUTONto

target ALXN5 of the exceptionally myeloid and remove the

osteoarthritis-specific myeloid cells. Our study reveals, for the first

time, the kinetic characteristics and inflammatory mechanisms of

lymphatic infiltration on the spatial surface of osteoarthritis.

Result

Single-cell atlas reveals cellular
heterogeneity in osteoarthritis synovium

To elucidate the cellular landscape of the synovial membrane in

osteoarthritis (OA), we first reanalyzed publicly available single-cell
Frontiers in Immunology 02
RNA sequencing (scRNA-seq) data from the Gene Expression

Omnibus (GEO) database included 8 OA samples and 4 healthy

samples. Then we used Spatrio to spatially locate the scRNA profile

onto rheumatoid arthritis (RA) synovial membrane spatial profile

(Figure 1a, Table 1). Our analysis aimed to characterize the various

cell populations and their transcriptional states, as well as to identify the

cellular disruptions associated with OA both cellular and spatial level.

Using a combination of dimensionality reduction techniques,

we generated a UMAP visualization that revealed distinct clusters

representing various cell types included 78,260 cells within the

synovial membrane, including endothelial cells (ECs, 9,262),

fibroblasts (Fibro, 43,889), lymphoid cells (Lymphoid, 3,999),

mast cells (Mast, 76), mural cells (Mural, 6,177), myeloid cells

(Myeloid, 14,226), and plasma cells (Plasma, 239) (Figure 1b;

Supplementary Figures 1a-c). These clusters were annotated based

on the expression of canonical marker genes, as illustrated in the

accompanying dot plot (Figure 1e; Supplementary Figure 1d). The

UMAP plot further highlighted the differential distribution of cells

between OA and healthy synovium, with OA groups showing a

distinct clustering pattern compared to healthy controls (Figure 1c).

At the patient level, the variability in cell distribution was evident,

reflecting the heterogeneity of the disease (Figure 1d).

We first compared the changes in cell proportions between OA

and healthy synovium using the Ro/e metric, revealing that

endothelial cells (ECs) and mural cells were less abundant in OA,

while mast cells, myeloid cells, and plasma cells were more

abundant (Figure 1g). To account for potential sample-specific

biases, we employed scCODA, a Bayesian statistical method, to

rigorously assess proportional differences. This analysis confirmed a

significant increase in myeloid cell proportions in OA and a

decrease in mural cell and EC proportions (Figure 1h).

Overall, our comprehensive single-cell atlas of the synovial

membrane in OA reveals significant alterations in cellular

composition and transcriptional dynamics, particularly the marked

infiltration and enrichment of myeloid cells. These findings underscore

the importance of myeloid cells in the inflammatory milieu of OA and

provide a valuable resource for understanding the cellular mechanisms

underlying OA pathogenesis.

Spatial domains define distinct
microenvironments in
osteoarthritis synovium

To uncover the spatial organization and domain-specific

cellular distribution in the synovial membrane of osteoarthritis

(OA) patients, we leveraged spatial transcriptomics data alongside

single-cell RNA sequencing (scRNA-seq) data. Our analysis

involved the integration of spatial and single-cell datasets to map

the spatial locations of various cell types identified in our single-cell

atlas. Initially, we conducted spatial clustering of the synovial

membrane using STAGATE, which allowed us to define distinct

spatial domains within the tissue. These domains were annotated

based on hematoxylin and eosin (HE) staining and the expression of

region-specific markers, revealing the anatomical structure of the

synovial membrane, including lymphoid aggregates, sub-synovial

layers, synovial lining layers, and synovial stroma layers (Figure 2a)
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(18). To assign spatial coordinates to the single cells, we utilized

Spatrio to locate the single-cell profile in synovial membrane spatial

slice. This method enabled us to infer the spatial positions of 10,000

randomly selected cells from both OA and healthy groups. The
Frontiers in Immunology 03
resulting spatial maps displayed a clear distinction in the spatial

distribution of cell types between OA and healthy synovium

(Figure 2b; Supplementary Figures 2a, b). To verify the

distribution of our cells, we also performed spatial location
FIGURE 1

Cellular and molecular landscape of osteoarthritis (OA) and healthy synovium. (a) Schematic overview of the study design. The analysis is based on 8
OA cases and 4 healthy controls, leveraging single-cell RNA sequencing data. Synovium from synovitis serves as a reference for single-cell
localization in OA. RNA splicing kinetics and spatial transition tensors are used to investigate spatial homeostasis, while CellPhoneDB and flowsig
analyses reveal disruptions in spatial signaling. (b) UMAP visualization of synovial tissue single-cell RNA sequencing data, organized by cell type:
endothelial cells (ECs), fibroblasts (Fibro), lymphoid cells (Lymphoid), mast cells (Mast), mural cells (Mural), myeloid cells (Myeloid), and plasma cells
(Plasma). (c) UMAP plot highlighting OA (red) and healthy (blue) conditions, showcasing the distribution of cells by condition. (d) UMAP plot
distinguishing cells according to patient ID and condition, facilitating patient-specific analysis. (e) Dot plot illustrating expression levels of marker
genes across cell types. Dot size reflects the fraction of cells expressing each gene, and color intensity represents average expression. (f) Bar plot
showing the cell type proportions in OA and healthy samples, highlighting differences in cellular composition. (g) Heatmap of cell type enrichment in
OA versus healthy synovium, with the color scale representing log fold changes; positive values indicate higher abundance in OA. (h) Bar plot
depicting log2 fold change (log2FC) in cell type abundance in OA compared to healthy synovium, calculated by scCODA.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1521038
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2025.1521038
matching on another spatial slice of the synovium and found that

