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Introduction: Natural killer (NK) cells, which exert spontaneous cytotoxicity

against infectious diseases and cancer, also play an important role in leukemia

therapy. Despite the success of NK-based therapy in the treatment of myeloid

leukemia, the potential use of NK alloreactivity in these hematologic

malignancies remains elusive. The aim of the present study was to investigate

whether allogeneic NK cells combined with aclacinomycin (ACM) could enhance

anti-leukemic functionality against an acute myeloid leukemia (AML) cell line and

to clarify the underlying mechanism.

Methods: KG-1a and HL-60 AML cell lines were subjected to different

treatments. The effects of different drug combinations on cytotoxicity, cell

viability, and apoptotic status were examined.

Results: The results showed that the combination of ACM (40 nmol/l) and

allogeneic NK cells (ratio 20:1) was significantly cytotoxic to AML cells and

increased the apoptosis of AML cells, especially after 72 h of treatment.

Subsequent analyses revealed that the expression of immunogenic cell death

(ICD)-related molecules calreticulin, adenosine triphosphate, and high mobility

group box 1, as well as NK cell effector production—perforin and granzyme B—

was markedly increased in the combination treatment group. These findings

suggest that ACM enhances the anti-leukemic activity of allogeneic NK cells

through the ICD pathway.

Discussion: These results demonstrated that allogeneic NK cells had enhanced

functional responses when stimulated with ACM in vitro, exhibiting superior
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effector cytokine production and cytotoxicity compared to the control, which

contained conventional NK cells. In conclusion, the present study suggested that

the combination of ACM and allogeneic NK cells is a promising therapeutic

strategy against AML.
KEYWORDS

aclacinomycin, allogeneic NK cells, acute myeloid leukemia, immunogenic cell
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Introduction

Acute myeloid leukemia (AML) is a hematological malignancy

that can be classified by cytogenesis, molecular heterogeneity and an

immunophenotype (1, 2). There are several main subtypes of AML,

including AML with recurrent genetic abnormalities, AML with

myelodysplasia-related changes, therapy-related myeloid

neoplasms, AML-NOS (not otherwise specified), myeloid sarcoma

and myeloid proliferations related to Down syndrome (2).

Clinically, resistance to chemotherapy and relapse are still

the main causes of poor outcomes in patients with AML.

Anthracycline-based chemotherapy remains the standard first-line

choice in adjuvant and palliative therapy, but the effect remains

unsatisfactory (3). The failure of traditional therapeutic regimens

for AML highlights a need for novel treatment strategies. Recently,

immunochemotherapy has become a new hot spot in the treatment

of cancer (4). It has been reported that certain chemotherapeutic

drugs, such as anthracycline antineoplastic drugs (doxorubicin,

epirubicin and idarubicin), may contribute to antitumor

responses of immune cells by inducing a special form of tumor-

cell killing, known as immunogenic cell death (ICD) (4–6). ICD-

inducing drugs enhance tumor antigen exposure and promote the

release of immunostimulatory tumor cell content-related proteins,

such as calreticulin (CRT), adenosine triphosphate (ATP), and high

mobility group box 1 (HMGB1) (7, 8). Therefore, the use of ICD-

inducing agents can provide a convenient strategy for AML

intervention (9, 10). In terms of using the ICD strategy for AML

therapy, dendritic cells (DCs) and cytotoxic T cells are commonly

studied immune effector cells, while the efficacy of natural killer

(NK) cells has rarely been explored.

