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Development of a multi-
neoepitope vaccine targeting
non-small cell lung cancer
through reverse vaccinology and
bioinformatics approaches
Elahe Asadollahi1, Alireza Zomorodipour2*, Zahra-Soheila Soheili2,
Babak Jahangiri2 and Majid Sadeghizadeh1*

1Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University,
Tehran, Iran, 2Department of Molecular Medicine, Institute of Medical Biotechnology, Institute of
Genetic Engineering and Biotechnology, Tehran, Iran
Introduction: Lung cancer, predominantly non-small cell lung cancer (NSCLC),

is the leading cause of cancer-related mortality worldwide. Among

immunotherapeutic strategies, the personalized multi-neoepitope vaccine

(MNEV) offers a promising approach for managing advanced-stage NSCLC.

Methods: We used reverse vaccinology, immunoinformatics, and bioinformatics

to design an MNEV targeting lung cancer in murine (LL/2) cells. Whole exome

sequencing (WES) and RNA sequencing data from human and mouse NSCLC cell

lines were analyzed to select neoantigens, which were evaluated for their ability

to stimulate B cells, helper T lymphocytes (HTLs), and cytotoxic T lymphocytes

(CTLs). Molecular docking studies estimated the binding affinity of mouse

neoepitopes with MHC class I, MHC class II, and B-cell receptors. Suitable

linkers were selected to construct the MNEV, with the 50S L7/L12 ribosomal

protein sequence included as an adjuvant to enhance immune responses. The

immunoglobulin kappa (Igk) chain signal peptide was incorporated to improve

secretion efficiency. The stability of the final MNEV construct in complex with

TLR3, TLR4, and TLR9 was confirmed through binding analysis and refinement of

the best-predicted 3D model. To evaluate the immunological efficacy of the

MNEV, female C57BL/6 mice were immunized subcutaneously. Immune

responses were assessed by measuring total IgG levels in serum using

enzyme-linked immunosorbent assay (ELISA) and quantifying IFN-g and

granzyme B levels in the supernatant of cultured splenocytes. The proportions

of CD19+ B cells and CD4+ and CD8+ T cells were determined using flow

cytometric analysis.

Results: In silico evaluations indicated that the MNEV is non-toxic, non-

allergenic, and stable, exhibiting high-affinity interactions with B lymphocytes,

CTLs, and HTLs. Immunization with the MNEV significantly increased serum IgG

levels. Flow cytometry analysis revealed higher percentages of CD19+ B cells and

CD4+ and CD8+ T cells. Furthermore, splenocytes from immunized mice
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showed a marked increase in IFN-g and granzyme B secretion compared to

control groups.

Discussion: This study demonstrates that the MNEV induces a robust strong

immune response, highlighting its potential as a promising approach for cancer

prevention and immunotherapy, particularly for NSCLC. Furthermore, it provides

a foundation for developing neoepitope-based vaccines against various

malignancies, guiding future research in cancer vaccine development through

advanced computational methods in immunology and oncology.
KEYWORDS
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GRAPHICAL ABSTRACT
Introduction

Lung cancer, predominantly non-small cell lung cancer

(NSCLC), which constitutes approximately 85% of cases, remains

the leading cause of cancer-related mortality globally, claiming

around 1.8 million lives in 2020 (1–3). NSCLC originates from

genetic and epigenetic alterations that drive uncontrolled

proliferation of somatic cells (4, 5). Current treatment modalities

—surgery, radiation, chemotherapy, targeted therapies, and

immunotherapy—are hindered by significant limitations,

including their inapplicability to advanced-stage disease, toxicity,

emergence of resistance, and efficacy restricted to specific patient

cohorts (6–9). These challenges are exacerbated by tumor

heterogeneity, resistance mechanisms involving secondary

mutations or alternative pathways, and a scarcity of reliable

biomarkers. Consequently, there is a pressing need for innovative
02
therapeutic strategies. Neoantigen-based vaccines offer a promising

alternative by targeting personalized tumor mutations, enhancing

specificity and safety while potentially minimizing off-target effects

and resistance (10, 11). Current neoantigen vaccines for NSCLC

demonstrate potential in preclinical models and clinical trials,

though challenges remain. For instance, a phase I trial of

personalized neoantigen peptide vaccine (PPV) in advanced

NSCLC patients established safety and feasibility, yielding notable

clinical outcomes, including one complete response and six partial

responses, particularly among EGFR-mutated patients (12). By

eliciting robust, patient-specific T-cell responses, this approach

could improve NSCLC outcomes, addressing both the limitations

of conventional therapies and disparities arising from costly

treatments (13).

NSCLC presents distinct therapeutic hurdles, particularly with

immunotherapy, where patient responses vary widely due to the
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limited predictive power of biomarkers such as PD-L1 expression

and tumor mutation burden (TMB) (14, 15). Currently, only 15-

20% of patients respond effectively to PD-1 inhibitors without prior

selection, emphasizing the need for reliable indicators to identify

suitable candidates (14, 16). Additionally, frequent treatment

resistance undermines the long-term efficacy of these therapies.

Neoantigen-based vaccines, however, target tumor-specific antigens

arising from cancer cell mutations, potentially overcoming these

shortcomings. Additionally, the NEO-PV-01 vaccine, which

combines personalized neoantigens with anti-PD-1 therapy, has

shown promise in early-phase trials by inducing CD4+ and CD8+

T-cell responses (17). Studies demonstrate their ability to provoke

vigorous T-cell activation, offering a personalized strategy that

enhances treatment efficacy (18, 19). Moreover, these vaccines

can be designed to stimulate both CD4+ and CD8+ T-cell

responses, bolstering their effectiveness against NSCLC (20).

However, many studies, including those evaluating PPV and

NEO-PV-01, involve small patient cohorts, underscoring the need

for larger trials to confirm efficacy and safety (13, 21). This study

aims to leverage these advantages to develop more efficacious

treatment options for NSCLC patients while addressing persistent

limitations through further research.

Cancer cells, during their evolution, accumulate numerous

mutations, some of which produce neoantigens—unique antigens

critical to tumor survival and recognized as non-self by the immune

system (22). T cells can target these neoantigens to attack and eliminate

tumors. Neoantigen-based subunit vaccines, considered among the

most advanced cancer therapies developed in recent decades, exploit

this mechanism (23, 24). A novel approach, reverse vaccinology,

integrates immunogenomics and bioinformatics to accelerate vaccine

development, reducing both time and cost compared to traditional

methods (25, 26). Computational tools, including protein modeling,

epitope prediction, and protein-protein interaction analysis, facilitate

in-silico vaccine design by processing vast immunological datasets,

such as antigen presentation profiles (27–29).

Next-generation therapeutic vaccines harness the immune

system to combat cancer, with multi-epitope designs playing a

pivotal role. The selection of adjuvants, linkers, antigens, and

epitopes critically influences clinical outcomes (30). To streamline

development, which is typically costly and protracted, various

strategies have been implemented to enhance efficiency (31).

Effective peptide-based vaccines rely on immunodominant B-cell

and T-cell responses to generate robust, lasting immunity (32).

Recent advances in multi-epitope vaccine design have incorporated

B-cell, CD8+ cytotoxic T-lymphocyte (CTL), and CD4+ helper T-

lymphocyte (HTL) epitopes (33). In cancer immunotherapy,

MNEVs provide broad protection against tumor heterogeneity,

personalized treatment tailored to individual mutation profiles,

and improved specificity and safety by selectively targeting

malignant cells (34, 35). These vaccines can be combined with

therapies like checkpoint inhibitors to enhance efficacy and induce

durable immune responses (36, 37). While neoantigen vaccines

show promise as a novel NSCLC treatment, further research is

essential to optimize their clinical application and overcome current

limitations, such as small trial sizes and variable patient responses.
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Looking ahead, expanding their application across cancer types,

leveraging cutting-edge technologies, and optimizing production

processes could broaden access to these tailored therapies.

Ongoing research and clinical trials suggest that MNEVs hold

significant promise as integral components of future cancer

treatment strategies.

Despite the potential of neoantigen-based vaccines to address

NSCLC’s therapeutic challenges, including tumor heterogeneity,

immunotherapy resistance, and limited biomarker reliability, their

clinical translation remains constrained by small-scale trials,

variable efficacy, and the complexity of tailoring treatments to

individual mutation profiles (13, 21). These limitations highlight

an unmet need for scalable, broadly effective vaccine designs that

can consistently elicit robust immune responses across diverse

patient populations. This study addresses these challenges by

developing a MNEV for NSCLC, using reverse vaccinology and

bioinformatics to identify and design neoantigens that elicit robust

B-cell, CD4+, and CD8+ T-cell responses. By integrating advanced

computational strategies with experimental validation in preclinical

models, this work aims to enhance the specificity, safety, and

immunogenicity of NSCLC-targeted vaccines, offering a

foundation for next-generation immunotherapies that could

improve patient outcomes and extend the applicability of

personalized cancer treatments.
Materials and methods

Identification of mutation-associated
neoantigens in LL/2 (LLC1) and A549
tumors

Raw exome sequencing data from the Illumina®-sequenced

NSCLC carcinoma experiment, specifically from LL/2 and A549

cells, are accessible through the following databases: PRJNA758177

and PRJNA603489). Furthermore, raw RNA sequencing data

(sequenced utilizing Illumina® technology) from murine LL/2

(NCBI Bioproject studies PRJNA759882, PRJNA401728, and

PR JNA786566 ) and A549 (NCBI B iop ro j e c t s t udy

PRJNA1201561) NSCLC cell lines were obtained from the

Sequence Read Archive (SRA). FastQC was used for quality

control, while Trimmomatic v0.38 was used for read trimming,

including adapter removal and low-quality base filtering

(parameters : SLIDINGWINDOW:4:30 , TRAILING:30,

LEADING:30, HEADCROP:15, MINLEN:40) (38). Paired-end

reads were mapped to the mouse (GRCm38/mm10) and human

(GRCh38/hg38) reference genomes using BWA-MEM (v0.7.17) for

whole exome sequencing (WES) data and STAR V.2.7.0 for RNA-

seq data, with soft-clipping enabled by default and a minimum

mapping quality threshold of 30. Sambamba (v0.6.8) was used for

duplicate removal as part of the post-alignment processing (39),

while Samtools (v1.15) was used for standard data manipulation,

such as sorting, BAM generation, and indexing. Whole-exome

sequencing data were then analyzed for somatic single nucleotide

variations (SNVs). Somatic variant calling was performed using
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MuTect (1.1.7) (40), and results were combined by taking a union of

called variants. RNA-Seq data were used to quantify tumor-specific

non-synonymous variant expression using FPKM values. We

employed isovar (protein-sequence-length 30) for Cancer

Neoantigen Prediction (41). Another benefit is that isovar

automatically predicts allele-specific expression by identifying

each mutant protein sequence using mutation-supporting RNA

readings. Mutant candidates with FPKM >1 were selected. MuTect2

intrinsic filters, read orientation artifact filters, and strain-specific

polymorphism filters were used to further filter the variants. Variant

Effect Predictor (VEP) (https://useast.ensembl.org/info/docs/tools/

vep/script/vep_options.html) was used to annotate variants that

passed all criteria. Supplementary Data S1 and S2 provide Variant

Call Format (VCF) files and isovar results.
Epitope prediction and designing
of the MNEV

Prediction and evaluation of CTL
and HTL epitopes

Initially, we selected expressed mutations with FPKM ≥ 1. CTL

epitopes from antigenic and non-allergenic proteins were identified

from mouse MHC Class I (MHC I) haplotypes (H2Kb, H2Db) and

human haplotypes (HLA-A30/HLA-B44) using four distinct

algorithms: NetMHCpan4.1 (42), NetCTLpan, NetMHCcons (43),

and SYFPEITHI (44). For human MHC I, we applied specific

criteria: NetMHCPan 4.1 required a binding affinity < 500 nM

and a % rank < 0.5; NetMHCcons required an affinity < 500 nM;

SYFPEITHI required a score >12; NetCTLpan required a TAP score

>0.5 and a C-terminal cleavage score >0.5. According to the

NetMHCpan algorithm (BA) available at http://www.cbs.dtu.dk/

services/NetMHCpan/, accessed on February 7, 2019, epitopes with

binding affinities <500 nM and % ranks <0.5 were selected (45). As

of February 8, 2019, the acceptability criteria for the SYFPEITHI

server at http : / /www.syfpei thi .de/bin/MHCServer .dl l /

EpitopePrediction.htm were set at scores greater than or equal to

>12 for prediction accuracy (46). The accuracy of other techniques

was complemented by NetMHCcons, which combines two MHC-

peptide binding methods: NetMHCpan and Pickpocket (43). We

chose sequences located within identified cleavage sites that had

peptides with lengths between nine to eleven residues, IC50 values

<500 nmol/dm³, proteasome-processing scores >0.5, and TAP

transport efficiency scores >0.5. To account for antigen processing

and presentation accurately, we used the NetCTLpan server

available at https://services.healthtech.dtu.dk/service.php?

