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predictive analysis, and
biological significance in various
malignant tumors in humans
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YanTeng Xie2, Ziqian Xia2, Chao Chen2, Aijun Sun1*,
Shasha Zhang3* and Shiyan Wang2*
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The Second People’s Hospital of Huai’an, Huai’an, Jiangsu, China, 2Faculty of Life Science and Food
Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, China, 3Key Laboratory of Systems
Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University,
Shanghai, China
Background: The SUSD3 protein, marked by the Sushi domain, plays a key role in

cancer progression, with its expression linked to tumor advancement and patient

prognosis. Altered SUSD3 levels could serve as a predictive biomarker for cancer

progression. Recognized as a novel susceptibility marker, SUSD3 presents a

promising target for antibody-based therapies, offering a potential approach

for the prevention, diagnosis, and treatment of breast cancer.

Methods: Using the HPA and GeneMANIA platforms, the distribution of SUSD3

protein across tissues was analyzed, while expression levels in tumor and healthy

tissues were compared using The Cancer Genome Atlas data. The TISCH and

STOmics DB databases facilitated the mapping of SUSD3 expression in different

cell types and its spatial relationship with cancer markers. Univariate Cox

regression assessed the prognostic significance of SUSD3 expression in various

cancers. Genomic alterations of SUSD3 were explored through the cBioPortal

database. The potential of SUSD3 as a predictor of immunotherapy response was

investigated using TIMER2.0, and GSEA/GSVA identified related biological

pathways. Drugs targeting SUSD3 were identified through CellMiner, CTRP,

and GDSC databases, complemented by molecular docking studies. In vitro

experiments demonstrated that SUSD3 knockdown in breast cancer cell lines

significantly reduced proliferation and migration.

Results: SUSD3 expression variations in pan-cancer cohorts are closely linked to

the prognosis of various malignancies. In the tumor microenvironment (TME),

SUSD3 is predominantly expressed in monocytes/macrophages and CD4+ T cells.

Research indicates a strong correlation between SUSD3 expression and key cancer

immunotherapy biomarkers, immune cell infiltration, and immunomodulatory

factors. To explore its immune regulatory role, StromalScore, ImmuneScore,

ESTIMATE, and Immune Infiltration metrics were employed. Molecular docking

studies revealed that selumetinib inhibits tumor cell proliferation. Finally, SUSD3

knockdown reduced cancer cell proliferation and migration.
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Conclusion: These findings provide valuable insights and establish a foundation

for further exploration of SUSD3’s role in pan-carcinomas. Additionally, they offer

novel perspectives and potential targets for the development of innovative

therapeutic strategies in cancer treatment.
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1 Introduction

Cancer remains one of the most formidable public health

threats to human life and well-being. As a leading cause of

mortality, it also constitutes a significant barrier to the extension

of life expectancy worldwide (1). The Global Report on Cancer

Statistics 2022, published on April 4, 2024, provides an updated

overview of the incidence, mortality, and disease burden across 36

cancer types in 185 countries, offering insights into their

distribution by gender and age group (2). Notably, the global

impact of breast cancer on women’s health is particularly

profound, with the incidence of this malignancy ranking first

among women (3). The onset of many cancers is intricately

linked to genetic mutations and deletions. Under normal

circumstances, human growth and development are meticulously

regulated by genes. However, genetic aberrations can disrupt this

finely tuned process, triggering uncontrolled cellular proliferation

and ultimately facilitating the emergence of cancer. Consequently, a

deeper understanding of the molecular mechanisms underlying

cancer, coupled with comprehensive cancer-wide expression

analyses, is crucial for advancing diagnostic and therapeutic

strategies. In recent years, large-scale initiatives such as The

Cancer Genome Atlas (TCGA) have amassed a wealth of data,

providing invaluable resources for future cancer research (4, 5). By

systematically integrating and analyzing these datasets, researchers

can explore the functional roles and prognostic significance of

cancer-associated genes, thereby laying a solid foundation for the

resolution and treatment of this pervasive disease.

The SUSD protein family, which includes SUSD2, SUSD3,

SUSD4, and SUSD6, is characterized by the presence of Sushi

domains. The expression levels of these proteins are closely linked

to the prognosis of various cancers. For instance, SUSD2, a Sushi-

containing protein (6), is primarily involved in a wide range of

physiological and pathological processes beyond complement

regulation, exhibiting distinct regulatory effects across different

tumor types (7). SUSD4, which acts by inhibiting the

complement system, plays a significant role in immune regulation

(8). SUSD6, a negative regulator of MHC-I, is implicated in

immunomodulation (9). SUSD3, a novel gene within the E2/ER

signaling pathway, is particularly associated with immune

modulation and has been identified as a potential biomarker for

the therapeutic sensitivity of aromatase inhibitors (AIs) in breast
02
cancer treatment (10). Despite the growing body of research, the full

extent of the SUSD family’s role in tumors remains underexplored.

Therefore, a comprehensive analysis of its functions, regulatory

mechanisms, and structural and spatial distribution is essential.

Such studies may offer new insights into the development of

innovative cancer therapies (11).

With the growing body of research elucidating the relationship

between the SUSD protein family and cancer, interest in this family of

proteins has intensified. In order to unravel the pathogenesis of cancer

and identify potential therapeutic targets, a thorough and in-depth

exploration of the target genes is essential to better understand their

functional roles and regulatory mechanisms. SUSD3, also known as

MGC26847, is a Sushi-containing protein 3, characterized as a cell

surface protein with extracellular, transmembrane, and cytoplasmic

domains. It is notably overexpressed in estrogen-sensitive tissues,

including the liver, breast tissue, myometrium, endometrium, and

ovaries, with particularly high expression in breast cancer (12).

Previous studies have highlighted SUSD3 as a critical mediator of

estrogen signaling in breast cancer cells, suggesting its involvement in

estrogen-dependent metastatic processes. It has been proposed as a

potential biomarker for predicting both the occurrence and prognosis

of breast cancer, particularly in relation to estrogen receptor (ER) and

progesterone receptor (PR) status (13). Additionally, SUSD3 has been

shown to influence cell growth and migration, thereby contributing to

tumor progression (14, 15). As research continues to evolve, SUSD3 is

poised to emerge as a promising target for the diagnosis and treatment

of various cancer types, offering novel avenues for therapeutic

intervention. However, to date, investigations into the role of SUSD3

have primarily focused on a single cancer type, and its broader

implications across other malignancies remain inadequately explored.