NK cells are important effector lymphocytes involved in anti-

tumor response in vivo and play a central role in the immune
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surveillance of tumor and/or virally infected cells (11). NK cells

exert a cytolytic effect on pathogen-infected or cancer cells by

releasing cytolytic granule contents, notably perforin and

granzyme B (12, 13). In addition, NK cells have been reported to

activate other immune cells by secreting immunoregulatory

cytokines, including interferon (IFN)-a (14), tumor necrosis

factor-a, macrophage inflammatory protein-1, and regulated

upon activation, normal T cell expressed and secreted (15). The

activation of NK-cell effector functions is finely regulated by the

recognition of stress-induced ligands or the mass activation of

adhesion molecules or inhibitory receptors. In addition, NK cells

have been used for adoptive cell therapy (16, 17). The clinical

success of allogeneic hematopoietic stem cell transplantation (18),

haploidentical transplantation (19), NK cell adoptive (20)

transplantation, and monoclonal antibody therapy (21) have

proven that NK cells play a key role in the treatment of AML.

Although NK cells exhibited safety and efficacy in the treatment of

patients with different malignancies (22, 23), the reactions were

mostly transient and benefited only a small number of patients. The

combination of allogeneic NK cells with chemotherapeutic agents is

an attractive approach to improve and maximize tumor targeting

and NK cell responsiveness (24).

Aclacinomycin (ACM) is an anthracycline anti-tumor

antibiotic that is widely used in the treatment of solid tumors and

hematological malignancies, such as lung (25) and breast (26)

cancer, and AML (27). ACM exerts its anti-tumor activity

through three different mechanisms: i) inhibiting the activity of

topoisomerase II and leading to breaks in genomic DNA (28); ii)

direct binding to tumor DNA and induction of DNA unwinding

(29); and iii) inhibiting ubiquitin-ATP-dependent proteolysis in

tumor cells (30). Furthermore, ACM acts as an “adjuvant” to

enhance the efficacy of other anti-tumor drugs. Our previous

study demonstrated that ACM combined with As2O3 displayed a

synergistic killing effect on AML cells (27). However, the impact of

ACM on NK-cell functionalities has not yet been well established.

Andrade Mena et al. (31) reported that low-dose ACM enhances the

activity of NK cells, while Santoni et al. (32) found that ACM could

inhibit or stimulate NK cells depending on its dose and site of

administration. Therefore, it remains unclear whether ACM

treatment can enhance NK-cell mediated anti-tumor activity in

patients with AML.
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The aim of the present study was to investigate the treatment

efficacy of the combination of ACM with allogeneic NK cell on AML

cells. Through in vitro studies, the effects of ACM on allogeneic NK

cell viability and functionalities, and the molecular mechanisms

through which ACM enhances allogeneic NK cell killing activity

toward AML cells were evaluated. Most importantly, it was

demonstrated that ACM can enhance the killing activity of

allogeneic NK cells against AML cells through “ICD” signaling.

Furthermore, this study revealed that allogeneic NK cells and ACM

can potently work together against AML cells, providing a possibility

to explore this combination strategy in AML treatment.
Materials and methods

Cell culture

The KG-1a acute myeloid leukemia cell line [CCL-246.1™,

American Type Culture Collection, (ATCC)] was kindly provided

by Professor Zengxuan Song (Chinese Academy of Medical

Sciences and Peking Union of Medical College, China). An

important phenotypic abnormality of KG-1a cells is their early or

primitive developmental stage and inability to differentiate into

functionally mature cells (33). Due to these characteristics, KG-1a

cells were often used in AML research. The HL-60 acute

myelogenous leukemia cell line was purchased from the ATCC

(CCL-240™). HL-60 cells, derived from human promyelocytic

leukemia, share some similarities with promyelocytic cells and

can differentiate into different cell types (34). The cell culture

method was based on previously reported procedures (31).
CD56+CD3- NK cell generation

NK cells were isolated from peripheral blood mononuclear cells

(PBMNCs) obtained from unidentified, healthy donors. All donors

provided written informed consent. The study was approved by the

Ethics Committee of Zhongshan People’s Hospital Affiliated to Sun

Yat-sen University (Approval No.: K2017-003) and was conducted

in accordance with the Declaration of Helsinki. The culture

protocol was adapted from Cany et al. (35). CD56+CD3- NK cells

were magnetically isolated using human CD56 (Catalog number:

130-050-401) and CD3 (Catalog number: 130-050-101)

MicroBeads (Miltenyi Biotec GmbH). In brief, human peripheral

blood was collected from healthy volunteers using heparin as an

anticoagulant. After a doubling dilution with PBS, density gradient

centrifugation (800 g for 30 minutes in a swing-out rotor at

18-22°C) with human lymphocyte separation solution (Catalog

number: 20828-15, Nacalai Tesque, Inc.) was conducted, and

mononuclear cells were collected from the interface and washed.