NetCTLpan-1.1 to combine predictions of MHC I binding

affinities along with TAP transport efficiency and proteasomal C-

terminal cleavage predictions. NetMHCcons was used to

complement other tools by integrating NetMHCpan and

Pickpocket for improved MHC-peptide binding prediction. We

selected sequences that are not located within identified cleavage

sites, focusing on peptides with lengths between nine to eleven

residues, IC50 values less than 500 nmol/L, proteasome-processing

scores greater than 0.5, and TAP transport efficiency scores greater
Frontiers in Immunology 04
than 0.5 (47). To account for antigen processing and presentation

accurately, we utilized the NetCTLpan server available at https://

services.healthtech.dtu.dk/service.php?NetCTLpan-1.1. This server

combines predictions of MHC I binding affinities along with TAP

transport efficiency and proteasomal C-terminal cleavage

predictions (48).

The CD4+ T cell epitopes were selected with lengths of 9–22

amino acids. Here, we investigate the efficacy of several approaches

for integrating five servers for the prediction of MHC Class II

(MHC II) binding for the mouse allele (H2-IAb): RANKPEP

(threshold score of top 2%) (49), IEDB (percentile > 0.10) (50),

MHC2PRED (scored > 0.2) (http://webs.iiitd.edu.in/raghava/

mhc2pred/), and NetMHCIIpan-4.0 (BA, SMM-Align; IC50 <500

nM, Percentile Rank ≤10) (25) and NetMHCII-1.1 (SMM-Align;

Adjusted Rank <10) (www.cbs.dtu.dk/services/NetMHCII-1.1/). In

order to forecast how a certain peptide sequence would attach to the

MHC II molecule, NetMHCIIpan-4.0 uses neural network

technology (51). In order to provide more accurate and

dependable overall forecasts than when utilized separately, our

goal is to test their combined usage. Predictions were combined

using union (including all binders predicted by any server) and

intersection (selecting only binders predicted by all servers) modes to

balance sensitivity and specificity. The most commonMHC II alleles

were used to obtain HTL epitopes (52), and epitopes with an IC50

<500 nM are considered excellent binders (53). We investigated the

efficacy of several approaches for integrating predictions from three

servers to predict MHC II binding for specific human alleles (HLA-

DRB104:04, HLA-DRB104:01, and HLA-DRB1*07:01). The servers

used included NetMHCIIpan-4.1 BA (with criteria IC50 < 500 nM

and Percentile Rank ≤ 10), NetMHCII 1.1 (SMM-align) with criteria

IC50 < 500 nM and Adjusted Rank < 5, and CONSENSUS 2.2 with

an Adjusted Rank < 10.

Consensus sequences were assessed, resulting in 15–17

remaining sequences that passed all rounds of evaluation for

toxicity, allergies, and antigenicity. It is critical to recognize that

different MHC II binders can induce the production of different

types of cytokines. To predict IL-4-inducing peptides, we used

IL4pred (http://crdd.osdd.net/raghava/il4pred/). For the

prediction of IFN-gamma-inducing peptides, we utilized the

IFNepitope webserver (http://crdd.osdd.net/raghava/ifnepitope/

index.php). Both servers employ prediction models based on

Support Vector Machines (SVM), with the SVM threshold and

other parameters set to their default values. For the prediction of IL-

10-inducing peptides, we uti l ized IL-10Pred (https://

webs.iiitd.edu.in/raghava/il10pred/predict3.php), with the SVM

threshold set to -0.3. (Supplementary data are presented in

Table 1; Supplementary Data S3).

Prediction and assessment of linear and
conformational B-lymphocyte epitope

Linear B-cell epitopes were predicted using ABCpred with a

threshold of 0.51 and window length 16 (http://www.imtech.res.in/

raghava/abcpred/) and BepiPred with a threshold of 0.35 (http://

www.cbs.dtu.dk/services/BepiPred. These two software types, which

are now the most widely used online servers for assessing Linear B
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epitopes of anticipated proteins, rely on distinct databases and

algorithms (54, 55). The best dominant linear B-cell epitopes of

proteins are confirmed by overlapping predictions from ABCpred

and BepiPred. This can significantly increase the accuracy of

epitope prediction.

Effective anti-tumor immunity also depends on the interaction

of antibodies with linear and conformational B-lymphocyte

epitopes. Protein three-dimensional (3D) structures are necessary

for all conformational epitope prediction techniques. Using the

ElliPro service (56), with a minimum score of 0.5 and a maximum

distance of 6 Ångströms, Conformational (discontinuous) epitopes

in mutant proteins were predicted. ElliPro was chosen for its robust

prediction of conformational epitopes, with an AUC of 0.732,

indicating moderate to high accuracy compared to other tools.

This tool utilizes protein-antibody interactions to predict

discontinuous epitopes. The IgPred module (>0.5) (57) (https://

webs.iiitd.edu.in/raghava/igpred/index.html) was created to

forecast which B-cell epitopes would produce which antibody

classes. IgPred allowed us to determine the epitope’s propensity

to elicit IgG antibodies (Table 1; Supplementary Data S3).
Neoepitopes antigenicity and allergenicity
evaluation

Using VaxiJen (58) version 2.0, the neoepitopes were further

investigated for their potential as antigens. The threshold value of

0.4 was considered. In order to circumvent the drawbacks of

alignment-dependent sequence approaches, the VaxiJen

categorized antigens using auto cross-covariance (ACC), a unique

alignment-independent method that transforms protein sequences

into uniform vectors of major amino acid characteristics (58). It is

crucial to forecast the allergenicity of vaccine candidates. AllerTOP

2.0 (59) was used to calculate the proposed protein’s allergenicity.

Using auto cross-covariance (ACC), which describes residue

hydrophobicity, size, abundance, and helix- and b-strand-forming

propensities, the AllerTOP approach predicts the allergenicity of

recombinant proteins. ToxiPred (60) was used to assess toxicity.

Non-toxic and “probable non-allergenic” peptides were chosen

(Table 1, Supplementary Data S3).
Molecular docking simulation of mouse
MHC alleles-neoepitope and B-cell
receptor (BCR)-neoepitope interactions

Molecular docking with the GalaxyPepDock web server (61) was

used to assess the interaction performance between anticipated

neoepitopes and their binding alleles. The frequent mouse alleles’

crystal structures, H-2-Kb (4PV9, Chain A), H-2-Db (7N9J, Chain

A), I-Ab (4P23, Chain C), and BCR (8EMA, Chain C-D), were obtained

from the Protein Data Bank (PDB) in PDB format to facilitate this

analysis. The protein and ligand (neoepitopes) were separated from the

complex structures using Discovery Studio v16.0.0.400 since the
Frontiers in Immunology 05
recovered crystal structures were in the complex form of the two

substances. The hydrogen bonding pattern, similarity score, and

accuracy score were used to determine which of the resulting peptide-

protein complexes was the best. The Discovery Studio v16.0.0.400 tool

was also employed to visualize the complex’s bindingmode and binding

interaction. In this section, two additional docking tools, HPEPDOCK

and CABS, were also utilized for further confirmation of the docking

results. HPEPDOCK is known for its efficient blind peptide–protein

docking capabilities through a hierarchical algorithm that integrates

available peptide binding information from the Protein Data Bank

(PDB) (62). Meanwhile, CABS offers a coarse-grained approach that

allows for efficient sampling of peptide conformations and their

interactions with target proteins (63). Together, these tools provide a

robust framework for validating the interaction predictions made by

GalaxyPepDock, enhancing the reliability of the docking analysis

performed in this study.
Construction of MNEV and evaluate the
physicochemical properties

Mouse LBL, CBL, HTL, and CTL epitopes derived from

anticipated neoantigens were integrated into the creation of the

MNEV. The linkers used to join these selected epitopes included

Lys-Lys (KK) for LBL and CBL, Gly-Pro-Gly-Pro-Gly (GPGPG) for

HTL, Ala-Asp (AD) linker, and Ala-Arg-Tyr (ARY) spacer for CTL

epitopes (64, 65). The strategic use of these linkers aimed to ensure

that the vaccine’s immunogenic properties were preserved. The 50S

ribosomal protein L7/L12 (Accession No.: P9WHE3) was chosen as

an adjuvant to increase the vaccine candidate’s immunogenicity

(65, 66). A flexible EAAAK linker was used to bind this protein to

the chimeric sequences’ N-terminus and the mouse Igk signal

sequence (MGMQVQIQSLFLLLLWVPGSRG) for vaccine

secretion designed was also placed at the N end of the structure.

To aid in purification by affinity chromatography, a 6-histidine tag

was added to the construct’s C-terminus in addition to its primary

constituents. These components work together to guarantee that all

of the chosen epitopes are efficiently connected, enabling proper

folding and functioning while preserving high immunogenicity

and antigenicity.

An efficacious vaccine requires not only the capacity to elicit a

robust immune response but also the possession of appropriate

biochemical attributes. To evaluate the physicochemical properties of

vaccines, we employed ProtParam (https://web.expasy.org/protparam/),

a web-based tool that calculates parameters such as the aliphatic

index, theoretical isoelectric point (pI), molecular weight, predicted

half-life, amino acid composition, instability index, and grand

average of hydropathicity (GRAVY). The aliphatic index serves as

an indicator of a protein’s thermal stability. At the pI—defined as

the pH at which a molecule exhibits no net surface charge—proteins

display minimal solubility and maximal instability due to the

absence of repulsive charges. The half-life represents the duration

required for half of the synthesized protein to be degraded or

cleared from the cellular environment. Proteins are expected to be
frontiersin.org
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TABLE 1 Neoepitopes prediction and prioritization.

MHC I

Immunogenicity Allergen IFN-g
Response

> 0.5 VaxiJen v2.0
(Threshold > 0.4)

Allertop
v2.0

IFNepitope

18 1.0642
(Probable ANTIGEN).

non-allergen
POSITIVE

58 0.7680
(Probable ANTIGEN).

non-allergen
POSITIVE

16 0.6731
(Probable ANTIGEN)

non-allergen
POSITIVE

82 0.4008
(Probable ANTIGEN).

non-allergen
POSITIVE

28 0.4808
(Probable ANTIGEN).

non-allergen NEGATIVE

Immunogenicity Allergen IFN-g
Response

l cleavage
>0.5

VaxiJen v2.0
(Threshold > 0.4)

Allertop
v2.0

IFNepitope

379 0.8103
(Probable ANTIGEN).

Probable
NON-

ALLERGEN

NEGATIVE

379 1.4106
((Probable
ANTIGEN).

Probable
NON-

ALLERGEN

NEGATIVE

683 1.1868
(Probable ANTIGEN).

Probable
NON-

ALLERGEN

POSITIVE

537 0.8160
(Probable ANTIGEN).

Probable
NON-

ALLERGEN

POSITIVE
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Neoepitope Allele NetMHCPan
4.1 (BA)

SYFPEITHI NetMHCcons NetCTLpan NetCTLpa

Aff (nM)
<500nM/%
Rank <0.5

>12 Affinity (nM)<500nM/
PROTEASOM SCORE>0.5)

C-terminal cleavage
(Cle) score >0.5

TAP score

LL/2 (LLC1) cell line

SLYTEYWKLLR H-2-Kb 257.89/0.33 23 231/0.98 0.55544 0.

IAHEDYMEL H-2-Kb 319.78/0.39 16 418.3/1.40 0.97386 1.

VSFQNQLTNWL H-2-Db 102.36/0.05 16 276.1/1.36 0.76833 1.

VATDYLVGI H-2-Kb 427.81/0.5 12 442.1/1.32 0.83622 0.

FGLINVTPNML H-2-Db 25.59/0,03 18 369.8/1.53 0.95841 0.