This article offers a comprehensive analysis and discussion of

the role of SUSD3 across various cancer types. The expression levels

of SUSD3 in different tissues were assessed using the TIMER

database, followed by an exploration of its functional role in

cancer, including its interactions and co-expression with other

proteins. Additionally, the expression and prognostic significance

of SUSD3 across multiple tumors were investigated through the use

of databases such as TISCH, STOmics DB, TCGA, cBioPortal,

GSCA, and others. The relationship between the SUSD3 gene and

key immunomodulators, tumor mutational burden (TMB), and

microsatellite instability (MSI) was also explored, further

establishing SUSD3 as a promising biomarker for cancer
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immunotherapy. The study examined the correlation between

SUSD3 expression and immune cell infiltration, alongside its

association with immunomodulatory genes, to better understand

its biological relevance in tumor biology. Moreover, molecular

docking analysis was conducted on potential therapeutic agents

sourced from the CellMiner, CTRP, and GDSC databases, testing

the sensitivity of SUSD3 to various anticancer drugs. The findings

underscore the pivotal role of SUSD3 in cancer research and

development, presenting new targets and therapeutic strategies for

cancer treatment. Additionally, SUSD3 emerges as a reliable

prognostic marker for numerous cancers, opening new avenues

for further investigation into its clinical application in oncology.
2 Methods

2.1 Data access and processing

Initially, a bubble map illustrating diseases associated with

SUSD3 was generated using the openTargetWeb tool (URL:

https://platform.opentargets.org/). The subcellular localization

of SUSD3 was subsequently determined through data from

the Human Protein Atlas (HPA) database (URL: https://

www.proteinatlas.org/). Following this, pan-cancer data

downloaded from the TIMER database were utilized to analyze

the differential expression of SUSD3 and its RNA sequencing data

across various cancer types. These datasets were then processed in a

unified manner using the Toil pipeline to ensure consistency across

all data points (16). To further investigate the expression of SUSD3

across different organs, with 33 distinct expression levels, the

Cancer Cell Line Encyclopedia (CCLE) database (URL: https://

portals.broadinstitute.org/ccle/) was leveraged to compute cancer

cell coefficients. Simultaneously, the GeneMANIA tool (URL:

http://www.genemania.org) was employed to construct a protein-

protein interaction (PPI) network (17), providing crucial information

on the interactions of the SUSD3 protein. This network aided in

formulating hypotheses regarding gene functions and identifying

genes with comparable roles, particularly in areas such as

physical interactions, immune-related pathways, prediction models,

colocalization, genetic interactions, and shared protein domains (18).

Furthermore, data from two cohorts - GSE120575 and GSE103322

(URL: https://www.ncbi.nlm.nih.gov/geo/), were incorporated for

further analysis. The GSE103322 dataset consisted of 5,902 single

cells from 18 patients with oral tumors (HINSCs), while the

GSE120575 dataset contained melanoma (SKCM) samples from 48

patients treated with checkpoint inhibitors, resulting in the acquisition

of 16,291 immune cells from their tumor samples. Specific details on

cancer abbreviations are provided in Supplementary Table S1.
2.2 Single-cell analysis and spatial
transcriptome analysis of SUSD3

Relevant single-cell analyses were conducted utilizing the

TISCH network tool (19). The analytical parameters included the
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gene SUSD3, major lineage (cell type annotation), and all cancer

types. To quantify and visualize the expression of SUSD3 across

different cell types, heatmaps, scatter plots, and violin plots were employed.

Additionally, the spatial distribution of SUSD3 was examined using the

STOmics DB transcription database (https://db.cngb.org/stomics/) (20).

The analysis revealed that SUSD3 exhibited significant spatial

overlap not only with M2 macrophage markers CD163 and

CD68, but also with the tumor cell marker CD4+ T cells,

suggesting a complex role in the TME.
2.3 Predictive analysis of SUSD3 in patients
with pan-cancer

Our findings encompass four distinct types of prognostic data:

overall survival (OS), disease-specific survival (DSS), disease-free

interval (DFI), and progression-free survival (PFS). To assess the

prognostic impact of SUSD3 expression across various cancer types,

we analyzed data from the TCGA database using Cox regression

analysis, facilitated by the PanCanSurvPlot web platform (URL:

https://smuonco.shinyapps.io/PanCanSurvPlot/). Additionally, the

IlluminaHiSeq platform was employed to determine the optimal

cut-point grouping method for each cancer type. The hazard ratio

(HR) was then calculated and visualized as a “woodland” plot using

the R package, with a 95% confidence interval (95% CI) to assess the

statistical significance of the results.
2.4 Alterations in the cancer-associated
genome of SUSD3

Genomic alterations across four distinct types were analyzed in

tumors using the cancer type summary module from the cBioPortal

platform (URL: https://www.cbioportal.org/) (21). Subsequently,

the GSCA database (22) (URL: http://bioinfo.life.hust.edu.cn/

GSCA) was utilized to assess the differential methylation levels of

the SUSD3 gene across various cancer tissues, as well as the correlation

between SUSD3 mRNA expression and its methylation status. Survival

differences between these factors were also compared. Spearman

correlation analysis was conducted to explore the relationship between

SUSD3 copy number variation (CNV) and mRNA expression across

pan-cancer datasets, with p-values adjusted for false discovery rate (FDR).

Finally, a time-series analysis was performed to minimize statistical

discrepancies in OS, DSS, and PFS.
2.5 Predictive analysis of immunotherapy

Somatic mutation data were retrieved from the TCGA database

(https://tcga.xenahubs.net) and subsequently analyzed using the R

package “maftools” to calculate the TMB and MSI for each sample.

Spearman correlation analysis was performed to assess the statistical

relationships between SUSD3 and known immunotherapy

biomarkers, TMB, MSI, and other established immune checkpoint

genes across various cancers. The results were visualized using radar
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plots generated by the “ggradar” package in R. Additionally, the

optimal cutoff values were determined using the R package

“Survival”, and the resulting two treatment cohorts were utilized to

compute survival rates and analyze immune responses. Further

investigation was conducted to explore the relationship between

MMR genes (including MLH1, MSH2, MSH6, PMS2, and EPCAM)

and SUSD3 expression. The findings were presented in heatmaps

generated using the “tidyverse” and “ggnewscale” R packages.
2.6 Effect of SUSD3 expression
on immunity

First, the correlation between SUSD3 gene expression and the

TME was analyzed using the Illumina platform. The “limma” and

“estimate” R packages were then employed to comprehensively

evaluate the stromal, immune, and ESTIMATE scores across

different tumor types. Next, Spearman correlation analysis was

conducted using data from the TCGA and TIMER 2.0 databases

to explore the relationship between SUSD3 expression and immune

cell infiltration, with an emphasis on potential interactions between

these factors. Additionally, 150 immune-related genes, including

those encoding major histocompatibility complex (MHC)

molecules, immune suppressive factors, chemokine receptors,

immune activation factors, and chemokine proteins, were

downloaded from the TISDB database. The relationships between

these immune-related genes and SUSD3 were analyzed using the

“limma”, “pheatmap”, and “ggplot2” R packages (23).
2.7 Significance of SUSD3 in biology

GSEA and GSVA were performed on SUSD3 using the

“tidyverse” , “ l imma” , “org.Hs.eg.db” , “gseaplot2” , and

“clusterProfiler” R packages (3) to explore its biological

significance in various tumors. Based on the median expression

levels of SUSD3 across different cancer types, normalized

enrichment scores were calculated, and samples were grouped

accordingly. The differential gene expression between high and

low expression groups was compared by assessing the FDR. To

further investigate the biological relevance of SUSD3 in cancer, the

samples were classified into high and low expression groups, and

GSVA analysis was conducted using the GSVA, “ggprism”,

“GSEABase”, “ggthemes”, “BiocParallel”, “tidyverse”, and

“clusterProfi ler” R packages. This approach enabled a

comprehensive evaluation of the differential enrichment of

biological pathways and gene sets associated with SUSD3

expression in the tumor context.
2.8 Drug sensitivity and molecular docking
of SUSD3

To explore the potential association between SUSD3 and drug

response, cancer researchers utilized several databases, including the

CellMiner database (URL: http://discover.nci.nih.gov/cellminer/) (24),
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the CTRP database (URL: http://portals.broadinstitute.org/ctrp/),

and the GDSC database (URL: https://www.cancerrxgene.org/).