Cells were then placed in a plastic pipe (5x106/ml) and treated with

pectin methylesterase (PME; 5 mmol/l; Catalog number: 9025-98-3,

Sigma-Aldrich) at 37°C for 40 min to remove B cells and

monocytes/macrophages. The remaining PME-treated PBMNCs

(5x106 cells/ml) were cultured in RPMI-1640 (Catalog number:

11875093, Thermo Fisher Scientific, Inc.) with 22 nM (6,000 IU/ml)
Frontiers in Immunology 03
interleukin (IL)-2 (MQ1-17H12; BD Biosciences) for 4-5 h. CD56+

NK cells adhering to the surface of the plastic culture flask were

collected and re-cultured for 4 weeks. CD56+ cells purity was

quantified by adding 1x105 cells into the flow cytometry (FCM,

CytoFLEX, Beckman Coulter, Brea) and the flow cytometric data

were evaluated by the FlowJo V10.6.3 software (BD Life Sciences–

FlowJo). The cell viability was determined using a colorimetric

WST-8 dehydrogenase assay [cell counting kit-8 (CCK-8); catalog

number: CK04-11, Dojindo Molecular Technologies, Inc.]. The use

of allogeneic NK cells at the end of the culture process typically

results in CD56+ purity exceeding 80% within 4 weeks of culture.
Cell viability assay following
ACM treatment

ACM was purchased from Enzo Life Sciences, Inc. For in vitro

studies, ACM was dissolved in dimethyl sulfoxide (Catalog number:

276855-1L, Sigma-Aldrich) at 10 mmol/l and stocked at -20°C. The

inhibition of KG-1a and HL-60 cell viability by ACM was assessed

using the CCK-8 assay, according to the manufacturer’s

instructions. The detection of cell viability was carried out as

previously described (32).
Cell viability assay following combination
treatment with ACM and NK cells

KG-1a and HL-60 cells collected at the logarithmic growth phase

were washed three times with RPMI-1640 medium supplemented

with 10% FBS (Catalog number: F2442-500ML, Sigma-Aldrich)

before being used as target cells, and cell density was adjusted to

2x105/well in 6-well plates. NK cells (effector cells) were added to the

6-well plates (4x106/well) and induced by ACM at a final

concentration of 40 nmol/l. Mixed culture cells without ACM

treatment were used as the control. Following incubation for 24,

48, 72 or 96 h, the NK cell-mediated killing effect of the susceptible

KG-1a and HL-60 cell line was measured using lactate

dehydrogenase (LDH) release (LDH cytotoxicity assay kit, catalog

number: 11644793001, Roche Diagnostics) (36). The LDH levels were

determined using an automatic biochemical analyzer (Model 170A;

Hitachi, Ltd.), and the killing activity of NK cells in each group was

calculated according to the formula presented in the manual of the

LDH detection kit. The percentage of cytotoxicity was calculated

using the following formula: [(Experimental release - spontaneous

release)/(total release - spontaneous release)] x 100% (37).
AML cell apoptosis

Based on the results of the CCK-8 and LDH assays, the

treatments with 40 nmol/l ACM and NK cells at an effector to

target ratio of 20 were selected, in order to analyze their effect on

AML cell and PBMNCs apoptosis. KG-1a, HL-60 cells and PBMNCs

were added to 6-well plates (2x105 cells/well) and were untreated

(control group) or treated with ACM combined with NK cells, ACM
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alone or NK cells alone (5 wells/group). KG-1a and HL-60 cells were

collected following incubation for 24, 48, 72 and 96 h. Cells were then

harvested and washed twice with ice-cold PBS and resuspended in

1x Binding Buffer at a concentration of 6 x 105 cells/ml. A total of 200

µl of the mixtures were then transferred to a 1.5 ml culture tube and

stored on ice, then 5 ml of Annexin V-FITC (Catalog number:

APOAF-60TST, Sigma-Aldrich) and 5 ml of propidium iodide (PI,

catalog number: P1304MP; Thermo Fisher Scientific, Inc.) were

added to the culture tube. The cells were gently vortexed and

incubated for 10 min at room temperature in the dark, and stained

cells (1.2 x 105) were analyzed by FCM (CytoFLEX, Beckman Coulter,

Brea) to determine the percentages of Annexin V+/PI- (early

apoptotic) and Annexin V+/PI+ (late apoptotic) cells by the FlowJo

V10.6.3 software (BD Life Sciences–FlowJo) (38).
Western blotting

Anti-CRT (Catalog number: MBS2006516), anti-heat shock

proteins (Catalog number: VPA00800), anti-ATP (Catalog number:

MBS2041256) and anti-HMGB1 (Catalog number: GTX101277)

antibodies were purchased from Biocompare, Inc. Anti-perforin

(Catalog number: MA5-12469), anti-granzyme B (Catalog number:

GRB04), anti-b-actin (Catalog number: MA1-140) antibodies, and

goat anti-rabbit horseradish peroxidase-conjugated secondary

antibodies (Catalog number: 31460) were purchased from Thermo

Fisher Scientific, Inc. For western blotting, treated and untreated cells

were homogenized in 150 µl ice-cold lysis buffer on ice for 30 min.

Subsequently, the homogenates were boiled and subsequently

centrifuged at 300 g at 20°C. The supernatant-containing proteins

were then analyzed by immunoblotting. Markers of ICD, such as

CRT, ATP and HMGB1 were analyzed. In addition, perforin and

granzyme B-the two direct evidences of the killing activity of activated

NK cells, were also analyzed in the HL-60 cell culture. Quantification
Frontiers in Immunology 04
analysis of the western blot results were performed via ImageJ

(National Institutes of Health).
Statistical analysis

Data on cell viability, apoptotic ratio and quantification of

western blotting are presented as the mean ± SD. One-way analysis

of variance followed by Tukey’s test for multiple comparisons was

performed to assess the differences between two groups. GraphPad

Prism (version 8.0.2, GraphPad Software, Inc.) was used for data

processing. P<0.05 was considered to indicate a statistically significant

difference. All the experiments were independently repeated 3 times.
Results

Purity of sorted human NK cells

The percentage of CD3-CD56+ NK cells in the collected

PBMNCs was 15.2 ± 3.7% before sorting (Figure 1). Following a

4-week culture period, this proportion significantly increased, with

CD3−CD56+ NK cells constituting 84.9 ± 5.5% of the total cell

population (Figure 1).
Cytotoxic effect of ACM on AML cell lines
in vitro

To explore the potential of combining allogeneic NK cells with

ACM therapy, the cytotoxic effects of ACM on two AML cell lines

were initially assessed. KG-1a and HL-60 cells were treated with

ACM at concentrations ranging from 0 to 1,280 nM, and

cytotoxicity was evaluated using the CCK-8 assay. As anticipated,
FIGURE 1

Proportion of CD3-CD56+ NK cells in human PBMNCs. Flow cytometric analysis of CD3-CD56+ NK cells using annexin V/FITC staining before (Left)
and after (Right) CD56+ cell positive selection. Data was presented as the mean ± SD of three independent experiments. NK, natural killer; PBMNCs,
peripheral blood mononuclear cells.
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ACM treatment resulted in a time- and dose-dependent reduction

in KG-1a cell viability compared to untreated controls, with

significant decreases observed over 24 to 96 hours at varying

concentrations (Figure 2A). Similar trends were noted in HL-60

cells (Figure 2B). These findings indicate that ACM concentrations

between 0 and 1,280 nM moderately inhibited the viability and

proliferation of KG-1a and HL-60 cells. However, when the ACM

concentration exceeded 640 nM, minimal changes in cell viability

and proliferation were observed. Therefore, to minimize the effects

of excessive cytotoxicity, ACM concentrations of 0-640 nM were

selected for subsequent experiments.