A549 cell line

Neoepitope Allele NetMHCPan
4.1 (BA)

SYFPEITHI NetMHCcons NetCTLpan

Aff(nM)<500nM/
%Rank<0.5

>12 Affinity (nM)<500nM/
PROTEASOM SCORE>0.5

TAP score (Cut off)
> 0.5

C-termina
(Cle) score

KGDRSSLYLV HLA-
A*30:01

85.54/0.41 12 130.18 2.918 0.9

SSKGDRSSLY HLA-
A*30:02

87.72/0.14 13 35.73 2.918 0.9

SLLSSKGDRSSLY HLA-
A*30:02

229.35/0.4 25 42.94 1.094 0.9

AERAASPQPGPW HLA-
B*44:02
HLA-
B*44:03

95.49/0.09
181.63/0.14

18 46.07
95.12

1.209 0.9
n

9

0

3

5

5
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Continued

MHC I

0.9747 0.5290
(Probable ANTIGEN).

Probable
NON-

ALLERGEN

POSITIVE

0.966 0.9655
(Probable ANTIGEN).

Probable
NON-

ALLERGEN

POSITIVE

0.921 0.7151
(Probable ANTIGEN).

Probable
NON-

ALLERGEN

POSITIVE

munogenicity
iJen v2.0
reshold
.4)

Allergen
(Allertop
v2.0)

IFN-g IL-4 IL-10

0.4929
(Probable

ANTIGEN). non-allergen POSITIVE
IL4-

inducer
IL10

inducer

0.8199
(Probable

ANTIGEN). non-allergen NEGATIVE

Non-
IL4-

inducer
IL10

inducer

0.6291
(Probable

ANTIGEN). non-allergen NEGATIVE
IL4-

inducer

Non
IL10

inducer

0.5927
(Probable

ANTIGEN). non-allergen POSITIVE
IL4-

inducer

Non
IL10

inducer

munogenicity
iJen v2.0
reshold
.4)

Allergen
(Allertop
v2.0)

IFN-g IL-4 IL-10

(Continued)
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RLRSGAHVVV HLA-
A*30:01

36.34/0.17 14 122.66 0.653

RVRTLSGSRPPL HLA-
A*30:01

45.68/0.22 24 6.43 1.081

KSFPISWDAY HLA-
A*30:02

13.54/0.02 13 27.41 3.231

MHC II

Epitope Allele RANKPEP
(Threshold
score>
2%.)

NetMHCIIpan-
4.0 BA
(IC50/Percentile
Rank ≤ 10)

IEDB
(percentile>
0.10)

MHC2pred
(scored
> 0.2)

NetMHCII 1.1
(SMM -Align)
(Adjusted
rank<10)

Im
Va
(Th
> 0

LL/2 (LLC1) cell line

GPSYFKSSASVTGEP

I-Ab 3.746 235.53/0.74 2.71 0.232 4.6

KYSSARAVRMPRHEKSP

I-Ab 11.713 184.2/0.5 18.3 0.776 9

GVADFHYAASKALRV

I-Ab 12.419 37.12/0.01 0.12 0.277 0.01

TGVADFHYAASKALR

I-Ab 8.386 208.09/0.59 0.22 0.312 0.01

A549 cell line

Allele
NetMHCIIpan-4.0 BA
(IC50/Percentile Rank ≤ 10)

NetMHCII 1.1 (SMM
-Align)
(IC50<500nM/
Adjusted rank<5)

CONSENSUS 2.2
(Adjusted
rank<10)

Im
Va
(th
> 0
x

x
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Continued

MHC II

0.6243
(Probable

ANTIGEN).

Probable
NON-

ALLERGEN
POSITIVE IL4-

inducer
IL10

inducer

1.2316
(Probable

ANTIGEN).

Probable
NON-

ALLERGEN POSITIVE
IL4-

inducer
IL10

inducer

0.9110
(Probable

ANTIGEN).

Probable
NON-

ALLERGEN POSITIVE
IL4-

inducer
IL10

inducer

0.9382
(Probable

ANTIGEN).

Probable
NON-

ALLERGEN POSITIVE
IL4-

inducer
IL10

inducer

0.9866
(Probable

ANTIGEN).

Probable
NON-

ALLERGEN POSITIVE
IL4-

inducer
IL10

inducer

icity (VaxiJen v2.0)
0.4)

Allergen (Allertop v2.0) IgPred module

GEN). non-allergen IgG Epitope (0.513)

GEN). non-allergen IgG Epitope (0.566 *)

GEN). non-allergen IgG Epitope (0.641 *)

GEN). non-allergen IgG Epitope (0.503)

icity (VaxiJen v2.0
0.4)

Allergen (Allertop v2.0) IgPred module

(Continued)
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IAALHHFYSKHLGFP
HLA-

DRB1*07:01 72.59/6.40 30.00/1.8 1.8

RWFEFLHPGQVYRLV
HLA-

DRB1*07:01 50.04/4.20 68.00/4.60 7.2

QLSQALSLMETVKQG
HLA-

DRB1*04:01 116.70/4.90 129.0/2.50 2.7

LRWRLLQAQAAGVDW
HLA-

DRB1*04:04 94.47/5.40 57.00/2.50 5.3

SELKIMCTVDHQGQR
HLA-

DRB1*04:04 64.82/3.20 20.00/0.5 0.5

Linear B-Lymphocyte (LBL)

Epitope ABCPred BepiPred-2.0 SVMTriP (score) Immunogen
(Threshold >

LL/2 (LLC1) cell line

GELECRSPPRMHGAKA GELECRSPPRMHGAKA (0.88) GELECRSPPRMHGAKA GELECRSPPRMHGAKA (1)
0.7442
(Probable ANT

IDILQRRQEGQASKDP IDILQRRQEGQASKDP (0.83) IDILQRRQEGQASKDP IDILQRRQEGQASKDP (1)
0.8143
(Probable ANT

ATSERKDMTFDTLRNR ATSERKDMTFDTLRNR (0.82) ATSERKDMTFDTLRNR ATSERKDMTFDTLRNR (1)
0.8725
(Probable ANT

FRDTQKKLEEEKGKKE FRDTQKKLEEEKGKKE (0.83) FRDTQKKLEEEKGKKE FRDTQKKLEEEKGKKE (1)
1.1644
(Probable ANT

A549 cell line

ABCPred (Threshold = 0.51)
(window length to use for prediction=16)

BepiPred-2.0
(the threshold of 0.35)

Immunogen
(Threshold >
I

I

I

I
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Continued

Linear B-Lymphocyte (LBL)

Probable NON-ALLERGEN IgG Epitope (1.280 *)

Probable NON-ALLERGEN IgG Epitope (1.280 *)

Probable NON-ALLERGEN IgG Epitope (1.280 *)

Probable NON-ALLERGEN IgG Epitope (0.6)

Probable NON-ALLERGEN IgG Epitope (0.577 *)

Probable NON-ALLERGEN IgG Epitope (0.788 *)

Probable NON-ALLERGEN IgG Epitope (0.688 *)

munogenicity Allergen IgPred
module

Score

333
robable
TIGEN). non-allergen

IgG Epitope
(0.750 *)

0.784

275
robable
TIGEN). non-allergen

IgG Epitope
(1.494 *)

0.763

633
robable
TIGEN).

IgG Epitope
(1.453 *)

0.693

(Continued)
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0
9

Im

0.6
(P
AN

0.5
(P
AN

0.5
(P
AN
AEAQNHNCVPDVKALM AEAQNHNCVPDVKALM (0.83) AEAQNHNCVPDVKALM
0.4773
(Probable ANTIGEN).

ACLGSNRALFREPDLV ACLGSNRALFREPDLV (0.68) ACLGSNRALFREPDLV
0.7252
(Probable ANTIGEN).

GDSTGGRPRSRAVAST GDSTGGRPRSRAVAST (0.86) GDSTGGRPRSRAVAST
1.3495
(Probable ANTIGEN).

WEKIASDLTRSQDLVI WEKIASDLTRSQDLVI (0.83) WEKIASDLTRSQDLVI
0.6263
(Probable ANTIGEN).

TIEQKMADYSNKLYHQ TIEQKMADYSNKLYHQ (0.84) TIEQKMADYSNKLYHQ
0.6606
(Probable ANTIGEN).

PVEQSAPDSGQANLTS PVEQSAPDSGQANLTS (0.97) PVEQSAPDSGQANLTS
0.4600
(Probable ANTIGEN).

TFVPRWSPPSITPSSE TFVPRWSPPSITPSSE (0.81) TFVPRWSPPSITPSSE
0.6605
(Probable ANTIGEN).

Conformational or discontinuous B cell epitopes

PDB
ID/Chain

ElliPro EPITOP

LL/2 (LLC1) cell line

5GS9/A A:M1, A:E2, A:E7, A:S100, A:E107, A:H108, A:H109, A:L130, A:S131, A:
V132, A:I134, A:H135, A:T136, A:L137, A:A138, A:Q139, A:E140, A:F141,
A:D142, A:I143, A:Y144, A:E146, A:V147, A:A148, A:G149, A:E150, A:
P151, A:V152, A:P153, A:V154, A:T155, A:R156, A:D157 (0.784) MEESEHHLSVIHTLAQEFDIYEVAGEPVPVTRD

4YFD/A B:P242, B:P243, B:S247, B:P248, B:N249, B:D250, B:R251, B:V252, B:
V253, B:Y254, B:E255, B:K256, B:E257, B:P258, B:G259, B:E260, B:E261,
B:L262, B:V263, B:I264, B:P265, B:C266, B:T283, B:I284, B:D285, B:G286,
B:K287, B:K288, B:P289, B:D290, B:D291, B:V292, B:T293, B:V294, B:
D295, B:I296, B:T297, B:L316, B:S317, B:I318, B:K319, B:K320, B:V321, B:
T322, B:P323, B:E324, B:D325, B:L326, B:R328, B:N329, B:Y330, B:V331,
B:H333, B:K338, B:G339, B:E340, B:A341, B:Q342, B:Q343, B:A344,
B:A345

PPSPNDRVVYEKEPGEELVIPCTIDGKKPDDVTV
DITLSIKKVTPEDLRNYVHKGEAQQAA

2I7V/A A:E8, A:S9, A:D10, A:Q11, A:L12, A:L13, A:Q21, A:E31, A:F32, A:K33, A:
G34, A:R35, A:K36, A:P54, A:Y55, A:D57, A:L58, A:I59, A:D60, A:P61, A:
A62, A:E63, A:I64, A:D65, A:W82, A:L84, A:Q85, A:K86, A:T87, A:S88,
A:F89, A:K90, A:G91, A:R92, A:Y123, A:T124, A:E125, A:T126, A:D127,
A:L128, A:E129, A:E130, A:S131, A:M132, A:D133, A:K134, A:E136, A:

ESDQLLQEFKGRKPYDLIDPAEIDWLQKTSFKGRYTETDLE
ESMDKETEVAVIKEIAGVKEIPNIKPDGTHYQSERALKPP
HQNARKAALIREYEDNDVHIEVNPRNTEAVTLNF

https://doi.org/10.3389/fimmu.2025.1521700
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Continued

Conformational or discontinuous B cell epitopes

0.7494
(Probable
ANTIGEN). non-allergen

IgG Epitope
(0.956 *)

0.735

Immunogenicity Allergen IgPred
module

Score

0.5551
(Probable
ANTIGEN).

Probable
NON-ALLERGEN

IgG Epitope
(1.743 *)

0.702

0.5092
(Probable
ANTIGEN).