These resources were leveraged to conduct anticancer drug

screening using the NCI-60 cancer cell line panel, and the data

from this cell line collection were compiled and downloaded via

CellMiner. The analysis and filtering of FDA-approved or clinical

trial-stage drug data were conducted using the “limma” and

“Impute” R packages. Data with over 80% missing values were

discarded, and the remaining missing data were imputed using the

“Impute” package. Data visualization was performed using the

“ggplot2” and “pub” packages, with statistical significance set at a

p-value less than 0.05. A drug of interest, selumetinib, was selected

from the CellMiner, CTRP, and GDSC databases. Molecular

docking analysis of selumetinib and the SUSD3 protein was

performed using AutoDock4 software (25), which provided

insights into the binding modes and binding energies between

selumetinib and the SUSD3 protein. Subsequently, the molecular

structure of selumetinib was obtained from the PubChem database

(URL: https://pubchem.ncbi.nlm.nih.gov/), and the 3D structure of

the SUSD3 protein was retrieved from AlphaFold (URL: https://

alphafold.ebi.ac.uk/) (26, 27). Visualization and further analysis of

the docking models were carried out using PyMOL software.
2.9 Culture of cells

The human breast cancer cell line MCF-7 was purchased from the

Chinese Academy of Sciences Cell Bank (Shanghai, China). Cells were

cultured in a medium supplemented with 10% fetal bovine serum (FBS;

Procell) under standard conditions of 37°C and 5% CO2, with regular

monitoring for mycoplasma contamination. The human SUSD3 siRNA

and negative control siRNA used in the experiments were provided by

GenePharma (Shanghai, China). Following the manufacturer’s

instructions, siRNA transfection was carried out using the

Lipofectamine 3000 reagent (Invitrogen, CA, USA). The specific

sequences of the siRNAs used are provided in Supplementary Table S2.
2.10 Reverse transcription-quantitative
polymerase chain reaction (RT-qPCR)

Total RNA was extracted using TRIzol reagent (Takara Bio,

Kusatsu, Japan), and RNA concentration and purity were measured

using the NanoDrop 2000 system (Thermo Scientific). For reverse

transcription PCR (RT-PCR), PrimeScript™ RT Master Mix

(Takara, RR036A) was used, while real-time quantitative PCR

(qPCR) was performed with Sybr®Ex Taq™II (Takara, RR820A).

Gene expression analysis was conducted using the 2-DDCt method,

with ACTB serving as the internal reference gene. The primer

sequences for RT-qPCR are provided in Supplementary Table S3.
2.11 Determination of cell viability

Cell viability was accurately measured using the CCK-8 kit

(GK10001, GLPBIO, Montclair, California, USA). Cells were seeded
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in 96-well plates at a density of 2×10³ per well according to the

manufacturer’s instructions. After 24 or 48 hours of incubation, 10

ml of CCK-8 reagent was added to each well. Following an

additional 2-hour incubation, absorbance at 450 nm was

measured using a microplate reader to obtain the results, which

were subsequently analyzed.
2.12 Formation of colonies

The MCF-7 cell line was seeded at a density of 1,000 cells per

well on a 6-well plate, with three replicates for each condition. The

medium was replaced with fresh medium every three days. One

week later, the cells were fixed with methanol and stained with 0.5%

crystal violet. After allowing sufficient time for staining, the cells

were photographed, and the number of cloned cells was quantified

using ImageJ software.
2.13 Cell scratch wound healing assay

For the wound healing assay, cells transfected with the specified

siRNA were plated in 6-well plates at a density of 1 × 105 cells per

well, with 2% FBS added to the culture medium to minimize the

influence of cell proliferation on the results. A scratch was introduced

into the cell monolayer using a micropipette tip. Images of the wound

area were captured at 0 and 48 hours using a Nikon Ti-E inverted

microscope (Nikon Instruments, Florence, Italy). The wound area at

each time point was measured and analyzed with ImageJ software,

with the measurements at each time point normalized to the specific

moment of the initial wound area (T0).
2.14 Statistical analysis

The dataset was first processed by removing missing values and

duplicate results, followed by log2 (TPM + 1) transformation of the

TPM values. The Wilcoxon rank-sum test was then applied to

compare the expression of SUSD3 between normal and tumor

tissues to determine statistical significance. Based on the CCLE

database, the Kruskal-Wallis test was used to analyze the expression

of SUSD3. The paired or unpaired nature of the samples determined

whether a paired t-test or an unpaired t-test was employed to

compare SUSD3 expression levels between different tissues or

between tumor and normal tissues. A significance level of p <

0.05 was used. All analyses were performed using R software

(version 4.4.0; https://www.R-project.org).
3 Results

3.1 Differential expression and related
genes of SUSD3 in pan carcinoma

Figure 1 illustrates the overall scope of the study. The diseases

associated with SUSD3 were explored through the OpenTarget
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platform, where a bubble plot revealed a significant correlation

between SUSD3 and various malignancies, including breast cancer

and clear cell renal carcinoma, among others (Figure 2A). Following

this, immunohistochemical (IHC) analysis was conducted to

examine the differential expression of SUSD3 protein between

cancerous and normal tissues. Notably, the expression of SUSD3

was markedly elevated in breast cancer compared to normal breast

tissue (Figure 2B). To further investigate the variation in SUSD3

expression across different tumor types, RNA sequencing data were

analyzed via the TIMER database. The findings demonstrated a

pronounced upregulation of SUSD3 in several cancers, including

BRCA, COAD, LGG, PAAD, LUAD, READ, and STAD, in

comparison to normal tissue. Conversely, SUSD3 expression was

significantly reduced in CESC, CHOL, TGCT, and UCEC

(Figure 2C). To corroborate and delve deeper into the differences

in SUSD3 mRNA expression between pancreatic cancer and normal

tissues, an analysis using TIMER2.0 was performed. The results

confirmed an increased expression of SUSD3 across various

malignant tissues, notably in BRCA and ESCA (Figure 2D).

Further exploration of SUSD3 expression in diverse tissues was

conducted by collecting samples from 33 distinct organs to assess

potential expression variations. High levels of SUSD3 expression

were observed in the mammary glands, testes, pleura, bone marrow,

and lymphoid organs (Figure 2E). To investigate the functional role

of SUSD3 in cancer progression and its associated protein

interactions, a PPI network was constructed using the STRING

tool. The top ten proteins that were closely linked to SUSD3 were

identified: KRTCAP3, EVPL, CARD19, IL17RD, LRRC66, NAGLU,

SERPINB3, FGD3, CD207, and RASAL3 (Figure 2F). These genes

exhibit a strong correlation with SUSD3 and may be pivotal in the

pathogenesis of cancer.
3.2 Single-cell analysis of SUSD3 in
various cancers

Breaking the physical barrier limitation of the TME could

further optimize the existing tumor treatment protocols. To

investigate the primary cell types expressing SUSD3 within the

TME, a comprehensive single-cell analysis was performed on a

dataset comprising 77 cancer samples. The expression levels of

SUSD3 across 32 distinct cell types, including immune, stromal,

malignant, and functional cells, were assessed using the TISCH

network tool. The results indicated that SUSD3 was predominantly

expressed in immune cells, with a notable enrichment in

monocytes/macrophages and CD4+ T cells (Figure 3A). In a

specific dataset (GSE103322) containing 5,902 single cells derived

from 18 patients with HINSCs, SUSD3 expression was found to be

particularly evident in CD4+ T conventional cells (Tconv),

cytotoxic T lymphocytes, and CD8+ T-exhausted (Tex) cells

within the HINSC tumor microenvironment (Figure 3B).