ACM enhances the killing effect of
allogeneic NK against AML cells in vitro

Next it was investigated whether the treatment of AML cells

with ACM affected their susceptibility to allogeneic NK cell-

mediated cytotoxicity. To exclude the potential impact of ACM

on the viability of effector cells (NK cells), we evaluated the effects of
Frontiers in Immunology 05
different concentrations of ACM on NK cells after 96 hours of

treatment using the CCK-8 assay. The results showed that ACM

exhibited some growth-inhibitory effects on NK cells at a

concentration of 1290 nM, although the difference was not

statistically significant (Figure 3A). In subsequent co-culture

cytotoxicity experiments, the ACM concentration was set at 320

nM. Therefore, the influence of ACM on the viability of effector

cells (NK cells) can be ruled out. Therefore, KG-1a and HL-60 cells

were treated with a combination of ACM (0-640 nmol/l) and used

as targets for allogeneic NK cells (effector to target ratio was 20), and

cell viability was determined at different timepoints using the CCK-

8 assay. At the start of the co-culture, equal numbers of KG-1a and

HL-60 cells were seeded under each experimental condition. KG-1a
and HL-60 cell survival assays suggested that the effects of ACM and

allogeneic NK cells were at least additive. Following co-culture with

ACM and allogeneic NK cells, KG-1a cell viability was decreased in

a time- and dose-dependent manner with increasing ACM drug

concentrations (Figure 3B). Furthermore, similar results were

obtained with the HL60 cell line (Figure 3C). Of note, the
FIGURE 2

Effects of ACM treatment on the metabolism of KG-1a and HL-60 cells in vitro. (A) KG-1a and (B) HL-60 cells were treated with different
concentrations of ACM (1-1,280 nmol/l) for 24, 48, 72 and 96 h, and cell viability was evaluated using the CCK-8 assay. AML cells were pre-
incubated with 1-1,280 nmol/l ACM, blank control (Control: without ACM treatment) or negative control (DMSO). Data was presented as the mean ±
SD of three independent experiments. ****P < 0.0001. ACM, aclacinomycin; CCK-8, cell counting kit-8; AML, acute myeloid leukemia; DMSO,
dimethyl sulfoxide.
FIGURE 3

Effects of combination treatment (allogeneic NK cells and ACM) on the metabolism of KG-1a and HL-60 cells. (A) The effects of different
concentrations of ACM on NK cell viability after 96 hours of treatment were assessed using the CCK-8 assay. The control group consisted of cells
without ACM treatment, and DMSO was used as a negative control. (B) KG-1a and (C) HL-60 cells were treated with ACM (0-320 nmol/l) and NK
cells (effector to target ratio was 20) for 24, 48, 72 and 96 h, and cell viability was analyzed using an LDH assay. AML cells were pre-incubated with
10-320 nmol/l of ACM or Control (without ACM treatment). Data are presented as the mean ± SD of three independent experiments. NK, natural
killer; ACM, aclacinomycin; LDH, lactate dehydrogenase; AML, acute myeloid leukemia.
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survival of KG-1a and HL-60 cells was most significantly decreased

when these cells were treated with allogeneic NK cells and 40 nM of

ACM for 72 h. Thus, this concentration was selected for subsequent

experiments. These data supported that ACM could enhance the

AML cell-mediated killing of allogeneic NK cells, particularly in a

specific range of concentrations, and that the effects of allogeneic

NK cells and ACM are complementary, effectively reducing the

number of AML cells when the two are combined.
The effect of ACM and allogeneic NK cells
on AML cells apoptosis