Probable
NON-ALLERGEN

IgG Epitope
(1.117 *)

0.815

(Continued)
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T137, A:E145, A:V146, A:A147, A:V148, A:I149, A:K150, A:E168, A:I169,
A:A170, A:G171, A:V172, A:K173, A:E192, A:I193, A:P194, A:N195, A:
I196, A:K197, A:P198, A:D199, A:G208, A:T209, A:H210, A:Y399, A:
Q400, A:S403, A:E404, A:R407, A:A408, A:L409, A:K410, A:P411, A:P412,
A:H413, A:Q421, A:N422, A:A425, A:R426, A:K428, A:A429, A:A430, A:
L431, A:I432, A:R433, A:E434, A:Y435, A:E436, A:D437, A:N438, A:D439,
A:V441, A:H442, A:I443, A:E444, A:V445, A:N447, A:P448, A:R449, A:
N450, A:T451, A:E452, A:A453, A:V454, A:T455, A:L456, A:N457,
A:F458

3IEG/A A:S274, A:E277, A:L278, A:R280, A:D281, A:G282, A:R283, A:Y284, A:
T285, A:D286, A:S289, A:K290, A:E292, A:S293, A:K296, A:T297, A:
D319, A:E320, A:K321, A:P322, A:V323, A:E324, A:R327, A:A347, A:
E348, A:A349, A:Y350, A:L351, A:I352, A:E353, A:E354, A:M355, A:Y356,
A:D357, A:E358, A:A359, A:I360, A:Q361, A:D362, A:Y363, A:E364, A:
A365, A:Q367, A:E368, A:H369, A:N370, A:E371, A:N372, A:A373, A:
Q374, A:Q375, A:I376, A:R377, A:E378, A:G379, A:L380, A:E381, A:K382,
A:A383, A:Q384, A:R385, A:L386, A:L387, A:K388, A:Q389, A:S390,
A:Q391

SELRDGRYTDSKESKTDEKPVERAEAYLIEEMYD
EAQEHNENAQQIREGLEKAQRLLKQSQ

A549 cell line

PDB
ID/Chain

ElliPro EPITOP

1NM8/A A:R90, A:K105, A:Q106, A:D107, A:F108, A:V109, A:D110, A:L111, A:
Q112, A:G113, A:L115, A:R116, A:K120, A:E123, A:P162, A:G163, A:
P164, A:K165, A:Q166, A:S173, A:K174, A:T175, A:K176, A:K177, A:
P178, A:P179, A:T180, A:N187, A:Y188, A:Q189, A:E192, A:D194, A:
V195, A:Y196, A:H197, A:S198, A:D199, A:G200, A:T201, A:P202, A:
L203, A:T204, A:A205, A:D206, A:Q207, A:I208, A:F209, A:V210, A:
Q211, A:L212, A:E213, A:K214, A:I215, A:W216, A:N217, A:S218, A:
S219, A:L220, A:Q221, A:T222, A:N223, A:K224, A:E225, A:P226, A:
N236, A:S237, A:A239, A:K240, A:A241, A:Y242, A:N243, A:T244, A:
L245, A:I246, A:K247, A:D248, A:K249, A:V250, A:N251, A:R252, A:
D253, A:S254, A:R256, A:A269, A:T270, A:M271, A:P272, A:R273, A:
G292, A:S293, A:R294, A:G298, A:E312, A:D313, A:G314, A:S315, A:
Y340, A:K343, A:P344, A:E345, A:L346, A:V347, A:R348, A:S349, A:P350,
A:L351, A:V352, A:P353, A:L354, A:P355, A:M356, A:P357, A:K358, A:
K359, A:L360, A:R361, A:F362, A:N363, A:I364, A:T365, A:P366, A:E367,
A:I368, A:K369, A:S370, A:D371, A:I372, A:E373, A:K374, A:K376,
A:Q377

RKQDFVDLQGLRKEPGPKQSKTKKPPTN
YQEDVYHSDGTPLTADQIFVQLEKIWNS
SLQTNKEPNSAKAYNTLIKDKVNRDSRAT
MPRGSRGEDGSYKPELVRSPLVPLPMPKKL
RFNITPEIKSDIEKKQ

8VVY/C C:S13, C:T14, C:A15, C:A16, C:F17, C:H18, C:I19, C:S20, C:S21, C:L22, C:
L23, C:E24, C:K25, C:M26, C:T27, C:S28, C:S29, C:D30, C:K31, C:D32, C:
F33, C:R34, C:F35, C:M36, C:A37, C:T38, C:S39, C:D40, C:L41, C:M42, C:
S43, C:E44, C:L45, C:Q46, C:K47, C:D48, C:S49, C:I50, C:Q51, C:L52, C:

STAAFHISSLLEKMTSSDK
DFRFMATSDLMSELQKDSIQLDED
SERKVVKMLLRLLEDKNGEVQN
LAVKCLGPLVAKVKEYQVETIVDTLCTN
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Conformational or discontinuous B cell epitopes

GIGLVGLATNVCRKI
QEDVAVQLEGAFASHCLPQLSSPRLAVR

PESGDGDHALSRRGAMNMKHLVTGD
R

0.6120
(Probable
ANTIGEN).

Probable
NON-ALLERGEN

IgG Epitope
(0.999 *)

0.669

LLHLAPENFYISHSPNSTAGP
VQQLLVSITLQSE

VAVKNYQDSYGTFTINEST

0.4546
(Probable
ANTIGEN).

Probable
NON-ALLERGEN

IgG Epitope
(1.035 *)

0.75

/CBL epitopes identified using various immunoinformatics tools. *: Indicates statistically significant values as determined by the IgPred server.

TABLE 1 Continued

A
sad

o
llah

i
e
t
al.

10
.3
3
8
9
/fim

m
u
.2
0
2
5
.15

2
170

0

Fro
n
tie

rs
in

Im
m
u
n
o
lo
g
y

fro
n
tie

rsin
.o
rg

11
D53, C:E54, C:D55, C:S56, C:E57, C:R58, C:K59, C:V60, C:V61, C:K62, C:
M63, C:L64, C:L65, C:R66, C:L67, C:L68, C:E69, C:D70, C:K71, C:N72, C:
G73, C:E74, C:V75, C:Q76, C:N77, C:L78, C:A79, C:V80, C:K81, C:C82,
C:L83, C:G84, C:P85, C:L86, C:V87, C:A88, C:K89, C:V90, C:K91, C:E92,
C:Y93, C:Q94, C:V95, C:E96, C:T97, C:I98, C:V99, C:D100, C:T101, C:
L102, C:C103, C:T104, C:N105, C:M106, C:R107, C:S108, C:D109, C:
Q112, C:L113, C:R114, C:D115, C:I116, C:A117, C:G118, C:I119, C:G120,
C:L121, C:V124, C:G136, C:L137, C:A138, C:T139, C:N140, C:V141, C:
C142, C:R143, C:K144, C:I145, C:T146, C:G147, C:Q148, C:L149, C:T150,
C:S151, C:A152, C:I153, C:A154, C:Q155, C:Q156, C:E157, C:D158, C:
V159, C:A160, C:V161, C:Q162, C:L163, C:E164, C:G181, C:A182, C:
F183, C:A185, C:S186, C:H189, C:C190, C:L192, C:P193, C:Q194, C:L195,
C:S196, C:S197, C:P198, C:R199, C:L200, C:A201, C:V202, C:R203

MRSDQLRDI
TGQLTSAIAQ

4LG1/A A:D11, A:P12, A:L13, A:S15, A:F16, A:V17, A:R29, A:Q31, A:Q32, A:T55,
A:P56, A:E57, A:S59, A:G60, A:D61, A:G62, A:D63, A:H64, A:A65, A:
L66, A:S67, A:R68, A:R69, A:G89, A:A90, A:M106, A:N109, A:M110, A:
K112, A:H113, A:L114, A:V115, A:T116, A:G117, A:D138, A:K200, A:
I201, A:P202, A:L203, A:E204, A:K205, A:D207, A:E208, A:E209, A:Y210,
A:R211

DPLSFVRQQ
KIPLEKDEEY

1O7A/A A:P60, A:L61, A:L62, A:V63, A:K64, A:M65, A:T66, A:P67, A:N68, A:L69,
A:L70, A:H71, A:L72, A:A73, A:P74, A:E75, A:N76, A:F77, A:Y78, A:I79,
A:S80, A:H81, A:S82, A:P83, A:N84, A:S85, A:T86, A:A87, A:G88, A:P89,
A:S90, A:C91, A:T92, A:E95, A:H102, A:G103, A:F106, A:G107, A:T122,
A:Q123, A:V124, A:Q125, A:Q126, A:L127, A:L128, A:V129, A:S130, A:
I131, A:T132, A:L133, A:Q134, A:S135, A:E136, A:C137, A:D138, A:A139,
A:D146, A:L152, A:V153, A:K154, A:E155, A:P156, A:V157, A:A158, A:
V159, A:K161, A:N163, A:Y180, A:Q181, A:D182, A:S183, A:Y184, A:
G185, A:T186, A:F187, A:T188, A:I189, A:N190, A:E191, A:S192, A:T193

PLLVKMTPN
SCTEHGFGT
CDADLVKEP

Neoepitopes were predicted and prioritized based on their binding affinity to MHC class I/II molecules, along with LB
A

T

Q

L
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stable if their instability index is less than 40 (67). The developed

vaccine is hydrophilic if its GRAVY value is negative, and

hydrophobic if its value is positive (68).
Secondary and tertiary structure prediction
and refinement

We used two well-known bioinformatics tools, PSIPRED)v3.3

web server( (69) and the Prabi server (67), to predict the secondary

structure of the vaccine design. The Prabi server is a well-known tool

for secondary structure prediction that analyzes amino acid sequences

using default window width and similarity threshold settings. In

addition to Prabi, we utilized PSIPRED, which enhances prediction

accuracy by leveraging PSI-BLAST results through two feed-forward

neural networks. This method allows for a more nuanced

understanding of the protein’s secondary structure by incorporating

evolutionary information from homologous sequences.

Applying the concept of sequence-to-structure-to-function, the publicly

available online server I-TASSER (https://zhanglab.ccmb.med.umich.edu/I-

TASSER/) was used to estimate the tertiary structure of the MNEV

construct. The I-TASSER server was rated as the best server for

protein structure prediction in the previous five community-wide

CASP studies (70, 71). Using amino acid sequences, the I-TASSER

service automatically produced excellent tertiary structure models of

protein molecules. Here, we assessed the prediction model quality

using the confidence score (C score). The model’s believability

increases with a greater C score, which falls between -5 and 2.

Some error-sensitive root mean-square deviation (RMSD) concerns

were addressed using the template modeling (TM) score. Therefore,

it was necessary to use refinement techniques to increase the

anticipated model’s precision. The GalaxyRefine server (http://

galaxy.seoklab.org/cgi203bin/submit.cgi?type=REFINE) was used

to refine the predicted model by repacking side chains and

applying molecular dynamics to relax the overall structure (72).

The ProSA-web server (https://prosa.services.came.sbg.ac.at/

prosa.php) and the SAVES v6.0 server (https://saves.mbi.ucla.edu/)

were used to validate the model. The structural integrity was further

validated through Ramachandran plot analysis using RAMPAGE,

followed by assessments with ProSA-web and the ERRAT server to

evaluate the accuracy of the structure.
Prediction of cleavage sites

Protease processing was predicted using NetChop 3.1 (http://

tools.iedb.org/netchop/) (Threshold 0.5) (73). Additionally,

Proteasomal cleavage and TAP transport were predicted using the

IEDB processing tool (http://tools.iedb.org/processing/).
Molecular docking analysis of the
optimized MNEV construct with TLR3,
TLR4, and TLR9

The Cluspro docking server (https://cluspro.bu.edu/login.php)

was used to identify the interface between the vaccine construct and
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TLR3, TLR4, and TLR9 (74). The server generated ten docking

solutions, with the lowest-energy cluster selected for analysis due to

its high binding affinity. Additionally, the Discovery Studio

visualizer v16.0.0.400 tool was used to graphically depict the

various residues that interfered with TLR3, TLR4, and TLR9 and

the vaccine design (75).
MM-GBSA binding free energy

The molecular mechanics/generalized born surface area (MM-

GBSA) analysis was carried out in conjunction with the docking,

keeping all of the default settings (76–78).
In silico cloning and optimization of
designed MNEV

The MNEV construct’s codons were optimized using the Java

Codon Adaptation Tool (JCat). The proportion of GC content

produced in the JCat output and the Codon Adaptation Index

(CAI) were used to evaluate the amount of protein expression. The

SnapGene tool was then used to clone the vaccine’s optimized

sequence into the Plenti-Giii-Cmv-Gfp-2A-Puro vector. For both

codon optimization and in silico cloning in eukaryotic cells,

default settings were used. A His6 tag was added to the end of

the sequences to aid in purification. BamHI and XbaI restriction

sites were added to flank the 5′ and 3′ ends of the DNA

sequence, respectively.
In silico immune simulation

To evaluate the immune response elicited by the MNEV, C-

ImmSim (http://150.146.2.1/C-IMMSIM/index.php), an online

simulation server, was utilized (79). The server integrates machine

learning to simulate immune dynamics. In the mammalian immune

system, it predicted both humoral and cellular immunity (79, 80).

Three doses of the anticipated vaccine design spaced four weeks

apart were administered using the server under the default settings,

with simulation volume 50 and simulation steps 1000.
In vivo studies

Animal care and BM-MSCs isolation
To evaluate potential immune responses of the designed

vaccine, immune simulation was performed in vitro and in vivo.