the cells were consistent with the spatial locations (Supplementary

Figures 2c, d, 3a, b).

By examining the expression of key marker genes within these

spatial domains, we observed distinct spatial patterns of gene

expression in OA compared to healthy synovium. For instance,

the expression of MS4A1, CD163, COMP, and CTSZ highlighted

the differential localization of lymphoid and myeloid cells, as well as

fibroblasts, within the synovial membrane (Figure 2c;

Supplementary Figure 3c). These spatial expression patterns were

consistent with the histological features observed in the HE-stained

sections. Notably, myeloid cells and plasma cells were enriched in

specific spatial domains in OA, suggesting localized inflammatory

responses (Figure 2d; Supplementary Figure 3d). To validate these

findings, we analyzed the cell type proportions within each spatial

domain. This analysis confirmed the significant decreased of

myeloid cells in the synovial lining layer and increased in sub-

synovial layers 2-3 in OA, while other cell types showed variable

distributions across the spatial domains (Figures 2e, f;

Supplementary Figure 3e).
Spatial attractors reveal disrupted immune
homeostasis in osteoarthritis synovium

To further explore the disruption of synovial space homeostasis in

osteoarthritis (OA), we used spatial transition tensor (STT), a method

that uses messenger RNA splicing and spatial transcriptomes through a
Frontiers in Immunology 04
multiscale dynamical model to characterize multistability in space

(19) to simultaneously construct synovial space homeostasis maps in

both OA and Healthy samples (Figures 3a, 4a, b) . In OA, we identified

8 types of attractors (Figures 3a-c), while in Healthy samples, 6 types

of attractors were identified (Figures 3d-f). We found that in OA,

Attractor3 is associated with immune myeloid cells, representing the

myeloid spatial homeostasis point; Attractor4 is related to lymphocytes,

representing the spatial homeostasis point of lymphatic infiltration; and

Attractor5 is associated with resident myeloid cells (Figure 3c). In

Healthy samples, there is no specific attractor related to lymphatic

infiltration, with only Attractor1 associated with resident myeloid cells

(Figure 3f). Through spatial dynamics, we discovered that, compared to

Healthy samples, OA exhibits specific spatial homeostasis conditions of

immune myeloid and lymphatic infiltration (Figures 3g, i).

To uncover the driving genes of spatial homeostasis in

lymphatic infiltration and immune myeloid cells in OA, we first

calculated the differentially expressed genes in myeloid and

lymphoid cells. In myeloid cells, 41 upregulated genes and 21

downregulated genes were identified (Figure 3j). For the spatial

homeostasis in OA, STT identified a total of 238 homeostasis genes.

Among them, ADD3, EZR, ZNF331, ETS1, and CD69 were

identified as spatial homeostasis genes for lymphatic infiltration,

while CMKLR1, ARHGEF10L, PRG4, OLR1, and CRTAC were

identified as driving genes for the spatial homeostasis of immune

myeloid cells (Supplementary Tables 1, 2).

In Attractor3, the splicing dynamics slope of OLR1 is smaller

than 1, indicating an immature state. A splicing dynamics slope

below 1 in our velocity-based analysis suggests a higher proportion
TABLE 1 Information of healthy donor and OA patients whose biospecimens were used for scRNA-seq and snRNA-seq experiments.

Dataset
Sample
Type Sample ID Age Gender BMI (kg/m²) Joint

Disease
Stage/Type

GSE216651 OA Experiment 1 82 F 22.8 Knee (R) Knee OA

GSE216651 OA Experiment 2 75 F 21.7 Knee (R) Knee OA

GSE216651 OA Experiment 3 64 F 33.7 Knee (L) Knee OA

GSE216651 Healthy Experiment 4 33 M 22.5 Knee (R) Healthy Knee Joint

GSE216651 Healthy Experiment 5 21 F 21.2 Knee (R) Healthy Knee Joint

GSE216651 Healthy Experiment 6 37 M 21.2 Knee (R) Healthy Knee Joint

GSE216651 OA snRNA-seq 1 78 F 23.1 Knee (L) Knee OA

GSE216651 OA snRNA-seq 2 79 F 22.5 Knee (L) Knee OA

GSE216651 Healthy snRNA-seq 3 37 M 21.2 Knee (R) Healthy Knee Joint

GSE152805 OA GSE152805_OA_1 - F - Knee

Medial compartment
dominant knee OA,
undergoing total knee
replacement (inferred)