To further determine how the potentiating effect of ACM on

NK cells occurs, the apoptosis of KG-1a and HL-60 cells, and

normal PBMNCs following treatment with ACM, allogeneic NK

cells or a combination of both (Figures 4–E). To do this, 40 nmol/l

ACM together with allogeneic NK cells at an effector to target ratio

of 20 was used to treat KG-1a and HL-60 cells, and normal
Frontiers in Immunology 06
PBMNCs based on the results of the previous step, as this

combination can yielded marked inhibitory effects.

First, the apoptotic ratio of KG-1a cells following ACM

treatment was examined using FCM (Figures 4A, B), and it was

found to be increased as the treatment time increased from 24 to

72 h. Following allogeneic NK cell treatment (Figures 4A, B), the

apoptotic ratio was slightly increased and only the ratios at the 72-

and 96-h timepoints were found to be higher than the ratio at the

24-h timepoint. The combination treatment of ACM and allogeneic

NK cells induced a marked improvement in the apoptotic ratio of

the cells at the 72-h timepoint, which was maintained until the 96-h

timepoint (Figure 4B). The combination treatment group exhibited

the highest cell apoptosis among the three groups at both the 72-

and 96-h timepoints.

The apoptotic ratio of the HL-60 cells following ACM treatment

(Figures 4C, D) was significantly increased from 24 to 96 h. The

allogeneic NK cell treatment also induced a slight improvement in

the apoptotic ratio. The combination treatment groups induced a

marked increase in apoptosis from the 24- to the 72-h timepoint.
FIGURE 4

Representative flow cytometry images of (A) KG-1a cells, (C) HL-60 and (E) PBMNC following combination treatment with allogeneic NK cells and
ACM. ACM (40 nmol/l) and allogeneic NK cells (effector to target ratio was 20) were administered alone or together to KG-1a cells and the
incubation time ranged from 24 to 96 h. Afterwards, the apoptosis of these cells was determined by FCM. Quantitative analysis of the apoptotic ratio
of the (B) KG-1a, (D) HL-60 and (F) PBMNC after the combination treatment of allogeneic NK cells and ACM. Data are presented as the mean ± SD.
*P<0.05, **P<0.01, ***P<0.001 and ****P<0.0001.
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There were no significant differences between the values at 72 and

96 h from treatment. Following a comparison of the three treatment

groups, the combination group showed the highest apoptotic ratios

from the 48- to the 96-h timepoint. In combination, these results

demonstrated that ACM can potentiate allogeneic NK cell
Frontiers in Immunology 07
cytotoxicity, suggesting that the combination of allogeneic NK

cells with ACM could lead to synergistic effects against AML

cells. Of note, the combination of allogeneic NK cells with ACM

did not trigger a significant increase in the apoptotic ratios of

normal PBMNCs following treatment for 24-96-h (Figures 4E, F).
FIGURE 5

Modulation of the expression of ICD pathway-related molecules in KG-1a cells following combination treatment with ACM and allogeneic NK cells.
(A) Western blotting of CRT, ATP and HMGB1. (B-D) Quantification analysis of the western blotting results for CRT, ATP and HMGB1 respectively.
ACM (40 nmol/l) and allogeneic NK cells (effector to target ratio was 20) were administered alone or together to the KG-1a cells and the incubation
time ranged from 24 to 96 h. The levels of CRT, ATP and HMGB1 were then analyzed by western blotting, followed by ImageJ quantification. CRT,
calreticulin; ATP, adenosine triphosphate; HMGB1, high mobility group box 1.
FIGURE 6

