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association with immune
infiltration in breast cancer
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Zheng Wang1* and Kunwei Shen1*

1Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao
Tong University School of Medicine, Shanghai, China, 2Department of Pathology, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
Introduction: Breast cancer is among the most prevalent malignant tumors

globally, with carboplatin serving as a standard treatment option. However,

resistance often compromises its efficacy. DNA damage repair (DDR) pathways

are crucial in determining responses to treatment and are also associated with

immune infiltration. This study aimed to identify the DDR genes involved in

carboplatin resistance and to elucidate their effects on prognosis, immune

infiltration, and drug sensitivity in breast cancer patients.

Methods: A 3D-culture model resistant to carboplatin was constructed and

sequenced. Co-expressed DDR genes were analyzed to develop a predictive

model. Immune infiltration analysis tools were employed to assess the immune

microenvironment of patients with varying expression levels of these risk genes.

Additionally, drug sensitivity predictions were made to evaluate the efficacy of

other DNA damage-related drugs across different risk groups. Molecular assays

were performed to investigate the role of the key gene TONSL in breast cancer.

Results: By integrating data from public database, we established a prognostic

signature comprising thirteen DDR genes. Our analysis indicated that this model

is associated with immune infiltration patterns in breast cancer patients,

particularly concerning CD8+ T cells and NK cells. Additionally, it

demonstrated a significant correlation with sensitivity to other DDR-related

drugs, suggesting its potential as a biomarker for treatment efficacy. Compared

to the control group, TONSL-knockdown cell lines exhibited a diminished

response to DNA-damaging agents, marked by a notable increase in DNA

damage levels and enhanced drug sensitivity. Furthermore, single-cell analysis

revealed elevated TONSL expression in dendritic and epithelial cells, particularly

in triple-negative breast cancers.

Conclusions: Carboplatin resistance-related DDR genes are associated with

prognosis, immune infiltration, and drug sensitivity in breast cancer patients.
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TONSL may serve as a potential therapeutic target for breast cancer, particularly

in triple-negative breast cancer, indicating new treatment strategies for

these patients.
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1 Introduction

Breast cancer is one of the most prevalent malignant tumors

worldwide. According to cancer statistics published in early 2024 by

the American Cancer Society in the journal CA Cancer J Clin (1), it

remains the most frequently diagnosed cancer and the second

leading cause of cancer-related deaths in women. Triple-negative

breast cancer (TNBC) accounts for 15–20% of the total population

(1). Compared with hormone receptor-positive and HER2-

amplified tumors, TNBC is the most aggressive subtype, with

higher recurrence rates, earlier mortality in operable stages (2),

and shorter overall survival in patients with inoperable tumors

(3, 4).

Cytotoxic chemotherapy remains the most common systemic

treatment options for TNBC patients (5). It mainly includes protein

synthesis inhibitors like paclitaxel; DNA synthesis inhibitors such as

alkylating agents (e.g., cyclophosphamide), platinum-based

compounds (e.g., cisplatin and carboplatin), and topoisomerase

inhibitors; as well as RNA synthesis inhibitors, like anthracyclines

(e.g., doxorubicin). Carboplatin, alone or in combination with other

drugs, is a first-line chemotherapeutic agent for breast cancer,

particularly TNBC (6). Clinical trials have demonstrated its

therapeutic benefits in TNBC. The BrighTNess trial showed

significantly higher pCR rates in carboplatin-containing groups

(53% and 58%, respectively) compared to paclitaxel alone (31%)

during neoadjuvant treatment (7). Consistent benefits of

carboplatin combination therapy were observed in two other

clinical trials (8, 9). Carboplatin induces apoptosis in tumor cells

by disrupting normal DNA function through intrastrand and

interstrand cross-linking (10). Despite its efficacy, resistance to

carboplatin remains a significant challenge. Many TNBC patients

develop resistance to carboplatin, leading to incomplete eradication

of lesions or even progression of the disease due to uncontrolled

tumor growth. This resistance contributes to a poorer prognosis and

lower survival rates, particularly within the first three years post-
-negative breast cancer;

, differentially expressed

and selection operator;

cteristic; DC, dendritic

ion; DSB, double-strand
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treatment (11, 12). Moreover, the complexity and heterogeneity of

breast cancer also lead to varying responses to carboplatin (6).