GSE152805 OA GSE152805_OA_2 - F - Knee

Medial compartment
dominant knee OA,
undergoing total knee
replacement (inferred)

GSE152805 OA GSE152805_OA_3 - M - Knee

Medial compartment
dominant knee OA,
undergoing total knee
replacement (inferred)
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of unspliced (newly transcribed) mRNA relative to spliced (mature)

mRNA for OLR1 in myeloid cells within this attractor. This

“immature” state can be interpreted as active transcription and

potentially increasing expression levels of OLR1 in these cells. OLR1

is indeed expressed at higher levels in myeloid cells of OA than in

healthy individuals (Figures 3h, k), consistent with active gene

expression associated with the attractor state. OLR1(also known

as Lox1) has been found in past reports to have higher expression

on synovium in OA than in Healthy and to be enriched on

macrophages (20–22), but the exact mechanism is unclear. We
Frontiers in Immunology 05
used dynamo to construct a developmental atlas of splicing

dynamics of myeloid cells in OA, and we subsequently modeled

the effects on the development of the myeloid lineage profile in OA

in the case of OLR1 overexpression and OLR1 knockdown,

respectively. the developmental profile of Mono to Inflamm.Mj
was inhibited when OLR1 was knocked down, and when OLR1 was

overexpressed the developmental profile of Mono to Inflamm.Mj
was inhibited, and when OLR1 was overexpressed the

developmental profile of Mono to Inflamm.Mj was inhibited.

developmental lineage was significantly activated when OLR1 was
FIGURE 2

Spatial distribution and cellular composition of synovial membrane in healthy and osteoarthritis (OA) conditions. (a) Spatial map highlighting
anatomical layers of the synovial membrane knee, including lymphoid, sub-synovial layers 1-3, synovial lining layer, and synovial stroma layers 1-2.
(b) Spatial distribution of cell types in healthy and OA synovial tissues. Cells are color-coded by type, including endothelial cells (ECs), fibroblasts
(Fibro), lymphoid cells (Lymphoid), mast cells (Mast), mural cells (Mural), myeloid cells (Myeloid), and plasma cells (Plasma). (c) Spatial expression
patterns of marker genes MS4A1, CD163, COMP, and CTSZ across different layers in both healthy and OA conditions. (d) Proportion of each cell type
across anatomical layers in healthy and OA synovial tissues, shown as area plots with distinctive colors for each layer. (e) Bar plots indicating the
relative abundance of each cell type across different anatomical layers for healthy and OA synovial tissues, with cell types color-coded and
proportionally represented. (f) Heatmap showing relative enrichment (Ro/e) of Myeloid cells across layers in OA and healthy groups, with color scale
depicting log fold changes; positive values imply higher abundance in OA.
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overexpressed, consistent with the upregulation of OLR1 expression

in OA (Figures 4c, d).

In Attractor4, the splicing dynamics slope of CD69 is less than 1

also, indicating a mature state activation of T cells, spatial

homeostasis of lymphatic infiltration exists only in OA
Frontiers in Immunology 06
(Figure 3h). CD69 has been found in past reports to have higher

expression on synovium in OA and RA than in Healthy and to be

enriched on T cells (23–25), but the exact mechanism is unclear. We

used dynamo to construct a developmental atlas of T cell splicing

dynamics in OA, and we subsequently modeled the effects on OA T
FIGURE 3

Attractor states and differential gene expression in osteoarthritis (OA) synovium. (a) Visualization of OA attractor states in the transition map, showing
distinct cellular trajectories. (b) Spatial map of synovial tissue, indicating the distribution of attractor states across the tissue in OA. (c) Sankey diagram
illustrating the relationship between attractor states and cell types, showing the flow through different states. (d) Visualization of healthy attractor
states in the transition map, highlighting distinct cellular trajectories. (e) Spatial map of synovial tissue, indicating the distribution of attractor states
across the tissue in healthy conditions. (f) Sankey diagram displaying the relationship between attractor states and cell types, illustrating cellular flow
through different states. (g) Spatial distribution of unspliced and spliced RNA in OA attractor states 3 for Myeloid and 4 for Lymphoid, highlighting
areas of high transcriptional activity. (h) Spatial distribution of unspliced and spliced RNA in healthy attractor states 1 for Myeloid and 4, highlighting
high transcriptional activity. (i) Scatter plots of gene expression levels for OLR1, CD69 and CMKLR1, comparing unspliced (Mu) and spliced (Ms) RNA
counts in OA conditions. (j) Volcano plots of differentially expressed genes (DEGs) in myeloid and lymohoid. (k) Venn plot showing the overlap of
DEGs in myeloid and lymphoid cells, and genes that are multistable in OA. (l) Violin plots showing expression levels of OLR1, CD69, and CMKLR1 in
OA and healthy synovium, highlighting significant differences.
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cell lineage development in the case of CD69 overexpression and

CD69 knockdown, respectively. the developmental profiles of T

naive to T CD4+ and T CD8+ were inhibited when CD69 was

knocked down, and when CD69 was overexpressed, the

developmental profiles of T naive to T CD4+ and T CD8+

developmental lineages were significantly activated when CD69

was overexpressed, consistent with the upregulation of CD69

expression in OA (Figure 4e).