Modulation of ICD pathway related molecules expression of HL-60 cells by the combination treatment of ACM and allogeneic NK cells. (A) Western
blotting of CRT, ATP and HMGB1. (B-D) Quantification analysis of CRT, ATP and HMGB1 from western blotting results, respectively. ACM (40 nmol/l)
and allogeneic NK cells (effector to target ratio was 20) were administered alone or together to the KG-1a cells and the incubation time ranged from
24 to 96 h. The levels of CRT, ATP and HMGB1 were analyzed by western blotting, followed by ImageJ quantification.
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Upregulation of ICD-related molecules in
AML cells by combination treatment of
ACM and allogeneic NK cells

Ear l i e r s tud ies have repor ted that anthracyc l ine

antineoplastic drugs may contribute to antitumor responses by

inducing a special form of tumor-cell killing, known as ICD. We

asked whether the combination treatment with ACM and

allogeneic NK cells induce ICD to a similar extent. Therefore,

the levels of ICD-related molecules in AML cells were analyzed by

western blotting following combination treatment with ACM and

allogeneic NK cells (Figure 5A). Regarding the protein expression

in the KG-1a cells (Figures 5B–D), the results showed that the

combination group displayed a much higher CRT level compared

to that in the ACM and NK groups at the 48-, 72- and 96-h

timepoints. The combination group exhibited a higher ATP

expression than that in the other two groups at the 96-h

timepoint. No statistical differences in HMGB1 expression were

observed between the combination and ACM group at the 72-

and 96-h timepoints.

Figure 6 showed the protein expression of the HL-60 cells after

various treatments. The CRT levels of the 72- and 96-h timepoints

of the combination treatment group were significantly higher than

the ones of other groups at the same timepoints (Figures 6A, B). In

turns of the ATP expression, the combination group showed the

highest ATP expression at the 48- to 96-h timepoints among the

groups of the same timepoints (Figure 6C). For the HMGB1

expression, the values of the 48- and 96-h timepoints of the

combination group were obvious higher than the ones of the

other two groups at the same timepoints (Figure 6D).

Additionally, the value of the 72-h was the highest among the

three groups for the same timepoint. These data confirm that ACM
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enhances the killing effect of allogeneic NK cells on AML cells via

inducing ICD.
Activation of allogeneic NK cells by ACM

The release of perforin and granzyme B is direct evidence of the

killing effect of NK cells following activation (39). Therefore, the

detection of the levels of perforin and granzyme B proteins can

effectively demonstrate whether allogeneic NK cells are activated.

Thus, the levels of perforin and granzyme B of HL-60 cells following

treatment were tested. In Figure 7, it is shown that the perforin

expression was increased from 24 to 72 h and maintained after 96 h

through combination treatment (Figures 7A, B). The combination

treatment group showed the highest value among the three groups

at the same timepoints. Granzyme B expression was higher in the

combination group compared with the other two treatment groups

at the 24, 48 and 72 h (Figures 7A, C).
Discussion

ACM has been widely used in the treatment of hematological

malignancies and solid tumors; however, its mechanism in cancer

treatment is not entirely clear. It has been reported that ACM can

either increase or decrease NK-cell activity depending on the

administered dose (32). Herein, the capacity of ACM to enhance

the allogeneic NK cell killing activity against AML cells was

investigated. The present results clearly indicated that the

combination of ACM and NK cells can synergistically inhibit the

viability and induce the apoptosis of AML cells. Furthermore, these

results proved that the superior killing effect of the combination
FIGURE 7

Activation of allogeneic NK cells by ACM. (A) Western blotting for perforin and granzyme B. (B) Quantification of perforin based on the western
blotting results. ACM (40 nmol/l) and allogeneic NK cells (effector to target ratio was 20) were administered alone or together to HL-60 cells, with
incubation times ranging from 24 to 96 h. (C) Quantification of granzyme B based on the western blotting results. The same conditions as in
(B) were applied for granzyme B. The levels of perforin were quantified using ImageJ.
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treatment on AML cells was due to the induction of ICD and the

activation of NK cells via ACM. Therefore, the present study may

provide new prospects for the treatment of AML.