Moreover, spatial transcriptional data obtained from the

STOmics DB database revealed a spatial overlap between SUSD3

expression and markers of M2 macrophages, namely CD163 and

CD68, within HINSC cancer tissues. This suggests co-expression of

SUSD3, CD163, and CD68 in these cell types (Figure 3C).
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Furthermore, an analysis of the GSE120575 dataset, which

encompasses 16,291 immune cells from tumor samples of 48

SKCM patients treated with immune checkpoint inhibitors

(ICIs), demonstrated that SUSD3 was predominantly expressed

in CD4+ Tconv cells, regulatory T (Treg) cells, cytotoxic T

lymphocytes , and CD8+ Tex cel l s within the SKCM
Frontiers in Immunology 06
microenvironment (Figure 3D). Spatial distribution analysis

using the STOmics DB database also showed that SUSD3 co-

localized with the tumor cell marker ANXA1 and the T cell marker

CCR7 in SKCM cancer tissues, indicating spatially similar

distributions. It is likely that SUSD3, ANXA1, and CCR7 are co-

expressed in these cell types (Figure 3E).
FIGURE 1

The study design flowchart outlines a systematic exploration of the target gene SUSD3 across a wide spectrum of cancers. Initially, the expression of
SUSD3 in pan-cancer was assessed, followed by an analysis of its association with various cancer types. The study compares expression disparities of
SUSD3 across 33 malignant and non-malignant tissues, as well as different cellular contexts. Subsequent analyses involved single-cell transcriptomic
and prognostic evaluations. A comprehensive investigation of the genomic landscape was conducted, focusing on genomic instability, utilizing data
from the cBioPortal and GSCA databases to analyze pan-cancer alterations, including CNVs and DNA methylation patterns. Further exploration was
undertaken to examine the correlation between SUSD3 expression and TMB, MSI, and MMR status. To elucidate the functional role of SUSD3 in
oncogenesis, the study delved into its involvement in immune modulation, analyzing sequence function enrichment, immune checkpoint dynamics,
cytokine receptor interactions, and immune cell infiltrates. Finally, the potential therapeutic implications of SUSD3 were explored through
predictions of chemotherapy response, drug sensitivity profiling, and related experimental assessments.
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FIGURE 2

Differential expression and related genes of SUSD3 in pancarcinoma. (A) Analysis of SUSD3-related diseases on the openTargetWeb tool. The
red dashed lines represent SUSD3-associated cancers. (B) SUSD3 protein expression in IHC images of the normal group (left) and tumor group
(right). (C) Pan-cancer data downloaded from the TIMER database were used to analyze SUSD3 expression differences, and RNA sequencing
data were analyzed. Statistical significance markers were *p < 0.05, **p < 0.01, ***p < 0.001. (D) The expression level of SUSD3mRNA in
pancarcinoma and its corresponding control tissues was analyzed by TIMER2.0. (Statistical significance was marked as *p < 0.05, **p < 0.01,
***p < 0.001). (E) The Kruskal-Wallis map was used to observe the difference in SUSD3 expression in 33 different organs. (F) PPI network
analysis of SUSD3 binding partners.
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FIGURE 3

Single-cell analysis of SUSD3 in various cancers. (A) SUSD3 expression summary of 32 cell types from 77 single-cell datasets. (B) The scatter plot
shows the distribution of 10 different cell types in the GSE103322HINSC dataset, as well as SUSD3 expression levels of cells in the GSE103322
dataset. (C) Spatial transcription slices showed the spatial expression of SUSD3, CD68, and CD163 markers, and the color of the dots indicated the
expression level of the markers. (D) The scatter plot shows the distribution of 10 different cell types in the GSE120575 dataset, as well as SUSD3
expression levels of cells in the GSE120575 dataset. (E) Spatial transcription slices showed the spatial expression of SUSD3, ANXA1, and CCR7
markers, and the color of the dots indicated the expression level of the markers.
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3.3 Prognostic analysis of SUSD3
expression levels in pan-cancer types

The expression levels of SUSD3 across various cancer types

were analyzed using data from the TCGA database, and the

association between SUSD3 expression and cancer prognosis was

examined through one-way Cox regression analysis. A heatmap

summarizing the prognostic analysis of SUSD3 across pan-cancer

datasets revealed that SUSD3 did not correlate with the prognosis of

KIRC but showed significant associations with the prognosis of

most other cancer types. Using the Cox proportional hazards

model, OS outcomes indicated that SUSD3 acted as a risk factor

in patients with LAML, LGG, and PAAD. Conversely, SUSD3 was

identified as a protective factor in patients with ACC, BLCA, BRCA,

CHOL, SKCM, UCEC, HNSC, LUAD, LUSC, MESO, KIRP, THCA,

PRAD, READ, SARC, THYM, UCS, and UVM (Figure 4A). In the
Frontiers in Immunology 09
DFS analysis, SUSD3 expression was positively correlated with DFS

in patients with BLCA, GBM, PAAD, and PRAD. It showed a

significant negative correlation with DFS in patients with ACC,

BRCA, CESC, KICH, SKCM, HNSC, LIHC, LUAD, LUSC, MESO,

KIRP, THCA, READ, SARC, TGCT, and UCS (Figure 4B). Given

that OS includes deaths from non-cancer causes, a subsequent

analysis focusing on the DSS was performed to better reflect the

impact of cancer treatments. In the DSS analysis, SUSD3 was

identified as a risk factor in patients with ESCA, STAD, LGG,

and PAAD. Additionally, SUSD3 was considered a risk factor in

ACC, BLCA, BRCA, CHOL, KICH, SKCM, GBM, HNSC, LUAD,

LUSC, MESO, KIRP, PRAD, READ, SARC, UCS, and UVM

(Figure 4C). Moreover, in the PFS analysis, SUSD3 was found to

be a risk factor in patients with COAD, ESCA, HNSC, LIHC, and

KIRP, while serving as a protective factor in patients with BLCA,

BRCA, CESC, LUAD, THCA, SARC, and TGCT (Figure 4D).
FIGURE 4

SUSD3 expression level in pan-cancer type prognosis Forest chart shows the prognostic role of SUSD3 in cancer by univariate Cox regression
method. SUSD3 expression was associated with OS (A), DFS (B), DSS (C), and PFS (D). Cancer types in red indicate that SUSD3 is a statistically
significant risk factor (HR value > 1) and cancer types in green indicate that SUSD3 is a statistically significant protective factor (HR value <1).
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3.4 The SUSD3 gene is altered in pan-
cancer and is associated with genomic
instability and alteration in cancer