However, the specific mechanisms underlying carboplatin

resistance in TNBC remain largely unknown.

Previous studies indicated that variations in DNA damage

repair (DDR) significantly influence drug sensitivity. During

cancer evolution, most cancers lose their key DDR pathways (13,

14). While normal cells can still respond to damage appropriately,

tumor cells with defective or enhanced DDR mechanisms often

evade complete eradication, leading to adverse events such as

recurrence and metastasis. For example, glioma stem cells exhibit

elevated DNA damage response, making them resistant to

radiotherapy (15). As a result, researchers hypothesize that

inhibiting the DDR could improve the effectiveness of both

radiotherapy and chemotherapy. Additionally, the DDR

influences tumor immunogenicity, including tumor cell-

autonomous responses and tumor cell-microenvironment

interactions (16, 17). DDR deficiency can stimulate the innate

immune system or enhance adaptive immune recognition of

tumors by increasing the activation of the STING pathway (18).

However, how DDR-related genes impact immune infiltration and

drug sensitivity in breast cancer remains unclear.

In recent years, 3D culture model has been increasingly utilized in

anti-tumor drug research. This model overcomes the limitations of

traditional 2D in vitro cultures, offering more valuable insights into

cell-cell and cell-matrix interactions, as well as heterogeneity and

structural complexity. It retains more physiologically relevant states

of tumors in vivo and provides a more clinically representative

response to therapeutic drugs (19). Comparative studies of gene and

protein expression indicate that levels of metabolism, cellular stress

response, structure, signal transduction, andcellular transportproteins

are higher in spheroids than in 2D cultured cells (20). Moreover, it

allows for the evaluation of the tumor microenvironment’s (TME)

impact on tumors, bridging thegapbetween2Dculturemodels and the

in vivo ecosystem.

In this study, we constructed a DDR gene-based classification

model using transcriptomic data from the 3D carboplatin-resistant

model (CBRD) to explore its potential prognostic value. According

to the risk score, we divided breast cancer patients into high- and

low-risk groups and compared their prognosis, biological

characteristics, pathway enrichment, and impact on immune

infiltration and drug sensitivity. Specifically, we further explored
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this model in TNBC. Finally, we conducted single-cell analysis and

functional studies on key genes identified within the model.
2 Methods and materials

2.1 2D cell culture

Immortalized human triple-negative breast cancer cell lines

MDA-MB-231 and 293T cells was obtained from the American

Type Culture Collection (ATCC; Manassas, VA, USA). The cells

were cultured in complete DMEM (BasalMedia, Shanghai, China)

containing 10% Fetal Bovine Serum (Lonsa Science SRL, Uruguay)

at 37°C with 5%CO2.
2.2 3D cell culture

The 3D on-top culture model was constructed as previously

described (21–23). Briefly, all the necessary materials were

prechilled one day in advance. The BME gel needed to be thawed

at 4°C one day in advance. The surface of the prechilled 6-well plate

was coated with a thin layer of 500ul BME (Cultrex UltiMatrix

Reduced Growth Factor Basement Membrane Extract, R&D

Systems, MN, USA) evenly with prechilled pipette tip and

incubate for 15-30 min at 37°C to allow the BME to gel. The cells

were trypsinized from a monolayer to a single-cell suspension. Then

pelleted the cells by centrifugation at ~115 g and resuspended cells

in half the “medium volume” (1ml) and plate onto the coated

surface. The cells were allowed to settle and attach to the BME gel

for 10-30 min at 37°C. The remaining medium (1ml) was chilled on

ice and add BME to 10% volume then added the BME-medium

mixture to the plated culture. The culture was maintained with or

without indicated drugs. BME-medium mixture was replaced every

2 days. The 3D spheroids were treated with organoid harvest

solution to dissolve the Matrigel, followed by centrifugation to

remove the gel, yielding cell spheroids.
2.3 Transcriptome sequencing

Total mRNA was extracted via TRIzol (Invitrogen, USA). RNA

integrity was assessed via the RNA Nano 6000 Assay Kit of the

Bioanalyzer 2100 system (Agilent Technologies, CA, USA). Total

RNA was used as input material for the RNA sample preparations.