Several studies have shown that NK cell-mediated AML therapy

following hematopoietic stem cell transplantation is safe (40–42).

However, only a limited therapeutic effect was showed when NK

cells were used as monotherapy (43), which may be associated with

the different immune escape mechanisms of AML cells which may

lead to the dysfunction of NK cells (44, 45). Furthermore, the

differentiation of NK cells may be inhibited by tumor cells (41, 46).

Therefore, it is critical to reactivate NK cells during the treatment of

AML (47). It has been proven that the reactivation of NK cells may

be induced by certain drugs, including cytotoxic drugs, immune

adjuvants and IFN. Previous studies have shown that ACM

combined with other drugs can enhance the toxicity to tumor

cells (27, 31). However, little is known about the combination of

ACM and allogeneic NK cells against AML. Hence, the effect of

combination treatment with allogeneic NK cells and ACM on the

viability and proliferation of KG-1a and HL-60 cells. These results

showed that, as compared with NK cell treatment alone, the

combination treatment induced marked viability inhibition that

was time- and dose-dependent. Of note, KG-1a and HL-60 cell

metabolism was inhibited to a greater extent when ACM (40 nmol/

l) was combined with NK cells at an effector to target ratio of 20.

The same ACM concentration also contributed the most to the

killing effect of allogeneic NK cells on AML cells, which was

consistent with previously reported results (31).

In the next experiment, the possible mechanism underlying the

synergistic killing effect of allogeneic NK cells and ACM on AML

cells was explored. A previous study has shown that certain

chemotherapeutic drugs can provoke ICD and lead to cancer cell

apoptosis (48). Through this pathway, chemotherapeutic drug-

induced tumor cell autophagy emits three signals: CRT exposure

on the cell surface to stimulate DC phagocytosis, ATP release to

recruit DCs and HMGB1 release to promote the stable binding of

DCs to dying tumor cells and induce anti-tumor immune responses

(49). The ICD-related markers were evaluated in this study. It was

found that the levels of CRT, ATP and HMGB1 of HL-60 cells

following the combination treatment were significantly higher than

those in the control and monotherapy groups. It is still unclear why

the combination treatment only induced higher CRT and ATP

levels, but not the HMGB1 level in the KG-1a cells compared with

single treatments. Currently, the combination of different

concentrations of ACM and the ratios of effector/target cells on

the KG-1a cells was explored. Nevertheless, these results suggested

that ACM can activate the ICD pathway in AML cells, which in turn

can enhance the anti-AML activity of allogeneic NK cells.

Konjevic et al. (23) reported the various functions andmodulation

of NK cells in different malignancies. The role of NK cells in anti-

tumor adoptive cell immunotherapy has attracted increasing interest

in recent years (22). NK cells are not only non-specific immune cells

that can kill tumor and virus-infected cells, but also effective in the

treatment of AML and acute lymphoid leukemia with a poor

prognosis (50–52). This effect of NK cells is mediated by toxic
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molecules, such as perforin and granzyme B, released following NK

cell activation.When NK cells get in contact with their target, perforin

is released to form a tubular channel of polyperforin, triggering the

lysis and destruction of target cells (53). Granzyme B is the most

important serine protease contained in the granules of NK cells. This

protein can enter the target cells and activate a caspase cascade,

causing DNA breakage and apoptosis (54). In the present study, the

activation of allogeneic NK cells by ACMwas confirmed in the HL-60

culture. The present data showed that the killing activity of NK cells

on AML cells following activation of NK cells by ACM in vitro.

In conclusion, the present study comprises the first systematic and

in-depth analysis of NK cell-mediated anti-leukemia responsiveness

through the activation of ACM in vitro. It was also confirmed that this

activation may follow the ICD pathway. Though the specific

mechanism of ACM-enhanced killing activity of the NK cells needs

to be further elucidated, this study provided a deeper understanding

and an experimental basis for targeted therapy for AML through

allogeneic NK cell-mediated anti-tumor immune activation.
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