Cancer is inherently characterized by genomic alterations that

drive its progression. To investigate whether the SUSD3 gene

undergoes genomic changes across various cancer types, its

alterations were analyzed using the cBioPortal database. The

analysis revealed that genomic alterations in the SUSD3 gene are

relatively rare across cancers, with the most common alteration

occurring in DLBC, where over 4% of patients exhibit alterations,

predominantly involving deep deletions (Figure 5A). Additionally,

CNV and methylation patterns of SUSD3 were explored using the

GSCA database. The CNV analysis demonstrated that the

proportion of heterozygous/pure CNV varied across cancer types,

with distinct colors representing different CNV categories. The

results indicated that in 33 different cancers, the frequency of

heterozygous deletions of SUSD3 significantly exceeded that of
Frontiers in Immunology 10
heterozygous amplifications (Figure 5B). Subsequently, Spearman

correlation analyses between SUSD3 CNV and mRNA expression

were performed across multiple cancers. The findings revealed a

significant positive correlation between SUSD3 CNV and mRNA

expression in TGCT, OV, and BLCA. Conversely, a notable

negative correlation between SUSD3 CNV and mRNA expression

was observed in LGG and UCEC (Figure 5C). Next, the samples

were stratified into three groups based on CNV status—WT (wild-

type), Amp (amplification), and Dele (deletion)—to examine the

survival implications of SUSD3 CNV across various cancers. The

results indicated that the SUSD3 CNV-high group exhibited poorer

OS rates in KIRP, UCEC, KIRC, and THYM (Figure 5D). Further

analysis revealed that patients with ACC had unfavorable prognoses

across all three survival measures (Figures 5E–G). DNA

methylation is critical in regulating gene expression and

maintaining stable gene silencing, as it is intricately linked with

histone modifications and chromatin structure. Thus, we performed

DNA methylation analysis to compare methylation levels between
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FIGURE 5

SUSD3 gene altered in pan-cancer, associated with genomic instability and alteration in cancer. (A) SUSD3 altered frequency analysis based on pan-
cancer studies in the cBioPortal database. (B) The proportion of each CNV in pancarcinoma. (C) Spearman correlation analysis was used to
investigate the relationship between SUSD3 CNV and mRNA expression. (D) SUSD3 CNV status was associated with OS, DSS, PFS, and DFI. (E-G) The
Kaplan-Meier survival curve was generated by the GSCA network tool to analyze the prognostic value of SUSD3 CNVs in ACC patients. (H) Analysis
of methylation differences between tumor and normal samples. (I) Spearman correlation analysis was used to study the relationship between SUSD3
methylation and mRNA expression. (J) SUSD3 methylation status was associated with the OS, DSS, PFS, and DFI. (K-M) Kaplan-Meier survival curves
were generated using the GSCA network tool to describe the risk of death in ACC patients with high and low methylation status.
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normal and tumor samples (28). THCA, KIRC, LUAD, HNSC, and

BRCA exhibited higher methylation levels compared to their

normal counterparts, whereas PRAD and LUSC tumors showed

lower methylation levels compared to normal tissues (Figure 5H).

Spearman correlation analysis between SUSD3 methylation and

mRNA expression indicated a strong association between

methylation levels and mRNA expression across most cancer

types, excluding PCPG and DLBC cancers. This correlation was

especially pronounced in TGCT, LIHC, THCA, and LAML

(Figure 5I). Further stratification of tumor samples into

hypermethylation and hypomethylation groups revealed that

patients with GBM, LGG, and LIHC tumors exhibited lower OS

with increased SUSD3 methylation levels (Figure 5J). Conversely,

higher SUSD3 methylation levels were associated with improved

survival outcomes in ACC patients (Figures 5K–M).
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3.5 The relationship between the SUSD3
gene and immunomodulator, TMB,
and MSI

To further investigate the role of SUSD3 in predicting the

efficacy of ICIs, the relationship between SUSD3 expression and

key immunotherapy biomarkers, such as TMB and MSI, was

explored. Both TMB and MSI are crucial factors in assessing the

sensitivity to ICIs and have been demonstrated to significantly

influence patient prognosis and treatment response (29, 30). The

analysis revealed a positive correlation between SUSD3 expression

and TMB in KIRP and BLCA, while a negative correlation was

observed in UCEC, THCA, STAD, PRAD, PAAD, OV, LUAD,

KIRC, and COAD (Figure 6A). Similarly, SUSD3 expression was

positively correlated with MSI in BLCA but negatively correlated
FIGURE 6

Relationship between SUSD3 gene and immunomodulators, TMB, MSI. (A) Correlation between SUSD3 expression and TMB in pancarcinoma.
(B) Correlation between SUSD3 expression and MSI in pancarcinoma. (C, D) Proportion of patients with melanoma/urologic tumors who responded
to anti-PD-1/anti-PD-L1 therapy in the GSE91061 (anti-PD-L1)/IMvigor210 (anti-PD-L1) (anti-PD-L1) and high SUSD3 patient groups in the low and
high SUSD3 patient groups. (E) The correlation between SUSD3 expression and five MMR genes in the pan-cancer cohort was shown by heat maps.
Statistical significance was marked as *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.
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with MSI in CHOL, LGG, LUAD, LUSC, MESO, READ, SARC,

STAD, TGCT, UCEC, and UCS (Figure 6B). These findings suggest

that SUSD3 has the potential to predict the response to ICIs across

various cancers. Further analysis was performed to assess the

predictive value of SUSD3 expression in ICI treatment outcomes.

In the GSE91061 melanoma cohort, patients with high SUSD3

expression exhibited significantly better survival rates compared to

those with low SUSD3 expression (Figure 6C). Additionally, in

patients with urinary tract cancers receiving anti-PD-L1 therapy,

higher expression of SUSD3 was associated with improved survival

and longer duration of response, as seen in the IMvigor210 cohort

(Figure 6D). To deepen the understanding of the potential

mechanisms underlying these observations, the relationship

between SUSD3 expression and the expression levels of MMR

genes—specifically MLH1, MSH2, MSH6, PMS2, and EPCAM—

was examined. In 33 cancer types, MMR gene expression levels

showed a negative correlation with SUSD3 expression in BLCA,

BLCA, CESC, DLBC, KIRC, OV, READ, SARC, SCKM, and other

cancers. In contrast, a positive correlation between MMR genes and

SUSD3 expression was observed in ACC, CHOL, HNSC, PAAD,

PCPG, and THYH (Figure 6E). Collectively, these results confirm the

potential of SUSD3 as a predictive biomarker for immunotherapy

response and underscore its promising role in cancer immunotherapy.
3.6 Relationship between SUSD3 gene
expression and immune-related factors

For optimal therapeutic outcomes, a comprehensive

understanding of the TME is essential. The TME is a multifaceted

ecosystem composed predominantly of immune cells, fibroblasts,

endothelial cells, pericytes, and other specialized tissue-resident cell

types (31). To explore the relationship between SUSD3 gene

expression and the TME, the stromal, immune, and ESTIMATE

scores across various tumor types were systematically evaluated. The

findings revealed a significant positive correlation between SUSD3

expression and the StromalScore, ImmuneScore, and ESTIMATE

scores in multiple cancer types, including BLCA, PAAD, PCPG, and

PLAD (Figure 7A). Additional results for ACC, BRCA, and PAAD

are presented in Figures 7B–J. These findings suggest that SUSD3

plays a pivotal role in modulating the TME and may be a key factor

influencing tumor progression and immune responses.
3.7 Correlation between SUSD3 gene
TIMER immune cell infiltration analysis and
immunomodulatory genes