Female C57BL/6 mice, each weighing approximately 20 ± 1 g, were

obtained from the Pasteur Institute in Tehran, Iran. All mice were

housed in accordance with the regulations of the National Institute

of Genetic Engineering and Biotechnology (NIGEB). Throughout

the duration of the study, the mice had unrestricted access to

standard laboratory chow and water.
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Lentiviral vaccine

The designed MNEV construct was purchased (Shinegene,

China), and subsequently cloned into the third-generation

lentiviral transfer vector pLenti-GIII-CMV-GFP-2A-Puro (abm,

Canada, LV053). For control purposes, lentiviral particles lacking

the vaccine construct were utilized as the empty lentiviral vector

(LV) control. The production of LVs was conducted following

established protocols (81). To concentrate the LV, polyethylene

glycol 8000 (PEG8000) was employed, and the concentrated virus

was resuspended in endotoxin-free phosphate-buffered saline (PBS)

(Sigma). The viral titer was determined using flow cytometry on

HEK293T cells, and the resulting viral particles were stored at -80°C

for future vaccination applications.
Expression of MNEV by mesenchymal stem
cells

Mouse bone marrow-derived mesenchymal stem cells (mBM-

MSCs) were isolated and characterized from 8-week-old C57BL/6

mice, following previously established protocols (81). The mBM-

MSCs were subsequently transduced with MNEV-LV or empty

LV. The expression of MNEV was assessed using reverse

transcription polymerase chain reaction (RT-PCR). To confirm

protein expression and secretion into the conditioned media

(CM), a His-tag ELISA kit (GenScript, L00436) was employed,

adhering to the manufacturer’s guidelines. As controls, CM from

MSCs transduced with empty LV or CM from untransduced

MSCs were utilized.
Mice immunization

Mice were acclimated for a minimum of two weeks prior to the

commencement of the study, after which they were randomly

assigned to one of three groups (n = 18). The first group,

designated as the Mock group, received a subcutaneous injection

of 100 mL of PBS and served as a negative control (n = 6). The

second group, referred to as the Empty LV group, was administered

a subcutaneous injection of empty LV particles (n = 6). The third

group, known as the MNEV group, received a subcutaneous

injection of 100 mL of LVs expressing the MNEV (MNEV-LV) on

the right flank, with a dosage of 2 × 10^7 infectious units (I.U) in

100 mL of PBS (n = 6). Immunizations were administered on days 0,

14, and 28, with a two-week interval between each of the

three injections.
Serum IgG detection by ELISA

Blood was collected from the immunized mice through tail

bleeding two weeks after the final injection, and the total serum IgG

measured using Mouse Total IgG Uncoated ELISA Kit

(Invitrogen, USA).
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IFN-g production

Mice from each group were euthanized using an overdose of

ketamine and xylazine, and spleens were aseptically harvested from

immunized or control groups two weeks after the final injection.

They were then mechanically homogenized into single-cell

suspensions and treated with RBC lysis buffer to lyse red blood

cells. Splenocytes were isolated and cultured in 24-well plates using

RPMI 1640 medium (Sigma, USA) supplemented with 10% fetal

bovine serum (FBS) (Sigma, USA) and 1% antibiotic mixture

containing penicillin and streptomycin (Sigma, USA). The

splenocytes were re-stimulated with MSC-MNEV-CM and

incubated at 37°C in a humidified atmosphere with 5% CO2 for 48

hours. Following incubation, the levels of IFN-g cytokine in the

supernatants were measured using the IFN-gMouse Uncoated ELISA

Kit (Invitrogen, USA) according to the manufacturer’s instructions.
Flow cytometric evaluation of lymphocyte
cells population

For a detailed evaluation of T-cell subsets and total B cells in

response to the immunization and subsequent re-stimulation,

following the immunization of mice, the cultured splenocytes

from each group were restimulated with MSC-MNEV-CM. After

stimulation, the splenocytes were analyzed using flow cytometry.

CD3+ T cells were first identified and gated, and the proportions of

CD4+ and CD8+ T cells within the CD3+ population were then

assessed. The staining process employed FITC-conjugated anti-

CD4, APC-conjugated anti-CD8, and PE-labeled CD3 antibodies.

To assess total B cell levels in splenocytes from mice in each study

group via flow cytometry, cells were labeled with FITC-conjugated

CD19 antibodies. Subsequent analysis was conducted using a BD

FACSCalibur flow cytometer.
Granzyme B activity assay

Cytolytic activity was evaluated by quantifying Granzyme B

(GrB) protein levels in the supernatants of MNEV-stimulated

splenocytes from three mice per group. These measurements were

conducted two weeks following the final administration, adhering

to the protocol provided with the Mouse Granzyme B ELISA Kit

(Invitrogen, USA). All assays were performed in triplicate for each

mouse to ensure reliability and consistency.
Statistical analysis

Comparisons between immunization groups were conducted

using one-way ANOVA, supplemented by Tukey’s post hoc tests to

identify significant pairwise differences. A p-value less than 0.05 was

considered statistically significant; specific levels of significance

were denoted as follows: * (p ≤ 0.05 but > 0.01), ** (p ≤ 0.01 but

> 0.001), and *** (p < 0.001).
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Result

Identification of mutation-associated
neoantigens in LL/2 and A549 tumors

The tumor and normal DNA samples from Whole Genome

Sequencing data were aligned against the Mouse GRCm38/mm10

and GRCh38/hg38 reference genome using BWA-MEM, while the

tumors’ RNA was aligned using STAR. Somatic variant calling was

performed using MuTect, and the results were aggregated by taking

the union of the identified variants. The VCF files are included in

the supplementary data (Supplementary Data S1). The results were

annotated with the help of VEP, and various types of mutations

were observed, including synonymous, missense, stop gained,

frameshift variant, stop lost, splice region variant, start lost, NMD

transcript variant, and stop retained (The annotated results were

included in the Supplementary Data S1). Multiple software

packages are available to predict the protein-level effects of coding

mutations. Predicting the impact of a DNA mutation on protein

function is incomplete without considering the specific transcripts

in which it occurs. Somatic mutations can be associated with

selective splicing of particular RNA isoforms and may co-occur

with other genomic variants. To address these complexities, tumor

RNA sequencing data were used to determine the mutant coding

sequences. Due to sequencing errors, splicing diversity, and tumor

heterogeneity, multiple coding sequences can be inferred for each

mutation from supporting RNA reads. To resolve these challenges,

we utilized the isovar tool (available at https://github.com/

hammerlab/isovar), which leverages RNA data to assemble the

most abundant coding sequence for each mutation (see

Supplementary Data S2). Initially, the total exome sequencing of

LL/2 cells revealed 962 missense mutations specific to this cell line.

Furthermore, analysis across all datasets indicated the presence of

2003 missense mutations in the A549 cell line (Supplementary Data

S4). Figure 1 provides an overview of the MNEV design workflow.

The types of mutations observed across all analyzed data are

summarized in the Supplementary Data S4. A Venn diagram,

illustrating LL/2 substitution mutations, was created for all seven

datasets surveyed, revealing that 40% of substitution mutations are

recurrent and common across all datasets (Figure 2).
Epitope prediction and designing of the
MNEV

Table 1, Supplementary Data S3 list epitopes with the highest

predicted binding affinities for activating T cells and B cells. Further

analysis identified protein domains most likely to contain

immunogenic epitopes. The final MNEV was then designed and

constructed utilizing linkers. The use of linkers in the MNEV

construct for lung cancer is strategically important for ensuring

proper epitope presentation and enhancing immune responses and

the appropriate linkers are necessary to maintain the functional 3D

structure of selected epitopes. Specifically, Lys-Lys (KK) linkers

were employed for linking B-cell epitopes, while Gly-Pro-Gly-Pro-
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Gly (GPGPG) linkers were used for connecting HTL epitopes. For

CTL Ala-Asp (AD) linker and Ala-Arg-Tyr (ARY) spacer

(ADARY) were utilized. The choice of these linkers is based on

their ability to facilitate the appropriate spatial arrangement of the

epitopes, which is crucial for effective immune recognition. The KK

linker promotes the formation of stable interactions with B-cell

receptors, enhancing the activation of B cells and subsequent

antibody production. The KK linker serves as a target sequence

for the lysosomal protease cathepsin B, a key enzyme involved in

antigen processing for MHC II antigen presentation. By linking two

peptides via the KK linker, each peptide can be exposed to

antibodies while preventing the formation of antibodies against

the novel amino acid sequence created by the fusion of the two

peptides. The flexible connecting peptide (GPGPG linker) serves to

prevent the formation of junctional epitopes and aids in immune

processing, ensuring that the HTL epitopes are effectively presented

to T cells. The remaining linkers were used mainly considering their

ability to induce HTL immune response (GPGPG). Meanwhile, the

AD linker and ARY spacer are designed to optimize the interaction

between CTL and HTL epitopes, thereby promoting a robust

cellular immune response. To optimize peptide proteasomal

cleavage for HLA-I presentation, specific amino acid sequences

such as ARY, RY, GR, or TV were utilized as linkers or spacers

when necessary. The 50S ribosomal protein L7/L12 (Accession no.

P9WHE3, Locus RL7_MYCTU) was incorporated as an adjuvant at

the N-terminal ends using the EAAAK linker—a rigid linker that

adopts an alpha helix structure. This linker serves as a spacer to

enhance vaccine stability and maintain optimal inter-domain

distances, thereby facilitating independent domain function and

augmenting the immunogenicity of the vaccine construct. By

carefully selecting these linkers, we aim to maximize the

immunogenicity of the MNEV, ultimately improving its efficacy

against lung cancer.
Identification and selection of T-cell
Neoepitopes

By stimulating CTLs and boosting immune responses through

the generation of cytokines, HTLs, especially CD4+ T cells, are

essential in the destruction of cancer cells. Through processes like

granzyme B and perforin release, they can directly destroy tumor

cells, and their IFN-g production is essential for fostering anti-

tumor immunity and preventing metastasis. According to recent

research, HTLs have a variety of roles in cancer immunotherapy,

including boosting other immune cells and directly attacking tumor

cells (82). Determining if epitopes have the potential to be immune

protective is the first step in using bioinformatics to build multi-

neoepitope subunit vaccines. MHC displays T-cell epitopes in a

linear format of 9–20 amino acids. This information makes it easier

to accurately simulate the interaction between ligands and T-cells.

The most selective stage in presenting an antigenic peptide to the T-

cell receptor (TCR) is the binding of the MHC molecule. When

antigen is presented on the surface of antigen-presenting cells

(APCs), T cells’ surface T cell receptors (TCRs) connect to MHC
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molecules, allowing T cells to identify antigen. MHC I and MHC II

molecules present T cell epitopes, which are recognized by two

different T cell subsets, CD8+ and CD4+ T cells, respectively. As a

result, CD8+ and CD4+ T cell epitopes need to be examined

separately when predicting T cell epitopes. Using NetMHCPan

4.1 (BA), SYFPEITHI, NetMHCcons, NetCTLpan, five CTL

epitopes were predicted for LL/2 and eight CTL epitopes were

predicted for A549. The VaxiJen v2.0, ToxiPred, and AllerTOP v.

2.0 servers were used to assess the antigenicity, toxicity, and

allergenicity of these epitopes, respectively. All selected antigen

epitopes were non-allergenic and non-toxic.

In silico analysis was performed to predict MHCII-binding

epitopes in LL/2 and A549 cell lines. For the LL/2 cell category,

four HTL epitopes were identified based on predictions from

Rankpep (top 2%), NetMHCIIpan-4.0 BA (IC50 < 500nM,

Percentile Rank ≤ 10), IEDB (percentile > 0.10), MHC2pred

(score > 0.2), and NetMHCII 1.1 (SMM-Align, Adjusted Rank <

10) algorithms. In the A549 cell category, we predicted 48

neoepitopes for MHCII using NetMHCIIpan-4.1 BA (IC50 <

500nM, Percentile Rank ≤ 10), NetMHCII 1.1 (SMM-Align, IC50

< 500nM, Adjusted Rank < 5), and CONSENSUS 2.2 (Adjusted

Rank < 10) prediction servers. The identified epitopes demonstrated

the ability to bind to specific MHC II alleles, including IAb in the

LL/2 cell line and HLA-DRB104:04, HLA-DRB104:01, and HLA-

DRB1*07:01 in the A549 cell line. Furthermore, we assessed their

antigenicity, toxicity, and allergenicity. Notably, all selected

antigenic epitopes were found to be non-allergenic and non-toxic

(Table 1, Supplementary Data S3).