Further, we conducted immunofluorescence verification on

synovial tissue and found that OLR1, CD69 and CMKLR1 were all

expressed in synovial tissue. Therefore, we also confirmed in vivo that

OLR1, CD69 and CMKLR1 are key genes in the formation of

lymphatic infiltration space in synovial tissue (Figures 4f, g). Our

study reveals, for the first time, the kinetic characteristics and

inflammatory mechanisms of lymphatic infiltration on the spatial

surface of osteoarthritis.
Frontiers in Immunology 07
Dysregulated ligand-receptor interactions
in osteoarthritis synovial signaling

To elucidate the specific signaling factors involved in the spatial

steady state of immune myeloid and lymphatic infiltration in

osteoarthritis (OA), we employed a comprehensive multi-step

approach. Initially, we utilized CellPhoneDB to computationally

analyze interactions among seven distinct cell types in both OA

patients and healthy individuals, thus identifying key ligand-

receptor pairs critical for cellular communication. Subsequently,

we leveraged pyLIGER to construct 20 Gene Modules (GEMs),

enabling us to discern the specificity of regulatory modules in signal

transduction across diverse cell types.

Our analysis revealed that GEM-5, GEM-11, GEM-13, and

GEM-16 are predominantly associated with myeloid cells, while

GEM-12 and GEM-17 are primarily linked to lymphocytes
FIGURE 4

RNA Velocity, Developmental Potential, and Experimental Validation of Key Genes in Myeloid and Lymphoid Cells. (a) UMAP graph with RNA velocity
streamlines overlain, to depict the flow of cell states over time based on splicing ratios for each gene. Arrowheads depict ‘flow’ of RNA velocities Left
panel is Myeloid, right panel is Lymphoid. (b) UMAP graph with RNA velocity streamlines showing the Ddhodge potential (In fact, it is the negative of
potential here for the purpose to match up with the common usuage of pseudotime so that small values correspond to the progenitor state while
large values terminal cell states.). (c, d) Streamflow of Myeloid development, presenting profiles in original data, with OLR1, CMKLR1 overexpression,
and with OLR1, CMKLR1 knockdown. (e) Streamflow of Lymphoid activation, presenting profiles in original data, with CD69 overexpression, and with
CD69 knockdown. (f, g) Staining (f) and quantification (g) of OLR1, CMKLR1 and CD69 in human Synovium of Control and Osteoarthritis. (n=3) (*p <
0.05, **p < 0.01, ***p < 0.001).
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(Figure 5a, Supplementary Figure 4a). Further investigation

identified the Top 10 transcription factors (TFs) for these six

GEMs. In myeloid cells, SPI1 emerged as the specific TF for

GEM-13. SPI1, also known as PU.1, has been implicated in the

regulation of immune response genes, which are crucial in OA due

to their role in inflammation and synovial macrophage activity (26).

TFEC was identified as the specific TF for GEM-5, and although its

direct link to OA is less documented, it is known to influence

macrophage differentiation, which plays a role in OA pathogenesis
Frontiers in Immunology 08
(27). MAF was identified for GEM-11, directly related to

granulocyte functions affecting inflammation and tissue

remodeling in OA (28). NFKB1 was identified for GEM-16, a

pivotal factor in inflammatory response regulation in OA, as

NFKB1 is involved in the expression of pro-inflammatory

cytokines in osteoarthritic cartilage (29). In lymphocytes, BCL11B

was identified as the specific TF for GEM-12. BCL11B is crucial for

T-cell development and function, thus impacting immune

responses in RA (30). MCTP2 was identified as the specific TF
FIGURE 5

Gene expression modules (GEMs) and transcriptional regulation in osteoarthritis (OA) synovium. (a) Dot plot displaying the fraction of cells and mean
expression levels of genes in different GEMs across cell types: endothelial cells (ECs), fibroblasts (Fibro), lymphoid cells (Lymphoid), mast cells (Mast),
mural cells (Mural), myeloid cells (Myeloid), and plasma cells (Plasma). Dot size indicates cell fraction; color intensity represents mean expression
level. (b) Top 10 transcription factors (TFs) and genes associated with GEM-13, ranked by significance score. (c) Volcano plot of differentially
expressed (DE) inflow genes in myeloid cells, comparing OA to healthy synovium. Key genes are labeled, with upregulated genes in red and
downregulated in blue. (d) Volcano plot of DE outflow genes in myeloid cells, comparing OA to healthy synovium. Key genes are labeled, with
upregulated genes in red and downregulated in blue. (e) Network diagram illustrating interactions between key genes in GEM-13, GEM-11, GEM-5,
and GEM-16, highlighting significant DE genes or DE flows genes. The grey represent inflow signal receptor, red represent outflow ligand.
(f) Network diagram depicting interactions between key genes and TFs of GEM-13, including inflow receptors and outflow ligands. Red indicates
outflow ligands, grey inflow ligands, orange TFs, and other colors represent GEM genes. (g) Violin plots showing expression levels of ADGRE5,
ITGAM, SPI1, and IL6R between OA and healthy groups. (h) Gene Ontology (GO) enrichment analysis for biological processes associated with GEM-
13, showing the fractions of genes involved in each process. The size of the dots represents the fraction of genes, while the color intensity indicates
the -log10(p-adjusted) value.
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for GEM-17, a module regulating natural killer (NK) cells, which