To further elucidate the relationship between SUSD3 and

cancer immunity, a detailed investigation was conducted on the

correlation between SUSD3 expression and immune cell

infiltration. Spearman correlation analysis was performed using

pan-cancer immune cell infiltration data from the TIMER2.0

database. The analysis revealed a significant association between
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SUSD3 expression and the infiltration levels of various immune cell

types, including B cells, CAF cells, lymphoid progenitor cells,

dendritic cells, endothelial cells, eosinophils, CD4+ T cells,

macrophages cells, mast cells, CD8+ T cells, monocytes, MDSCs,

neutrophils, NK cells, Tfh cells, g/d T cells, and Tregs across a wide

array of TCGA cancers. Notably, SUSD3 expression was positively

correlated with the infiltration of B cells, CAF cells, dendritic cells,

CD4+ T cells, macrophages, CD8+ T cells, monocytes, NK cells, and

Tregs cells in most tumor types, while it exhibited a negative

correlation with the infiltration of MDSCs in cancers such as

CHOL, GBM, LGG, PCPG, SRC, and SKCM (Figure 8). Recent

studies have emphasized the crucial roles of CD4+ T cells, MDSCs,

neutrophils, and macrophages in cancer immunotherapy (32, 33),

underlining the importance of immune cells in therapeutic

responses. The findings suggest that SUSD3 may influence cancer

initiation, prognosis, and therapeutic outcomes through its

modulation of immune cell infiltration. In addition, the

relationship between SUSD3 expression and immune response

genes was examined. Analysis of pan-cancer gene expression

revealed that most of the correlated genes encode MHC proteins,

immunosuppressive factors, immune-activating proteins,

chemokine receptors, and chemokines. As shown in the heatmap,

SUSD3 exhibited a significant negative correlation with these

immune response genes in BRCA, KICH, and KIRC, while it was

positively correlated with the same genes in other tumor types

(Figure 9). These results indicate that SUSD3 might play a pivotal

role in shaping the immune landscape of tumors and could be a

valuable target for cancer immunotherapy.
3.8 Biological implications for the
expression of SUSD3 in tumors

To gain deeper insights into the mechanistic role of SUSD3 in

tumors, its functional pathways were further investigated through

sequence function enrichment analyses. Based on the median

expression levels of SUSD3 across various cancer types, the

samples were stratified into two groups: one representing high

expression and the other low expression of SUSD3. GSEA and

GSVA were subsequently performed on both groups. In the GSEA

enrichment analysis, key functional pathways were explored,

focusing on the Kyoto Encyclopedia of Genes and Genomes

(KEGG) and Gene Ontology (GO) categories. Notably, SUSD3

was identified as a positive regulator of several critical processes

in BRCA, including extracellular matrix structural components,

IRE1-mediated unfolded protein responses, platelet activation,

amoebiasis, nitrogen metabolism, protein digestion and

absorption, and the synthesis of proteoglycans that contribute to

the tensile strength of the extracellular matrix. In contrast, SUSD3

was found to negatively regulate pathways such as circulating

immunoglobulin complexes, immunoglobulin receptor

interactions, and autoimmune thyroid disease. In PAAD, SUSD3

functioned as a positive regulator of immunoglobulin receptor

binding, MHC protein complex formation, and systemic lupus
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erythematosus. However, it was also found to negatively regulate

cellular processes such as cell component morphogenesis and ion

transmembrane transporter activity (Figure 10A). These findings

suggest that SUSD3 plays a complex and context-dependent role in

modulating immune-related activities in BRCA and PAAD. To

further comprehend the biological significance of SUSD3

expression in tumors, GSVA was conducted to assess the

enrichment of specific pathways associated with its expression.

The results revealed that SUSD3 expression positively correlated

with numerous immune-related pathways, including immune

response, inflammatory response, negative T cell selection,

leukocyte-mediated signaling, immune trafficking, biosynthesis,

and primary immunodeficiency pathways. Conversely, SUSD3

expression was negatively correlated with the biosynthesis of
Frontiers in Immunology 13
glycosphingolipids, olfactory signaling, chloride ion transport,

nerve fiber junctions and synapse formation, as well as nitrogen

transport and utilization efficiency (Figure 10B). These observations

further underscore the multifaceted role of SUSD3 in modulating

immune functions and cellular processes within the TME.
3.9 The sensitivity of SUSD3 to drugs and
the relationship between molecular
docking of targeted compounds

To investigate the relationship between SUSD3 expression and

potential therapeutic agents, a comprehensive drug analysis was

conducted. The results revealed that several anticancer drugs,
FIGURE 7

SUSD3 gene expression and immune-related factors. (A) Spearman Spearman analysis was used to analyze the relationship between SUSD3
expression and ImmuneScore, StromalScore, and EstimateScore. (Statistical significance was marked as *p < 0.05, **p < 0.01, ***p < 0.001, ****p <
0.0001) Relationship between the expression of SUSD3 in three cancers and ImmuneScore, StromalScore, EstimateScore: ACC (B-D), BRCA (E-G),
PAAD (H-J).
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including trametinib, selumetinib, RDEA119, PD-0325901,

docetaxel, BMS-754807, and 17-AAG, were positively correlated

with SUSD3 expression. Conversely, drugs negatively correlated

with SUSD3 expression encompassed AICAR, apicidin, AT−7519,

AZD7762, belinostat, bosutinib, BRD−A86708339, ciclopirox

olamine, COL−3, CUDC−101, decitabine, elocalciferol, I−BET

−762, methotrexate, NG−25, PHA−793887, PIK−93, PX−12, and
Frontiers in Immunology 14
TL−1−85 (Figure 11A). To further elucidate the interaction between

SUSD3 and these drugs, molecular docking studies were performed

using Autodock4 software, which provided insights into the binding

affinity between the SUSD3 protein and the selected anticancer

drugs. The docking analysis revealed the binding sites and the

maximum binding energy for each drug-SUSD3 interaction.

Notably, previous research has established that selumetinib, a
FIGURE 8

SUSD3 gene TIMER analysis of immune cell infiltration. The expression of SUSD3 in pan-cancer with B cells, CAF cells, lymphoid progenitor cells,
dendritic cells, endothelial cells, eosinophils, CD4+ T cells, macrophages, mast cells, CD8+ T cells, monocytes, myeloid suppressor cells, neutrophils,
NK cells, Tfh cells, g/d T cells, and Tregs cells were analyzed from the TIMER2.0 database. Red is positively correlated, and blue is
negatively correlated.
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non-ATP-competitive and highly selective MEK1/2 inhibitor,

effectively suppresses tumor cell proliferation in vitro (34, 35). It

has been demonstrated to inhibit the proliferation of malignant

peripheral nerve sheath tumor (MPNST) cells, promote apoptosis,

and significantly reduce cell invasion and migration. Selumetinib

exerts its antitumor effects by modulating key protein kinases in

immune-related pathways (36). Molecular docking analysis of
Frontiers in Immunology 15
selumetinib with SUSD3 revealed not only a strong interaction

between the two but also the formation of a stable structure through

hydrogen bonding. The maximum binding energy between SUSD3

and selumetinib was calculated to be −2.17 kJ/mol, indicating a

strong affinity between the protein and the drug (Figure 11B). These

findings suggest that SUSD3 may serve as a potential biomarker for

predicting the efficacy of specific anticancer agents.
FIGURE 9

SUSD3 gene expression and immunoregulatory genes Relationship between SUSD3 expression and (A) MHC gene, (B) immunosuppressive factor,
(C) chemokine receptor, (D) immune activator, (E) chemokine. (mark to *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
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3.10 Relationship between silencing of
SUSD3 and cell reproduction