Through the production of important cytokines like IL-4, IL-10 and

IFN-g, the strategic design of multi-neoepitope anti-cancer vaccines

employing neoantigenic epitopes shows promise in generating strong
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immune responses that these data are summarized in Table 1 and

further detailed in Supplementary Table S3. Optimizing vaccine

formulations to achieve effective tumor suppression while maintaining

patient safety will need an understanding of the interactions between

these cytokines. Neoepitope-mediated cytokine secretion varied between

cell lines. In LL/2 cells, we observed that three neoepitopes stimulated

IL-4 secretion and two stimulated IL-10 secretion. In contrast, A549

cells exhibited amore robust response, with 28 neoepitopes inducing IL-

4 secretion and all neoepitopes inducing IL-10 secretion. Stimulation of

interferon-gamma (IFN-g) secretion was observed for two neoepitopes

in LL/2 and 22 in A549 cells. For vaccines to be effective, it is essential to

comprehend how these cytokines interact: (1) Interleukin-4 (IL-4) is

known to boost B cell activation and Th2 responses, which in turn

increases the generation of antibodies. Interestingly, under some

circumstances, IL-4 can also promote the production of IFN-g.
Studies reveal that IL-4 mainly triggers the production of IFN-g via

natural killer (NK) and NKT cells instead of traditional T cells,

indicating a complicated interaction between these cytokines, (2)

Interferon-gamma (IFN-g) promotes antigen presentation through

MHC II molecules and increases macrophage activation, both of

which are essential for mediating anti-tumor immunity. It has been

demonstrated to reverse the effects of IL-4 on B cells and is mostly

generated by Th1 cells, suggesting a regulatory balance between these

two cytokines (Table 1, Supplementary Data S3).
Prediction and assessment of LBL and
conformational neoepitopes

A section of an antigen that is recognized by a specific BCR or,

later, the antibody that is generated in a humoral reaction is known
FIGURE 1

An overview of the workflow of the in silico study.
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as a B-cell epitope. Based on its spatial shape, a B-cell epitope can be

classified as either a conformational epitope or a linear epitope.

While a conformational epitope, also referred to as a discontinuous

epitope, is made up of sequential segments that are brought together

in spatial proximity when the relevant antigen is folded, a liner

epitope, also known as a continuous epitope, is made up of residues

that are sequentially successive. Over 90% of B-cell epitopes are

discontinuous, according to certain reports. Epitope prediction’s

ultimate objective is to assist in the creation of compounds that can

replicate the structure and functionality of a real epitope and take its

place in vaccine development, medical diagnostics, and therapies.

Utilizing ABCPred (threshold = 0.51, window length = 16) and

BepiPred-2.0 (threshold = 0.35), we predicted linear B-cell epitopes

in both cell lines. This analysis identified four potential epitopes

(15–16 amino acids) in LL/2 cells and seven in A549 cells. The

ElliPro server predicted four discontinuous B-cell epitopes among

the neoepitopes of the LL/2 cell line, for which IgG antibodies could

be produced. Five structural B-cell neoepitopes were predicted in

the A549 cell line (minimum score = 0.5; maximum distance = 6 Å).

A total of five structural B-cell neoepitopes were identified in each

cell line. In LL/2 cells, the predicted scores ranged from a minimum

of 0.693 to a maximum of 0.784. In A549 cells, the minimum and

maximum predicted scores were 0.669 and 0.815, respectively. This

work emphasizes how important both linear and conformational

epitopes are for triggering immune responses, especially when it

comes to developing vaccines and using them therapeutically.

Designing more successful immunotherapy techniques will be
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aided by an understanding of these systems (Table 1;

Supplementary Data S3).
Neo-epitopes antigenicity and allergenicity
evaluation

The AllerTOP tool was used to evaluate the allergenicity of neo-

epitopes, while VaxiJen v2.0 (Threshold > 0.4) and Toxipred were

used to evaluate their antigenicity and toxicity, respectively. All of

the chosen neoepitopes were determined to be antigenic, non-toxic,

and non-allergenic.
Molecular docking simulation of the
mouse MHC alleles-neoepitope and BCR-
neoepitope interaction

A number of interaction metrics, such as hydrogen bonding

patterns, similarity scores, and accuracy scores, were used to assess

and rank the peptide-protein complexes. The chosen complexes’

binding modalities were examined using Discovery Studio

visualizer v16.0.0.400 tool. In order to determine the structural

basis, structural complexes of 4PV9, Chain A (H-2-Kb)/7N9J,

Chain A (H-2-Db)/4P23, Chain C (I-Ab)/8EMA, Chain C-D

(BCR) with neoepitopes were analyzed using a computational

peptide-protein docking. Figures 3–5 displays the interacting
FIGURE 2

(A) Graph showing the types of mutations observed in all analyzed datasets, including both mouse and human samples. (B, C) Venn diagrams
illustrating the distribution of substitution mutations, indicating that 40% of the LL/2 substitution mutations are shared across seven datasets as well
as in the overall analyzed data. The show emphasizes the repeatability of the mutations observed in all the reviewed data.
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residues in each docked complex. These residues show that the

neoepitopes and receptor proteins interact as much as possible. A

thorough grasp of the interactions between peptides and proteins

was made possible by this methodical approach, which also made it

easier to identify the most intriguing complexes for more research.

In relation to GalaxyPepDock, a TM score higher than 0.6 and an

estimated accuracy greater than 0.8 indicate a strong interaction

between the peptide and the allele. These values suggest that the

docking results reflect a reliable and favorable binding

conformation, supporting the potential efficacy of the peptide in

eliciting an immune response (Supplementary Data S4). Lastly, the

complex chosen by GalexyPepDock once more used the

HPEPDOCK and CABS flexible connection server to conduct

interaction similarity scores from chosen CTL, HTL neoepitopes.

In the context of CABS-dock, a cluster density greater than 25 and

approaching 135 may indicate a high quality of the docking results

and the stability of the interactions. This range suggests that the

models generated during the docking process are well-represented

and exhibit significant similarity, reflecting reliable binding

conformations between the peptide and the target protein. In the

context of HPEPDOCK, a docking score below -150 kcal/mol is

indicative of a strong binding affinity between the peptide and the

target protein. Such a high score suggests that the peptide is likely to

interact favorably with the target, which is essential for the

development of effective therapeutic agents. Typically, docking

scores in HPEPDOCK are expected to be negative and lower

values (more negative) are generally preferred. This reinforces the

peptide’s potential as a candidate for further experimental

validation and development in therapeutic applications. The

outcomes are shown in Supplementary Data S4. Also,

hydrogenated links are the result of the neoepitopes connection

and the MHCs/BCR alleles shown in Supplementary Data S4.
Construction of MNEV and evaluation of its
physicochemical properties

Using a variety of parameters, we carefully evaluated a few

chosen neoepitopes before incorporating them into a specially

designed MNEV framework. CTL, HTL, and B cell epitopes were

connected using different linkers: KK linkers for B cell epitopes,

GPGPG linkers for HTL epitopes, and ADARY linkers for CTL

epitopes. Additionally, we used an EAAAK linker to carefully attach

an adjuvant known as 50S ribosomal protein L7/L12 (Locus

RL7_MYCTU) to the N-terminus (Supplementary Data S4).

There are 472 amino acids in the vaccine. The generated vaccine

demonstrated a high degree of antigenicity and safety with a

noteworthy antigenicity score of 0.838232 (Probable ANTIGEN),

a non-allergenic, and an allergenicity score of 0.6020. In order to

confirm the new vaccine’s endurance, we also assessed its

physicochemical properties. A detailed description of the

attributes is provided in Supplementary Data S4. The ProtParam

server was used to investigate the physiochemical characteristics of

the MNEV design. This construct’s 472 amino acids have a

molecular weight of around 51447.30 g/mol, a theoretical pI of
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6.46, and a net charge of -2.6 at pH 7, indicating a slightly acidic

nature. With an aliphatic index of 74.53 and an average half-life of

30 hours in vivo (in human reticulocytes), the construct is

thermostable; in yeast and Escherichia coli (E. coli), it is >20 &

>10 hours, respectively. According to reports, its GRAVY score

was -0.546.
Secondary and tertiary structure prediction
and refinement

The functioning of the protein sequences is closely linked to the

secondary structural characteristics. The most prevalent secondary

structures in proteins are the a-helix, b-sheet, b-turn, and random

coil. Protein secondary structure describes how the polypeptide

chain of a protein folds and wraps. Two servers were used to

evaluate the secondary structural elements of the vaccine, such as

random coils, alpha helices, and beta turns. The predictions from

PSIPRED corroborated those from Prabi, confirming that the

vaccine’s secondary structure is predominantly composed of

alpha helices, with a significant amount of random coil content

(Supplementary Data S4).

The I-TASSER server was used to predict the 3D structure of the

MNEV construct. The server generated five 3D models, and the

highest-quality model was selected based on confidence score (C-

score) and other quality metrics. C-scores, typically ranging from -5

to 2, indicate model confidence, with higher scores reflecting greater

reliability. The QMEAN results validated the greater quality of the

chosen model. The peptide’s tertiary structure was predicted using

the I-TASSER service. The prediction model demonstrated great

reliability, as evidenced by its C score of -1.02, TM score, and RMSD

of 0.59 ± 0.14 and 9.5 ± 4.6Å, respectively (Supplementary Data S4).

ProSA-web provided the overall quality score for protein structures

(Supplementary Data S4). The unrefined model’s Z-score was -5.26

(Supplementary Data S4), and following refining, it dropped to

-5.74 (Supplementary Data S4). According to the ProSA result, the

chosen model has to be improved because it did not show up in the

range of natural proteins with comparable sizes. Energy was reduced

and the chosen primary model was improved. The chosen 3D model

is now of higher quality thanks to the model refining and energy

minimization runs. The modeling process provided five potential

structures, from which we selected the optimal model based on its

overall quality score and Ramachandran plot analysis. For the prM

protein, Model 4 was chosen due to its high ERRAT score of 100 and

favorable structural characteristics, with 89.9% of residues located in

the favored region, 7.4% in the allowed region, and 2.2% in the

disallowed region. The selected model was visualized using

Chimera software.
Prediction of cleavage sites

Enzymes within the proteasome complex play a critical role in

the degradation of peptide bonds, converting proteins into smaller

peptide fragments. Following proteasomal cleavage, these peptide
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molecules bind to MHCI molecules and are subsequently

transported to the cell membrane, where they are presented to

cytotoxic T cells. This transfer is facilitated by TAP which

transports the peptides into the endoplasmic reticulum. The

ability of our vaccine to generate peptides that can effectively bind

to MHC I and stimulate cytotoxic T-cells is paramount for its

efficacy. To investigate proteasomal cleavage, we utilized the

NetCHOP, identifying a total of 172 immunoproteasomal

cleavage sites. These findings suggest that our vaccination strategy

may indeed activate cytotoxic T-cells (Supplementary Data S4). To

further assess the immunogenic potential of the vaccine peptides,

we employed advanced proteasomal cleavage prediction

methodologies. The high proteasomal scores (Threshold =0.5)

indicate that these peptides possess favorable characteristics for

binding to MHC I molecules while also being likely to undergo

effective cleavage by the proteasome. Previous studies have

indicated that peptides with higher scores are more prone to

cleavage at their termini rather than at internal sites, thereby

enhancing their potential as T cell epitopes. This underscores the
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significance of our findings in the context of developing an effective

immunotherapeutic approach.
Molecular docking simulation results

Verifying the vaccine construct’s binding affinity with the

immune receptor is essential to ensuring that it elicits the proper

immune response. The route for the operation and control of the

adaptive immune response is activated by the TLR proteins, which

recognize pathogenic microbial components. The successful

creation of peptide-based vaccines requires an understanding of

the molecular specifics of antigen detection. The online ClusPro

docking server was used to perform a docking simulation in order

to examine the binding interactions between the developed MNEV

and TLR3, TLR4, and TLR9. Cluster 0 was chosen for additional

analysis because it had the lowest energy score (-924.8 (TLR3),

-1043.8 (TLR4), and -958.5 (TLR9)) (Table 2, Figure 6). The

MNEV-TLR3 complex created 41 hydrogen bonds, the MNEV-
FIGURE 3

Docking positions of predicted peptide epitopes on 3D model of MHCI. This figure illustrates the docking positions of predicted peptide epitopes on
the 3D models of Mouse MHCI molecules, specifically H-2-Kb (4PV9, Chain A) and H-2-Db (7N9J, Chain A), utilizing the GalaxyPepDock server. The
connections between the neoepitopes and mouse MHC I alleles are depicted. The hydrogen bond distances between the mutated amino acids and
the respective MHCI alleles are shown for each peptide. The peptides analyzed include: (A) SLYTEYWKLLR, (B) IAHEDYMEL, (C) VSFQNQLTNWL, (D)
VATDYLVGI, (E) FGLINVTPNML.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1521700
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Asadollahi et al. 10.3389/fimmu.2025.1521700
FIGURE 4