have been implicated in OA due to their role in synovial

inflammation (31) (Figures 5b-d; Supplementary Figures 4b, c).

After we performed Gene Ontology enrichment analysis on each

GEM, we found that GEM-13 functionally correlated with MHC

Class II Protein Complex Assembly and Peptide Antigen Assembly

With MHC Class II Protein Complex function (Figure 5h). We

concluded that GEM-13 is associated with Myeloid infiltration.

Subsequently, we used String-DB to further investigate the

upregulated inflow signaling ADGRE5 and upregulated outflow

signaling set of Myeloid in relation to TF and Genes in GEM-13.

We revealed ADGRE5->ITGAM->SPI1->IL6, ADGRE5->ITGAM-

>SPI1->IL6->ALCAM, ADGRE5->ITGAM->SPI1->ITGAM-

>CD55, and others (Figures 5e-g). suggests that inflammatory

macrophages in osteoarthritis are extensively affected by ADGRE5

activation of their own SPI1 to regulate of inflammation,

phagocytosis, and cell signaling.

In addition, the function of GEM-12 was found to correlate with

the function of T-cell activation (Supplementary Figure 4c), and we

found the formation of T-cell aggregation homeostasis to be one of

the hallmarks of OA in our previous analysis (Figure 2g). We

concluded that GEM-12 is associated with T cell activation.

Subsequently, we used String-DB to further investigate the

relationship between the up-regulated inflow signal IL6R and the

up-regulated outflow signal CXCL2 of Lymphoid T cells with TFs

and Genes in GEM-13. We revealed the signaling process IL6R-

>IL7R/PTPRB->BCL11B/STAT4->IL7R->CXCL2 (Supplementary

Figures 4e-g). It is shown that the activation of T cell homeostasis

in osteoarthritis is mediated by IL6R. CXCL2, a chemokine involved

in the recruitment of inflammatory cells to the synovial space

promote the inflammation (32).

Further, we conducted immunofluorescence verification on

synovial tissue and found that OLR1, CD69 and CMKLR1 were

all expressed in synovial tissue. Therefore, we also confirmed in vivo

that OLR1, CD69 and CMKLR1 are key genes in the formation of

lymphatic infiltration space in synovial tissue.
Discussion

Understanding the spatial and signaling dynamics, as well as the

splicing kinetics of immune infiltration in osteoarthritis (OA)

synovium, sheds light on the complex pathogenesis of this

debilitating joint disorder. The infiltration of immune cells,

particularly myeloid and lymphoid cells, within the synovial

membrane contributes to the chronic inflammatory environment

characteristic of OA. Despite advances in our understanding of OA

at the cellular level, spatial and transcriptional characterizations

remain incomplete. In this study, we employ cutting-edge spatial

transition tensor and intercellular flow analyses to delineate the

signals regulating immune cell infiltration in OA synovium,

providing novel insights into the spatial dynamics and signaling

mechanisms involved.

Our study successfully identifies distinct spatial domains within

the synovial membrane, highlighting the differential distribution and

transcriptional states of immune myeloid and lymphoid cells in OA
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compared to healthy controls. The spatial attractors identified in OA

synovium underscore the unique spatial homeostasis conditions of

immune infiltration, driven by key transcription factors and

differentially expressed genes. Notably, the genes OLR1, CD69, and

CMKLR1 emerge as critical regulators of spatial homeostasis in OA,

with their expression patterns reflecting the complex interplay

between immune infiltration and tissue remodeling. Consistent with

our computational predictions, we have now experimentally validated

the expression of OLR1, CD69, and CMKLR1 in OA synovial tissue

using immunofluorescence (Figure 4g), further supporting their role

in OA pathogenesis. Furthermore, we identified key transcription

factors (SPI1, MAF, NFKB1, BCL11B, MCTP2) orchestrating

signaling networks within myeloid and lymphoid cells. These

findings highlight potential therapeutic avenues in OA. Specifically,

OLR1 and CMKLR1 emerge as promising targets for directly

modulating pathogenic immune responses within the synovium (22,

33). Targeting these receptors could directly reduce myeloid cell

infiltration and inflammation. Concurrently, modulating the

identified transcription factors offers a strategy to broadly dampen

inflammatory signaling cascades within specific immune cell

populations in the OA joint. These targeted approaches, focused on

spatial and signaling dysregulation, hold the potential to complement

existing OA therapies and guide the development of novel, more

effective treatments aimed at restoring immune homeostasis and

alleviating the inflammatory burden in OA. Future research should

prioritize preclinical validation of these targets to accelerate the

translation of our findings into clinical applications.