Using siRNA technology, cancer cell lines with SUSD3

knockdown were generated to investigate the biological

significance of SUSD3 and its underlying mechanisms. The

samples were divided into three groups: one as a negative control
Frontiers in Immunology 16
(NC), and the other two as SUSD3-knockdown groups, namely

SUSD3-sh1 and SUSD3-sh2. Compared to the NC group, the

expression in the latter two groups was markedly downregulated

(Figure 12A). The results of our experiments demonstrated a

marked reduction in breast cancer cell proliferation following

SUSD3 silencing (Figures 12B, C). Furthermore, subsequent

assays revealed a significant decrease in the migratory capacity of
FIGURE 10

Biological implications for the expression of SUSD3 in tumors. (A) GO functional annotation and KEGG pathway analysis of SUSD3GSEA in BRCA and
PAAD. The different colored curves depict the different functions or pathways of regulation in different types of cancer, with peaks on the ascending
curve indicating positive regulation and peaks on the descending curve indicating negative regulation. (B) GSVA results were obtained using GO and
KEGG datasets for BRCA and PAAD. The dark blue bars indicate the paths with the most significant positive correlation, the green bars indicate the
paths with the most significant negative correlation, and the gray bars indicate the unimportant paths (FDR>0.05). The horizontal axis represents the
log10 (P-value) of the GSVA score.
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cancer cells upon reduction of SUSD3 expression (Figure 12D).

These findings suggest that SUSD3 plays a critical role in promoting

both the proliferation and migration of cancer cells, underscoring

its potential as a therapeutic target in cancer treatment.
4 Discussion

Cancer immunotherapy, particularly targeting immune

checkpoint inhibitors, has demonstrated remarkable clinical success

in treating various tumor types. However, due to tumor heterogeneity

and individual variations in immune responses, the efficacy of

immunotherapy remains significantly limited in numerous

malignancies, presenting a substantial challenge for cancer patients

(37). The identification of reliable biomarkers capable of accurately

predicting patient responses to immunotherapy is essential for

tailoring personalized treatment strategies. In this context, the

present study highlights SUSD3 as a promising pan-cancer
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prognostic biomarker with the potential to predict responses to

immunotherapy effectively. Moreover, the findings of this research

offer valuable insights into the role of SUSD3 in cancer treatment,

paving the way for further investigation into its therapeutic potential.

In recent years, the increasing incidence of cancer, particularly

in women’s health, has garnered significant attention within the

biomedical field. One prominent risk factor for breast cancer is the

accumulation and overexposure to estrogen. AIs have emerged as

the most effective endocrine treatment for estrogen-dependent

cancers post-menopause. However, resistance to AIs remains the

primary cause of therapeutic failure (13). Consequently, numerous

studies have indicated that SUSD3 could serve as a novel tumor

marker, capable of predicting therapeutic outcomes and playing a

pivotal role in forecasting both the prognosis of breast cancer and

the efficacy of adjuvant therapies. As research progresses, the

significance of SUSD3 in various cancer types has become

increasingly apparent, positioning it as a key player in the

evolving landscape of pan-cancer research.
FIGURE 11

The sensitivity of SUSD3 to drugs and the relationship between molecular docking of targeted compounds. (A) Analyze the relationship between
SUSD3 expression and predicted drug response in CellMiner, CTRP, and GDSC databases. (B) Prediction of Selumetinib interaction with SUSD3
protein. (a) A structural diagram of SUSD3 egg white versus Selumetinib is shown. (b) Enlarged view of the interaction of Selumetinib with
SUSD3 protein.
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Initially, the OpenTarget tool was utilized to explore diseases

associated with SUSD3, followed by an investigation of its

expression across various cancer types using the TIMER database.

The findings revealed a significant upregulation of SUSD3

expression in BRCA and LGG. However, high levels of SUSD3

expression were not limited to these two cancers; it was also notably

elevated in five other cancer types. This suggests that SUSD3 plays

distinct roles in different malignancies. Analysis of tissue samples

through the Kruskal-Wallis plot further demonstrated elevated

SUSD3 expression in organs such as the breast, testis, pleura,

bone marrow, and lymphoid organs. According to the TISCH

database, SUSD3 was predominantly expressed in immune cells,
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particularly monocytes/macrophages and CD4+ T cells,

highlighting its potential involvement in the immune landscape

of tumors.

Tumor-associated macrophages (TAMs) are key components of

the TME, linked to distant metastasis in breast cancer and

neuroblastoma. Targeting TAMs has shown potential for

improving prognosis, suggesting that SUSD3 may influence

cancer outcomes by modulating TAMs and other immune

components (38, 39).

Next, the correlation between SUSD3 expression and various

prognostic outcomes, including OS, DSS, DFI, and PFI, was

assessed. The results were highly consistent across these
FIGURE 12

Relationship between silencing of SUSD3 and cell reproduction. (A) The relative expression of SUSD3 in NC, SUSD3-sh1, and SUSD3-sh2 groups
after knockdown was performed. (Statistical significance was marked as ***p < 0.001). (B) In the CCK-8 assay results, the knockdown of SUSD3 has
a significant effect on the inhibition of breast cancer cells. (Statistical significance was marked as ***p < 0.001). (C) The reference cell line was
compared to the clone formation in SUSD3-sh1 and SUSD3-sh2. (Statistical significance was marked as **p < 0.01). (D) Wound healing experiments
were performed on three groups of cancer cells: NC, SUSD3-sh1, and SUSD3-sh2. (mark to *p < 0.05, **p < 0.01).
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endpoints, demonstrating that SUSD3 is significantly associated

with the prognosis of cancer patients. Notably, while SUSD3

expression showed no correlation with the prognosis of KIRC, it

was strongly linked to the prognosis of most other cancer types.

These findings underscore the critical role of SUSD3 in cancer

prognosis and suggest that it may serve as a potent prognostic

biomarker with the potential to guide clinical outcomes in

cancer patients.

Subsequently, the cBioPortal database was utilized to investigate

whether the SUSD3 gene undergoes alterations at the genomic level

across different cancers. Notably, in the majority of DLBC, SUSD3

was found to be extensively deleted. Further analysis of the

relationship between CNV, DNA methylation, and SUSD3 gene

expression revealed a significant positive correlation between CNV,

DNA methylation, and SUSD3 expression, except in LGG and

UCEC, where a negative correlation was observed. In addition, it

was observed that patients with ACC exhibited poor prognosis

across all three survival metrics. Interestingly, higher levels of

SUSD3 methylation were associated with a decreased risk of

death in these patients, suggesting a protective role of SUSD3

methylation in ACC prognosis.

In the era of ultra-precise medical care, the prominence of

immunotherapy is rapidly expanding, and the use of the TMB as a

prognostic marker is increasingly recognized as a valuable tool for

predicting immunotherapy responses in cancer patients (37, 40).

Additionally, MSI has emerged as an important biomarker for

predicting responses to anti-PD-1 inhibitors (41). Our analysis

revealed a positive correlation between SUSD3 expression and

TMB in KIRP and BLCA, as well as a positive correlation

between SUSD3 expression and MSI in BLCA. These findings

suggest that modulating SUSD3 levels could influence TMB and

MSI, further underscoring the critical role of SUSD3 in predicting

immunotherapy efficacy. Moreover, by examining cohorts of cancer

patients undergoing ICI therapy, particularly those receiving anti-

PD-1 and anti-PD-L1 treatments, it was observed that patients with

high SUSD3 expression had significantly better survival rates and

longer response durations compared to those with low SUSD3

expression. These results collectively confirm that SUSD3 could

serve as a reliable biomarker for predicting responses to immune

checkpoint blockade therapy, positioning it as a promising marker

for personalized cancer immunotherapy.