Docking positions of predicted peptide epitopes on 3D model of MHCII. This figure presents the docking positions of predicted peptide epitopes on
the 3D model of the MHCII I-Ab (4P23, Chain C), utilizing the GalaxyPepDock server. The binding and interaction analyses of the peptides are
displayed for the following sequences: (A) GPSYFKSSASVTGEP, (B) KYSSARAVRMPRHEKSP, (C) GVADFHYAASKALRV, (D) TGVADFHYAASKALR. The
hydrogen bond distances between the mutated amino acids and their respective MHC II alleles are indicated for each peptide.
FIGURE 5

Docking positions of predicted peptide epitopes on the 3D model of BCR. This figure illustrates the docking positions of predicted peptide epitopes on
the 3D model of the BCR, specifically 8EMA (Chain C-D), utilizing the GalaxyPepDock server. The binding and interaction analyses of the peptides are
presented for the following sequences: (A) GELECRSPPRMHGAKA, (B) IDILQRRQEGQASKDP, (C) ATSERKDMTFDTLRNR, (D) FRDTQKKLEEEKGKKE. The
hydrogen bond distances between the mutated amino acids and their respective BCR allele is indicated for each peptide.
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TLR4 complex formed 88, and the MNEV-TLR9 complex formed

24, according to the Discovery Studio visualizer (See Supplementary

Data S4).
MM-GBSA binding free energy

The TLR and vaccine complex binding free energies were

determined using the Molecular Mechanics Generalized Born

Surface Area (MM-GBSA) approach. For TLR3, TLR4, and TLR9,

the computed total MM-GBSA binding free energies were -86.4

kcal/mol, -313.26 kcal/mol, and -89.38 kcal/mol, respectively

(Table 3). These results show that the MNEV and the

corresponding TLRs have robust binding interactions; of the

three receptors tested, TLR4 had the highest advantageous

binding energy.
In silico cloning and optimization of
designed MNEV

The JCat optimized codons for high protein expression in

eukaryotic organisms. For a MNEV with 472 aa, the ideal codon

sequence length was 1416 nucleotides. The optimized nucleotide

sequence’s CAI value was 0.99 and its CG-content was 53.4%,

indicating a high likelihood of the recombinant vaccine being

expressed in the host Eukaryotic Organisms. By supporting the

BamHI and XbaI restriction enzymes, SnapGene software was

utilized to introduce modified codon sequences into the Plenti-

Giii-Cmv-Gfp-2A-Puro vector. 10844 bp make up the final product

(vector and optimized codon sequence) (Supplementary Data S4).
In silico immune simulation

To elucidate the development of adaptive immunity and

immunological interactions, an in silico immune simulation study

was conducted on the designed MNEV. This immunological

simulation revealed a significant enhancement of the primary

immune response with each incremental dosage, as evidenced

by the progressive fluctuations in the levels of various

immunoglobulins. This approach enabled a detailed examination

of how immune responses evolve over time, providing insights into

the dynamics of immunoglobulin production in response to

vaccination. Additionally, there was an increase in the secondary

immunological response (Figure 7A). Helper T-cells (Figures 7E, F),

plasma B-cells (Figure 7D), active B-cells (Figures 7B, C), and

regulatory and cytotoxic T cells (Figures 7G, H) were all seen to

be growing in number. These findings suggest that a robust

secondary immunological response, increased antigen clearance,

and robust immune memory formation take place following each

injection. Antigen presentation was enhanced, as shown by

increased dendritic cell and macrophage density (Figures 7I, J).

Additionally, the vaccine protein might generate a wide variety of

cytokines (Figure 7K).
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Serum levels of total IgG increased by the
MNEV

Two weeks after the final immunization, the total IgG levels in

the serum of study groups were evaluated using ELISA. The results

showed that serum levels of total IgG were significantly elevated in

the MNEV immunization groups compared to those receiving the

empty LV and Mock. No statistically significant difference was

observed between the empty LV and Mock groups, indicating that

the immunogenic effect was primarily attributed to the MNEV

(Figures 8A, B).
MNEV induced IFN-g secretion

Spleens from the vaccinated animals were collected two weeks

following the final injection, and splenocytes were subsequently

cultured. The splenocytes derived from the MNEV-immunized

groups demonstrated a significantly elevated secretion of IFN-g
cytokine compared to those from the Mock and empty LV control

groups upon in vitro re-stimulation with MSC-MNEV-CM

(Figures 8A, C). However, no significant differences in IFN-g
levels were observed between the splenocytes of the Mock and

empty LV control groups.
MNEV induces the CD19+ B cells and CD3
+ T cells

Flow cytometry was employed to examine alterations in CD3+

CD4+ and CD3+ CD8+ T lymphocyte populations. The data

presented in Figure 9 reveal that MNEV immunization led to a

pronounced enhancement of both CD3+ CD4+ and CD3+ CD8+ T

cell subsets among splenocytes, distinguishing it from other groups.

Conversely, the Mock and empty LV groups showed no significant

differences in the proportions of CD3+ CD4+ and CD3+ CD8+ T cells.

To investigate the impact of MNEV on the proportion of total B

cells in vitro, splenocytes from MNEV-immunized mice were

restimulated with MSC-MNEV-conditioned medium (CM) for 48

hours. The results indicate that, compared to the control group,

MNEV significantly enhanced the proportion of CD19+ total B cells.

In contrast, no significant differences between the Mock and empty LV

control groups were observed (Figures 10A–D). These findings suggest

that MNEV could effectively promote humoral and adaptive immune

responses by stimulating the activation and proliferation of T and

B cells.
MNEV induced granzyme B secretion

To evaluate antigen-specific cytotoxic CD8+ T cell responses

following vaccination, granzyme B levels in immunized mice were

measured two weeks post-final immunization. The results

presented in Figure 10E show that MNEV administration resulted

in substantially higher granzyme B levels compared to control
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groups. In contrast, there were no statistically significant differences

between the Mock and empty LV groups regarding granzyme B

production. This indicates that MNEV could effectively induce

robust cytotoxic T cell activity.
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Discussion

NSCLC accounts for approximately 85% of lung cancer cases

and is a significant health concern due to its role as the primary

cause of cancer-related deaths globally (83–85). Effective therapies

are crucial given the five-year survival rate for NSCLC, which is

often reported as around 15% to 28% depending on the source and

stage of the disease, with survival rates decreasing significantly in

later stages. Immunotherapy, which leverages the immune system

to target cancer cells, offers a promising approach that may enhance

lifespan and quality of life, particularly for patients with specific

genetic abnormalities (83, 86). Subunit cancer vaccines that induce

protective immune responses against tumor peptide antigens have

been developed for cancer prevention or treatment. The feasibility

of peptide-based vaccines has increased due to advancements in

antigen identification methods, with various clinical trials

(NCT05238558, NCT04701021, NCT04574583, NCT02455557,

NCT00911560) showing encouraging outcomes (87).
FIGURE 6

Protein-protein interactions analyzed using the ClusPro server. (A) Complex of the MNEV with TLR3. (B) Complex of the MNEV with TLR4.
(C) Complex of the MNEV with TLR9. Hydrogen bonds are indicated.
TABLE 2 Results of molecular docking analysis of the proposed MNEV
sequence with Toll-like receptors TLR3, TLR4, and TLR9 using the
ClusPro server.

TLR/MNEV Server Representative Weighted
Score

TLR-3
and MNEV

Cluspro Center -854.3

Lowest Energy -924.8

TLR-4
and MNEV

Cluspro Center -941.6

Lowest Energy -1043.8

TLR-9
and MNEV

Cluspro Center -958.5

Lowest Energy -958.5
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Recent years have seen extensive research into cancer, including

preventive strategies, novel vaccine development, and efforts to

discover potential medications. In silico technologies have made

substantial contributions due to their ability to provide rapid

findings, which are essential for addressing such health crises.

MNEVs are advantageous due to their safety, stability, ease of

production, and ability to elicit both humoral and cellular

immune responses (88).

By incorporating multiple epitopes from different tumor-

associated antigens, MNEVs activate distinct T-cell subsets (CD4

+ and CD8+) and B cells, producing a more potent and

comprehensive response against cancer cells. The inclusion of

epitopes restricted by MHC molecules enhances T-cell

recognition and allows for a greater variety of T-cell responses,
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improving efficacy against diverse tumor antigen profiles.

Adjuvants enhance immunogenicity and ensure a regulated

immune response, fostering resilience without the risk of

overactivation that could lead to autoimmunity (89, 90). By

selecting epitopes less likely to cause adverse reactions, MNEVs

reduce the likelihood of unfavorable immune responses compared

to traditional vaccines, resulting in successful immunization with

reduced toxicity (90, 91).

The neoepitope approach enables the creation of personalized

treatments by identifying distinct mutations in each patient’s

tumor, allowing for precise targeting of cancer cells while

protecting healthy tissues, thereby enhancing treatment outcomes

and reducing side effects (91, 92). These vaccines also promote long-

lasting immunological memory, which is crucial for preventing

cancer recurrence and ensuring the immune system remains

vigilant against new tumor formations (90, 92). The potential of

customized neoantigen treatment in NSCLC has been explored in

several studies. Zhang et al. examined this prospect in 2021,

focusing on effective immune responses from patient-specific

mutations (93). A phase I study by Fenge Li in the same year

found personalized neoantigen vaccination to be safe and viable for

patients with advanced-stage NSCLC, particularly those with EGFR
TABLE 3 Computed binding free energies of MNEV with TLR3, TLR4,
and TLR9 using MM/GBSA methodology.

MM/GBSA TLR3-
MNEV

TLR4-
MNEV

TLR9-
MNEV

Binding free energy
of complex

-86.4
(kcal/mol)

-313.26
(kcal/mol)

-89.38
(kcal/mol)
A B C D

E GF H

JI K

FIGURE 7

Immune simulation results. (A) Overview of both immunoglobulins and antigens, with antibodies categorized by their isotype. (B) B cell populations,
including total counts, memory cells, and subdivisions into IgM, IgG1, and IgG2 isotypes. (C) Distribution of B lymphocytes by entity-state, displaying
counts for active, class-II, internalized antigens, replicating, and anergic states. (D) Number of plasma B cells categorized by isotype (IgM, IgG1, and
IgG2). (E) Total count of CD4 T-helper cells, including memory and overall counts. (F) CD4 T-helper cell counts broken down by entity-state
(replicating, anergic, resting, and active). (G) Total number of CD8 T-cytotoxic cells, with memory and overall counts displayed. (H) CD8 T-cytotoxic
cells categorized by entity-state. (I) Dendritic cells displaying antigenic peptides on MHC I and MHC II molecules; curves categorize the overall
count into internalized, resting, active, and presenting states. (J) Total number of macrophages categorized as internalized, resting, and active on
MHC II. (K) Concentration levels of interleukins and cytokines; the danger signal is indicated by “D” in the inset graphic.
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mutations (12). Heidary et al. developed a multi-neoantigen

peptide vaccine using bioinformatics in 2022, highlighting its

immunogenic properties for NSCLC treatment (89). Viborg and

colleagues investigated DNA-based neoepitope vaccine in 2023,

demonstrating its ability to elicit anti-tumor immunity in mouse

models, supporting its use in customized immunotherapy (94).

Additionally, 2024 research showed that a customized neoantigen

vaccine enhances therapeutic effectiveness in advanced NSCLC

when combined with current therapies like bevacizumab and

anti-PD-1 antibodies (95).

In our study, we developed a customized MNEV targeting

NSCLC using LL/2 lung cancer cells in a C57BL/6 mice model.