The spatial specificity of myeloid cell infiltration, particularly

within the synovial lining and sub-synovial layers, emphasizes the

localized inflammatory responses that contribute to OA

pathogenesis. These spatial disruptions may serve as potential

biomarkers for disease severity or progression. For instance, the

enrichment of OLR1 and CMKLR1 in specific synovial regions

could be leveraged to develop imaging-based diagnostic tools or

targeted therapies that modulate immune cell infiltration in

these areas.

Our analysis of signaling dynamics reveals significant

abnormalities in the spatial signaling landscape of OA synovium.

Through the construction of gene modules and identification of

ligand-receptor interactions, we uncover key regulatory modules

associated with myeloid and lymphoid cells. These findings

highlight the pivotal role of transcription factors such as SPI1,

MAF, and NFKB1 in modulating inflammatory processes and tissue

degradation in OA. These results are consistent with previous

studies demonstrating the involvement of NF-kB signaling in OA

inflammation (34, 35), but our work extends these findings by

linking specific transcription factors to spatial signaling networks in

the synovium. The identification of these signaling networks offers

potential therapeutic targets for modulating immune cell signaling

and mitigating the inflammatory milieu in OA joints. For example,

targeting SPI1 or MAF could disrupt pro-inflammatory signaling

cascades, while modulating ligand-receptor interactions identified

in our study may restore immune homeostasis. These approaches

could complement existing therapies, such as anti-inflammatory

drugs or biologics, by addressing the spatial and signaling

dysregulation underlying OA pathogenesis.
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Our findings build on and expand the growing body of

literature using spatial transcriptomics and single-cell

technologies to study OA. While previous studies have

characterized immune cell populations and their transcriptional

profiles in OA synovium (22, 33), our study is among the first to

integrate spatial dynamics and signaling networks to provide a

comprehensive atlas of immune infiltration in OA. This approach

not only confirms previously identified pathways but also reveals

novel spatial and transcriptional regulators, such as OLR1 and

CD69, that may play critical roles in OA pathogenesis.

This study has several inherent limitations that warrant

acknowledgment. Firstly, the sample size, while sufficient to reveal

key trends, remains modest. Larger cohorts are needed to enhance

statistical power and fully capture the heterogeneity of OA. Secondly,

our reliance on publicly available data introduces potential limitations

from the original datasets’ quality and design, though we attempted to

mitigate batch effects computationally. Furthermore, despite

immunofluorescence validation, the absence of functional assays

directly testing the predicted roles of identified genes and pathways

remains a key limitation. Future research should prioritize functional

validation and explore these targets in larger, more diverse patient

cohorts to solidify our computational predictions and advance

translational applications.

In conclusion, our study provides a comprehensive atlas of the

spatial and signaling dynamics of immune infiltration inOA synovium,

advancing our understanding of OA pathogenesis. The identification of

key transcriptional regulators and signaling networks offers valuable

insights into potential therapeutic strategies aimed at targeting immune

cell signaling to alleviate the inflammatory burden in OA. These

findings pave the way for future research focused on the

development of targeted therapies that modulate immune infiltration

and restore joint homeostasis in OA patients. Future studies should

validate these findings in larger cohorts and explore the translational

potential of identified biomarkers and therapeutic targets in preclinical

and clinical settings.
Method

Immunofluorescence analysis

The process of bone tissue preparation involves several crucial

steps: decalcification, dehydration, rendering it transparent, wax

embedding, slicing, baking, and dewaxing. For antigen retrieval, an

enzymatic digestion method was employed, utilizing a bone tissue

antigen repair solution sourced from Solarbio, located in Beijing,

China. Subsequently, the bone tissue underwent blocking with

sheep serum (also from Solarbio) at a temperature of 25°C for a

duration of 30 minutes.Primary antibody reactions were conducted

using specific antibodies: CMKLR1 antibody [EPR26501-70],

diluted 1:50 (ab306554; Abcam), CD69 antibody [EPR25398-81],

diluted 1:50 (ab307081; Abcam), and OLR1 antibody, diluted 1:50

(11837-1-AP; Proteintech). These antibodies were incubated

overnight at a temperature of 4°C.For secondary antibody

reactions, Goat Anti-Rabbit IgG antibodies were used, diluted
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1:1000 (Alexa Fluor®488, ab150077; Alexa Fluor®647, ab150079;

both from Abcam). This incubation step was carried out at 37°C for

a period of 2 hours. Nuclear labeling was achieved using

DAPI.Finally, the prepared slides were mounted with an anti-

fluorescent quencher, and images were captured using an

Olympus BX53 microscope for further analysis.
scRNA-seq acquisition and preprocessing

Single-cell RNA sequencing (scRNA-seq) of osteoarthritis (OA)

and healthy synovial tissue were obtained from the Gene Expression

Omnibus (GEO) database (accession numbers: GSE216651 (33),

GSE152805 (22)). All patients provided a written informed consent.