A critical role in the tumor microenvironment is played by

tumor-infiltrating immune cells, which can promote or inhibit

tumor development and progression (42). In light of this, the

relationship between SUSD3 expression and immune cell

infiltration was investigated. The results revealed a strong

correlation between SUSD3 expression and immune cell

infiltration. In the majority of tumor types, SUSD3 expression

was positively correlated with the infiltration of B cells, CAFs,

dendritic cells, CD4+ T cells, macrophages, CD8+ T cells,

monocytes, NK cells, and Treg cells. This suggests that SUSD3

expression may influence cancer prognosis and progression by

modulating the TME. Previous studies have shown that TAMs in

the TME are associated with migration and prognosis in breast
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cancer (38). Therefore, controlling macrophage populations could

provide a means to elucidate the role of SUSD3 in breast cancer

patients, potentially altering prognostic outcomes.

In our study, we confirmed that SUSD3 is closely associated

with immune cells and related molecules across most cancer types.

With the exception of BRCA, KICH, and KIRC, SUSD3 exhibited a

positive correlation with immune-related genes in all other cancers,

including MHC proteins, immunosuppressive factors, immune-

activating proteins, chemokine receptors, and chemokines. These

results further underscore the strong relationship between SUSD3

expression and immune infiltration in tumor cells, offering new

insights and potential therapeutic targets for cancer treatment.

TME is highly complex and plays a crucial role in tumor

progression, metastasis, and therapeutic resistance. Current

strategies focus on exploring various interventions, including

physical methods and active exercise, to modulate the TME and

improve treatment outcomes (43, 44). The high expression of

SUSD3 in immune cells within the TME suggests that it may

serve as a potential therapeutic target capable of influencing the

cancer immune response.

GSEA results revealed that SUSD3 is closely linked to immune

activation processes, acting as a positive regulator of several key

pathways, including IRE1-mediated unfolded protein responses,

amebiasis, and proteoglycan pathways in cancer. Further

investigation through GSVA confirmed the association between

SUSD3 and various immune-related and immune factor-related

pathways across different cancer types, including immune response,

inflammatory response, negative T cell selection, leukocyte-

mediated signaling, trafficking, biosynthesis, and primary

immunodeficiency, among others. Additionally, differentially

expressed genes (DEGs) that are co-expressed with SUSD3 have

been shown to be significantly involved in multiple biological

processes such as cell cycle regulation, DNA replication, p53

signaling, cancer-associated pathways, and Wnt signaling

pathways (45). These findings suggest that SUSD3 may influence

the tumor immune microenvironment by modulating these

molecular pathways, offering valuable new insights into its role in

cancer biology. These results underscore the potential of SUSD3 as a

key player in cancer immunology and highlight its promise as a

target for future cancer immunotherapy strategies. Understanding

the precise mechanisms through which SUSD3 interacts with

immune and cancer-related pathways could pave the way for

novel therapeutic approaches, particularly those aiming to

manipulate the immune environment for enhanced cancer

treatment outcomes.

In the search for potential drugs that interact with SUSD3, a

comprehensive screening was conducted using databases such as

CellMiner, CTRP, and GDSC. This analysis identified several

anticancer drugs positively correlated with SUSD3 expression,

including trametinib, selumetinib, RDEA119, PD−0325901,

docetaxel, BMS−754807, and 17−AAG. Notably, selumetinib, a

non-ATP-competitive and highly selective MEK1/2 inhibitor, has

previously been shown to effectively inhibit tumor cell proliferation

in various in vitro studies (14, 15). It does so by promoting
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apoptosis and inhibiting cell invasion and migration in MPNST

cells. The mechanism by which selumetinib suppresses tumor

growth is primarily through regulating key protein kinases

involved in immune-related pathways (46). In addition to

selumetinib, other studies have also highlighted a positive

correlation between SUSD3 and the efficacy of other therapeutic

agents, such as fulvestrant, raloxifene, and flufenazine (45). These

findings suggest that targeting SUSD3 might enhance the

effectiveness of these drugs in treating certain cancers. The

hypothesis that selumetinib can specifically target and inhibit

SUSD3 protein aligns with these observations, providing a

promising new therapeutic avenue. This insight suggests that

incorporating SUSD3 as a biomarker or therapeutic target could

open up new possibilities in cancer treatment, particularly in

combination with existing MEK1/2 inhibitors and other targeted

therapies. Overall, these results not only underscore the potential

role of SUSD3 in cancer treatment but also highlight selumetinib as

a possible candidate for further clinical evaluation, possibly through

its effects on the SUSD3-related pathways. Further studies to

validate this hypothesis could provide the necessary groundwork

for developing more effective, personalized cancer therapies. In the

future, research methods such as those employed by Asma Mokashi

et al. could be referenced to integrate databases like PubChem,

BindingDB, UniProt, and DisGeNET to expand the drug sample

library. This approach could facilitate further analysis and

exploration of other potential drugs targeting SUSD3 (47).

In this study, SUSD3 was knocked down in MCF-7 cells to

observe its effects on the proliferation and migration of breast

cancer cells. The results indicate that SUSD3 represents a promising

target for the development of anti-BRCA therapies. Previous studies

have demonstrated that low-frequency rotating magnetic fields can

inhibit breast cancer metastasis through modulation of F-actin, with

minimal impact on normal cells (48). This suggests that there are

diverse approaches to inhibiting breast cancer migration. To ensure

the accuracy of these findings, further in vitro studies are necessary

to strengthen the conclusions and enhance their clinical relevance.

In conclusion, this comprehensive pan-cancer analysis of

SUSD3 has highlighted its potential as both a cancer prognostic

biomarker and a predictor of immunotherapy response. The study

established clear correlations between SUSD3 expression and

various key cancer characteristics, including prognosis, immune

regulation, immune cell infiltration, tumor microenvironment,

TMB, and MSI. These findings suggest that SUSD3 plays a

significant role in modulating immune responses and the overall

tumor progression across multiple cancer types. Notably, SUSD3

has shown strong potential as a prognostic marker in breast cancer,

where its high expression correlates with poor prognosis,

emphasizing its importance in the clinic (49). The association

between SUSD3 expression and immune factors further supports

its role in influencing cancer immunotherapy outcomes, making it a

promising candidate for predicting patients’ responses to

immunotherapies such as ICIs. However, while this study offers

valuable insights into SUSD3’s prognostic and predictive potential,

the specific molecular mechanisms by which SUSD3 influences

cancer progression and therapy response are still not fully

understood. More in-depth experimental studies are required to
Frontiers in Immunology 20
better elucidate these mechanisms and validate SUSD3 as a reliable

biomarker for clinical use. As research into SUSD3 continues to

advance, it holds the potential to significantly enhance personalized

cancer treatment strategies and help in the development of new

therapeutic approaches targeting its related pathways. The promise

of SUSD3 as both a predictive biomarker and a target for therapy

could offer novel, effective solutions for cancer treatment and

prognosis, ultimately improving patient outcomes.
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