The process began with whole exome sequencing (WES) and RNA

sequencing (RNA-seq) to identify specific genetic variants linked to

cancer that were consistent across six lung cancer datasets from the

SRA. We prioritized gene mutations that were common and

reproducible in all datasets. Based on this analysis, we constructed

a personalized vaccine targeting 15 neoepitopes that elicit both

cellular and humoral immune responses, making them ideal

candidates for peptide vaccine design. By focusing on specific

genetic targets in the LLC1 cell line and incorporating MNEV,

our strategy aimed to enhance the vaccine’s specificity and

effectively target the unique genetic alterations of the tumor. This

approach not only potentially increases the vaccine’s efficacy by
Frontiers in Immunology 23
tailoring it to an individual’s genetic profile but also minimizes off-

target effects, optimizing treatment outcomes.

To ensure the accuracy of neoepitope selection, we utilized in

silico techniques with a focus on forecasting MHC I, MHC II, and

linear and conformational B-cell neoepitopes. For MHCII

pred ic t ions , we used MHC2pred , IEDB, RANKPEP,

NetMHCIIpan-4.0 (BA), and NetMHCII 1.1 (SMM-Align). For

MHCI predictions, we employed tools such as NetMHCPan 4.1

(BA), SYFPEITHI, NetCTLpan, and NetMHCcons. The ElliPro

tool was used for structural neoepitopes in conjunction with

ABCPred, BepiPred-2.0, and SVMTriP to identify linear

neoepitopes that bind to BCRs. Neoepitopes were only chosen

as final candidates if they satisfied the requirements of all

pertinent instruments. 15 unique neoepitopes, including 5 MHC

I-restricted, 4 MHC II-restricted, 4 linear B-cell, and 2 structural

B-cell epitopes were found from the initial pool of 108 examined

neoepitopes. It was anticipated that the chosen neoepitopes would

have high binding affinities and be both immunogenic and

antigenic, while also being non-toxic and non-allergenic. This

comprehensive strategy highlights the importance of combining

several prediction methods to improve the accuracy of neoepitope

selection for vaccine development.

The inclusion of the 50S L7/L12 ribosomal protein as an

adjuvant in lung cancer vaccine constructs was strategically
FIGURE 8

Anti-tumor effects of immunization with the designed MNEV in different study groups. (A) Overview of mouse immunization strategy and analysis
schedule. (B) Serum levels of total IgG were determined by ELISA two weeks after the third injection across different groups. Notably, MNEV elicited
a significant IgG response following the third injection. (C) The levels of IFN-g secretion from splenocyte cultures after restimulation with MNEV
were assessed using ELISA. Data are presented as means ± standard deviation (SD) for three mice per group. Statistical significance is denoted as
follows: ns, not significant; ***P < 0.001; ****P < 0.0001. Mouse immunization workflow, illustrated by BioRender.
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significant for enhancing immune responses. This protein plays a

crucial role in dendritic cell (DC) maturation by activating these

cells through TLR4, leading to increased production of pro-

inflammatory cytokines such as TNF-alpha, IL-1beta, and IL-6

(96). This maturation is essential for the effective activation of

naïve T cells, thereby promoting a robust cellular immune response.

Furthermore, studies indicate that combining L7/L12 with other

immunogenic proteins can amplify immune responses, enhancing

the overall efficacy of the vaccine (97, 98). The incorporation of L7/

L12 should also be accompanied by assessments of cytokine profiles,

as increased secretion of IFN-gamma from CD4+ and CD8+ T cells

indicates a favorable Th1-type immune response, which is beneficial

for anti-tumor immunity (96).
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To connect distinct epitopes and maximize their presentation to

the immune system, L7/L12 can be combined with a variety of

linkers (including EAAAK, KK, and GPGPG). These linkers

improve antigen presentation as an adjuvant, resulting in more

robust and sustained immune responses. This is particularly

significant for vaccines that target complicated diseases or

malignancies. Crucially, L7/L12 is often regarded as non-toxic

and non-allergenic, which lowers the possibility of negative

responses in those who have received the vaccine. Its efficacy in

MNEV for TB (99), and COVID-19 (100) has been shown in

studies, underscoring its adaptability and function in enhancing

immune responses (101). In our study, we used L7/L12 as an

adjuvant to improve immune system activation.
FIGURE 9

Flow cytometry analysis of CD3+ CD4+ and CD3+ CD8+ T cell levels in immunized mice. (A–C) Restimulation assays were performed using MNEV
in splenocytes from study groups. CD3-positive cells were gated and analyzed for CD4 and CD8 markers. (D–F) Flow cytometry graphs represent
data from restimulation assays in splenocytes of study groups. Data are presented as means ± standard deviation (SD). Statistical comparisons
between the four groups were conducted using one-way ANOVA (ns, not significant; **p < 0.01, ***p < 0.001).
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When designing MNEVs, signal peptides play a crucial role in

ensuring efficient vaccine component presentation and secretion,

which results in a strong immune response (102–105). The Igk signal
peptide, in particular, guides proteins to the endoplasmic reticulum

for appropriate folding and secretion (106, 107). It enhances

recombinant protein secretion by efficiently directing proteins into

the secretory pathway, ensuring proper translocation to the ER,

correct folding, and post-translational modifications. This reduces

intracellular accumulation, minimizes aggregation or degradation,

and increases extracellular yield. Its proven effectiveness in various

systems makes it a reliable choice for improving recombinant

protein production (108, 109).

The selection of suitable linkers is critical in vaccine design, as

defective linker selection can alter protein properties (110, 111). We

used linkers like EAAAK, KK, GPGPG, and ADARY to join

adjuvants, linear B-cell epitopes, and HTL and CTL neoepitopes

in our NSCLC MNEV. These linkers enhance the overall
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immunogenicity of the vaccine and the integration of

immunological components. For instance, KK facilitates B-cell

identification and antibody formation (105), while EAAAK

ensures appropriate distance between adjuvants and neoepitopes

to promote successful immune responses (89, 112). GPGPG

improves interactions with MHC II molecules, promoting T-cell

activation (105), whereas ADARY preserves the structural integrity

of CTL epitopes for efficient presentation to MHC I molecules (89,

112). Our strategy aligns with related research emphasizing the

significance of specific linkers in maximizing immune responses

against NSCLC while reducing off-target effects to enhance

treatment outcomes.

Epitope selection was validated by docking individual

neoepitopes with MHC I, MHC II, and BCRs. The final structure

of the MNEV was aligned with TLR 3, 4, and 9 after confirming

hydrogen bonding contacts. Interestingly, the link with the lowest

energy showed a robust contact, indicating a possibility for
FIGURE 10

MNEV induction of CD19+ B cells and Granzyme B levels in vitro. (A–C) Flow cytometry plots of CD19+ B cells in splenocytes post-restimulation.
(D) Histogram showing the percentages of CD19+ B cells following restimulation assays in splenocytes from study groups. (E) The levels of
granzyme B secreted by splenocytes isolated from MNEV-immunized mice two weeks following the final immunization. The supernatants were
collected from splenocytes that had been restimulated with MNEV. Granzyme B levels in splenocyte cultures were quantified using the ELISA
technique. The data, representative of three independent experiments, are presented as mean values with standard deviations (SD). Notably, MNEV
elicited significantly elevated Granzyme B levels compared to control groups, with statistical significance indicated by ns, not significant; ***p <
0.001 and ****P < 0.0001.
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successful binding. Khairkhah et al. presented the creation of a

multi-epitope vaccine against COVID-19 that targets MHC I and

MHC II in addition to structural proteins S, N, and M using BCR

selection techniques. By encouraging efficient immune recognition

and response, the final vaccine structure was tailored to interact

with TLRs 2, 3, and 4, showing a significant connection that

improves safety and efficacy (113). This strategy aligns with

related research by Kumar et al., which examined the structural

relationships between a multi-epitope vaccine and TLR-3, 7, and 8

(114). Another study developed a multi-epitope vaccine targeting

important cancer antigens like STAT3, HER2, and GRB7 using a

multimodal strategy that included MHC I, MHC II, CTL, and B-cell

epitopes created from MAGE-A3, EGF, and MUC-1 by in silico

immunoinformatics techniques. This vaccine integrated

interactions with TLR2, TLR4, MHCI, and MHCII, showing high

affinity for human receptors (115). Additionally, a similar study

developed a multi-epitope peptide based on neoantigens that targets

TLR4/MD2 as a possible vaccine against colorectal cancer,

demonstrating its reliance on TLR4 binding and capacity to

trigger powerful immune responses against colorectal cancer

antigens (116). In a different study, the Silica Immunoinformatics

approach was used to construct a multifunctional vaccine for NSCC

cancer that included MHC I, MHC II, CTL, and B-cell epitopes

obtained from MAGE-A3 cells, EGF, and MUC-1. Strong affinity

between the vaccine and human receptors (TLR-2, TLR-4, MHCI,

and MHCII) was found by molecular binding study (117). This

comprehensive strategy emphasizes the importance of combining

different immunoinformatics techniques when creating vaccines

that effectively elicit strong immune responses against cancer and

infectious illnesses. Our study’s conclusions offer important new

information on current MNEV development efforts. By using

immunoinformatics to create a safe and tailored immunotherapy,

this work demonstrates the potential of customized MNEV for

NSCLC. By carefully choosing neoepitopes and creatively using

adjuvants and linkers, we created a construct that is highly

immunogenic and selective while reducing off-target effects.

Strong interactions with immune receptors were validated by

molecular modeling, highlighting the vaccine’s potential for long-

lasting immune response and efficient tumor targeting. These

discoveries advance the science of cancer immunotherapy by

providing a route for specialized, accurate therapies against lung

cancer and other cancers.

Our preclinical data in a mouse model demonstrate that the

MNEV induces a significant immune response. The significant

elevation of serum IgG levels, increased proportions of CD19+ B

cells, and enhanced CD3+ CD4+ and CD3+ CD8+ T-cell

populations in MNEV-immunized mice indicate a strong

activation of both humoral and adaptive immunity. Furthermore,

the marked increase in IFN-g and granzyme B secretion by

splenocytes from MNEV-immunized mice underscores the

vaccine’s capacity to stimulate cytotoxic T-cell activity, a critical

mechanism for tumor cell elimination. The absence of similar

responses in control groups confirms the MNEV’s specific effect.

The inclusion of the 50S L7/L12 ribosomal protein as an adjuvant
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and the Igk chain signal peptide likely contributed to these effects by
boosting immunogenicity and secretion efficiency, respectively,

highlighting the value of strategic vaccine design.

However, the study has limitations, including the use of a

mouse model and a small cohort size, which may not fully reflect

human NSCLC’s complexity. Additionally, the lack of long-term

data means that the durability of the immune response is unknown.

To advance this approach, future research should employ larger

animal models that better mimic human disease, conduct long-term

studies to assess the vaccine’s lasting efficacy, and explore

combination therapies to optimize treatment outcomes. For

translating this approach to human NSCLC, the development of

personalized MNEVs based on patient-specific neoantigens is

essential. To test these human-specific MNEVs, future research

could utilize humanized mouse models, which have human

immune systems, to assess their efficacy in a preclinical setting.

Additionally, long-term studies are necessary to evaluate the

durability of the immune response and the vaccine’s ability to

prevent or delay tumor recurrence. Exploring combination

strategies with existing therapies, such as chemotherapies and

immunotherapies, and optimizing vaccine delivery methods will

be crucial to bring this promising approach to clinical practice.
Conclusions

Our study presents the development and evaluation of a MNEV

designed using reverse vaccinology and bioinformatics approaches

for targeting NSCLC. By focusing on neoepitopes derived from

tumor-specific mutations, our vaccine aims to elicit a precise

immune response against cancer cells while minimizing off-target

effects. Leveraging whole exome sequencing and RNA sequencing

data, we identified and validated neoepitopes that stimulate B cells,

HTLs, and CTLs. The incorporation of the 50S L7/L12 ribosomal

protein as an adjuvant and the Igk chain signal peptide enhanced

immune responses and secretion efficiency, respectively. Our in-silico

evaluations confirmed the vaccine’s non-toxicity, non-allergenicity,

and stability, with high-affinity interactions with immune receptors.

Immunization with the MNEV in a mouse model resulted in

significant increases in serum IgG levels, CD19+ B cells, and CD4+

and CD8+ T cells, along with enhanced IFN-g and granzyme B

secretion. These findings highlight the MNEV’s potential as a

promising immunotherapeutic strategy for NSCLC. Our study

contributes to the growing field of neoepitope-based vaccines and

provides a robust framework for the design and evaluation of such

vaccines in cancer immunotherapy, building on and extending

previous research in multi-epitope vaccine development.
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