Clinical characteristics of the patients are collected as Table 1. All

single-cell raw reads are preprocessed through Cellranger 7.0.0 (17),

featuring re-mapping against the reference human genome hg38 (36)

for acquisition of count expression matrices. Furthermore, Velocyto

(37) is employed to extract unspliced and spliced expression matrices

from the bam files of every single-cell sequencing sample.

We apply the `omicverse.pp.qc` function from the Omicverse

(38) package sequentially to each sample for quality control. The

basic cellular screening criteria are automatically calculated using

Mads for every cell’s gene counts threshold, with mitochondrial genes

ration below 20%. Double-cell filtering is executed using scrublet (39)

for quality control. Furthermore, we use `omicverse.pp.preprocess`

on the integrated data to standardize and log-transform it. We

estimate highly variable genes employing Pearson residuals

method. The parameters are set as mode=“shiftlog|pearson”,

target_sum=50*1e4, and n_HVGs=3000.
Spatial RNA-seq acquisition
and preprocessing

Spatial transcriptomics data for synovial tissue of rheumatoid

arthritis have been deposited at ImmPort (https://www.immport.org)

under study accession SDY2213. All spatial raw reads are

preprocessed through SpaceRanger 3.0.0, featuring re-mapping

against the reference human genome hg38 for acquisition of

count expression matrices.

We apply the `scanpy. pp.calculate_qc_metrics` from the Scanpy

package to calculate the metric of each spots and filtered reads lower

than 100 spots. Furthermore, we use `scanpy.pp.preprocess` and

`scanpy.pp.log1p` on the integrated data to standardize and log-

transform it. We then estimate highly variable genes employing Prost

(40) method of `omicverse.space.SVG`. The parameters are set as

mode=“Prost”, and n_HVGs=3000.
Batch correction and annotation

For batch effect correction, to integrate 9 synovial samples, we

utilized scVI (41) implemented via `omicverse.single.batch_correction`

with the following parameters: `methods=‘scVI’`, `n_layers=2`,
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`n_latent=30`, and `gene_likelihood=“nb”`. We chose `n_layers=2`

and `n_latent=30` as they are established parameters for effective scVI-

based batch correction in scRNA-seq analyses, balancing model

complexity and computational efficiency. The `gene_likelihood`

parameter was set to `”nb”` to appropriately model RNA-seq count

data using a Negative Binomial distribution.

Following this, we used the Leiden (42) algorithm based on the

low-dimensional vector X_scVI output by scVI to perform

unsupervised automatic clustering of integrated cells with a

resolution parameter set at 1.This resolution was empirically

determined to provide biologically meaningful major cell groups,

balancing cluster granularity and interpretability based on marker

gene analysis and cell type coherence. For refined sub-clustering

within specific cell types (Fibroblasts, Myeloid cells, Lymphoid cells,

and Vascular cells), Leiden clustering was re-applied, and a

resolution parameter of `1` was chosen after testing resolutions

from `0.5` to `2`. A resolution of `1` for sub-clustering provided a

detailed yet interpretable sub-structure within these major cell

populations, avoiding over-segmentation and maintaining

biological relevance of sub-clusters based on examination of

cluster-specific marker genes using differential gene expression

analysis (`scanpy.tl.rank_genes_groups`).

We then utilized `omicverse.single.GPT4Celltype` to automatically

annotate cell types for every cluster through iterative refinement over 5

rounds (43). We then applied COSG (44) to determine marker genes

for each cluster. Based on this analysis, we identified Myeloid marked

by CD163, Fibroblast by COL1A2, Endothelial by EPCAM1, SMCs by

ACTA2, and Lymphoid by IL7R, distinguishing five major types of

OA. Further subdivision was achieved by considering common

marker genes.

For cell type-aware annotation refinement, we employed

scANVI (45), building upon the pre-trained scVI model using

`scvi.model.SCANVI.from_scvi_model`. The scANVI model was

trained for `25 epochs` to fine-tune cell type classification within

the batch-corrected latent space. The epoch number was set

through empirical testing to achieve robust annotation while

avoiding overfitting.
Cell location of scRNA-seq

To obtain the spatial location distributions of OA and Healthy

synovial membrane separately, we utilized spatrio (46) to integrate

OA scRNA-seq data with synovial membrane ST data. This process

involved optimal transport metrics to determine the optimal spot

position for each cell across these datasets.

Furthermore, using COSG, we computed marker genes for each

spatial domain within the ST data. These marker gene expressions

were then used to compare and confirm the spatial distribution

patterns of OA versus Control synovial membrane.

To obtain the spatial location of each single cell, we first employed

the Tangram (47) algorithm from `omicverse.space.tangram`, using

the integrated single-cell data as a reference. This allowed us to

determine the cell proportions for every spot in the spatial

transcriptome. Subsequently, we utilized spatrio (46) to localize

individual cells within their respective positions on the spatial
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transcriptomic map. Furthermore, we using `omicverse.pp.cosg`’s

algorithm COSG (44), we computed marker genes for each spatial

domain within the ST data. These marker gene expressions were then

used to compare and confirm the spatial distribution patterns of OA

and Healthy synovial membrane cells.
Spatial transition tensor analysis

We implemented the STT (48), as described by Svensson et al, was

applied to characterize spatial stability and multistability in the

synovial membrane, analysis using the `omicverse.space.STT`

function, and trained the model using `STT_obj.train()` with the

following parameters: `n_states = 8`, `n_iter = 15`, `weight_

connectivities = 0.5`, `n_neighbors = 50`, `thresh_ms_gene = 0.2`,

and `spa_weight =0.3`. The number of attractors, `n_states = 8`, was

initialized based on the number of clusters identified by Leiden

clustering in the `STT_obj.stage_estimate()` step, serving as an

initial estimate for stable spatial states. We set `n_iter = 15` and

`n_neighbors = 50` to ensure sufficient iterations for robust tensor

learning and to consider a sufficiently broad local neighborhood

respectively. `weight_connectivities = 0.5` was used to equally weigh

spatial proximity and gene expression connectivity in the tensor

construction, balancing spatial and transcriptional dynamics. We

applied a threshold `thresh_ms_gene = 0.2` to filter genes for

splicing dynamics analysis, focusing on genes exhibiting active

transcriptional changes as reflected by sufficient unspliced and

spliced mRNA ratios. The spatial weight, `spa_weight = 0.3`,

assigned a moderate weight to spatial information relative to

velocity dynamics in defining spatial attractors, reflecting the

importance of spatial context in tissue organization without

overpowering the intrinsic transcriptional dynamics captured by

RNA velocity. The terminal stages of cellular spatiotemporal

homeostasis were identified using CellRank2 (49), and the transition

probabilities for each terminal stage were computed.
Differential expression analysis

Differentially expressed genes (DEGs) between OA and healthy

groups were identified using the `omicverse.bulk.pyDEG` function

with the t-test. All basemean of DEGs were filtered by 0.5 and

considered significant if they had an adjusted p-value < 0.05 and a

log2 fold change > 0.25. The DEGs were further intersected with

genes identified by the spatial transition tensor (STT) algorithm to

determine those associated with spatial homeostasis disruption.
Visualization and statistical analysis

Data visualization was conducted using Matplotlib and Seaborn

packages in Python. Violin plots, dot plots, and heatmaps were used

to display gene expression and cell type proportions. Statistical

analyses were performed using Python, with p-values adjusted for

multiple testing using the Benjamini-Hochberg method. Log2 fold

changes were calculated to quantify differences in cell type
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proportions and gene expression levels between conditions. For

quantitative data, the Kolmogorov-Smirnov test (a = 0.05) was

performed to assess normality. If the data followed a normal

distribution, Levene's test (a = 0.05) was subsequently applied to

evaluate homogeneity of variances between groups. Data

conforming to both normality and homogeneity of variance

assumptions were expressed as mean ± standard deviation (SD).

Comparisons between two groups were analyzed using a two-tailed

unpaired Student's t-test. For data violating normality or variance

homogeneity assumptions, non-parametric tests (e.g., Mann-

Whitney U test) were employed.
Spatial mapping and domain identification

Spatial transcriptomics data were processed using the STAGATE

algorithm26 to identify spatial domains within the synovial tissue.

Spatial clusters were annotated based on hematoxylin and eosin

(HE) staining and the expression of region-specific markers. To

assign spatial coordinates to single cells, we employed a

deconvolution approach combined with optimal transport theory.
Cell-cell communication analysis

We used the COMMOT algorithm to infer cell-cell

communication (CCC) pathways in the spatial transcriptomics

data (50). COMMOT considers spatial distances and the

competition between different ligand-receptor species to identify

spatially constrained CCC pathways. The inferred ligand-receptor

interactions were visualized using network diagrams.
Signaling analysis

FlowSig was used to analyze intracellular signaling pathways

driven by the identified CCC pathways (51). FlowSig employs

graphical causal modeling and conditional independence to infer

communication-driven intercellular flows. This analysis allowed us

to identify key signaling molecules and pathways involved in

myeloid and lymphoid cell infiltration in OA. The interaction of

genes were calculated by String-DB (52).
Differential expression analysis

Differential expression (DE) analysis was performed using the

Scanpy’s rank_genes_groups function, which implements the

Wilcoxon rank-sum test. DE genes were identified between OA

and healthy synovium, with significance thresholds set at adjusted

p-value < 0.05 and log2 fold change (log2FC) > 0.25.
Gene ontology enrichment analysis

Gene ontology (GO) enrichment analysis was conducted using

the GSEApy tool (53). Enriched GO terms were identified for gene

expression modules (GEMs) associated with spatial attractors and
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DE genes, highlighting biological processes relevant to

OA pathogenesis.
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