Briefly, mRNA was purified from total RNA via poly-T oligo-

attached magnetic beads. Fragmentation was carried out using

divalent cations under elevated temperature in First Strand

Synthesis Reaction Buffer (5X). First-strand cDNA was

synthesized via random hexamer primers and M-MuLV reverse

transcriptase (RNase H-). Second-strand cDNA synthesis was

subsequently performed via DNA polymerase I and RNase H.

The remaining overhangs were converted into blunt ends via

exonuclease/polymerase activities. After adenylation of the 3’ ends

of the DNA fragments, adaptors with hairpin loop structures were
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ligated to prepare for hybridization. To preferentially select cDNA

fragments 370~420 bp in length, the library fragments were purified

with the AMPure XP system. Then, PCR was performed with

Phusion High-Fidelity DNA polymerase, universal PCR primers

and Index (X) primers. Finally, the PCR products were purified

(AMPure XP system), and library quality was assessed on an

Agilent Bioanalyzer 2100 system.
2.4 Construction of a risk score system
based on DDR genes

To begin with, the DDR genes related to carboplatin-resistance

were analyzed by the R package ‘DESeq2’. We compared the

differentially expressed genes from the transcriptomic data of the

3D culture model. These genes were then intersected with the DDR-

related gene list compiled by Alyssa L Smith et al. (24) to obtain the

carboplatin-resistance related DDR genes, as illustrated in the Venn

diagram. The prognostic relevance of these genes was evaluated in

breast cancer patients from the TCGA database by univariate Cox

regression analysis. Genes with significant impact (p<0.05) on

prognosis passed through the LASSO regression for variable

selection and shrinkage. The analysis generated the crucial genes

participating in model construction and their corresponding

coefficients by the “glmnet” R package (25). Finally, the CBRD

score was calculated using the formula below, where Coefi is the

coefficient and Expi is the expression value of each crucial gene.

CBRD   score =o
n

i=1
Coefi � Expi
2.5 Plasmid and shRNA transfection

The shRNA sequences used were obtained from Zorinbio

(Shanghai, China). When 293T cells in the 6-well plate reached

80–90% confluency, the target plasmid containing shRNA, tool

plasmid DR8.9 and VSVG were mixed with Opti-MEM.

Lipofectamine 3000 (Life Technologies-Invitrogen, USA) was

added to the 293T cell culture medium. After 48 h, the viral

supernatant from 293T cells was collected and added to the

MDA-MB-231 cell culture medium, supplemented with 10 μg/ml

polybrene. Forty-eight hours later, MDA-MB-231 cells with (virus

group) or without virus (control group) were treated with 2 μg/ml

puromycin. When the control group cells were all killed, the

surviving cells in the virus group were considered to be

successfully constructed.
2.6 Expression level of mRNA by RT−qPCR

mRNA was isolated from 6-well plate cells with 90~100%

confluency. cDNA was reversely transcribed by RT SuperMix kit

(Vazyme, Nanjing, China). RT−qPCR was performed using SYBR

Green Master Mix (Vazyme, Nanjing, China). The data were
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analyzed via the △△CT method, with GAPDH used as a

housekeeping gene. The primers used were as follows: TONSL

forward, 5’-CCGCCTCTATCTCAACCTGG-3’; TONSL reverse,

5’-AGGTCCTCGTAAAGGTGGTTC-3’.
2.7 Viability measurements

Three thousand cells were seeded into a 96-well plate. After 24

h, the cells were treated with the indicated doses of drugs for 72 h. A

Cell Counting Kit-8 (Dojindo, Japan) was used to assess cell

viability. The absorbance at a wavelength of 450 nm was

measured for each well . The half-maximal inhibitory

concentration (IC50) was used to assess the sensitivity of the cells

to the drugs.
2.8 Comet assay

A comet assay was performed as previously described (26).

Briefly, the cells were treated as indicated, mixed gently with 0.08%

low-melting point agarose, spread on glass slides prepared with a

0.08% normal melting point agarose layer, and a coverslip was

added on top. Once dried, the coverslips were removed, and the

slides were then submerged in precooled lysis buffer at 4°C for 60

min. After rinsing, the slides were then placed in an electrophoresis

apparatus with running buffer just covered and run for 20 min at 25

V. Then, the samples were stained with nucleic acid dye and

captured under an Olympus IX81 confocal microscope.
2.9 Immunofluorescence

Cells were seeded on 4-chamber glass bottom dishes (Cellvis,

CA, USA) and incubated overnight in culture medium at 37°C with

5%CO2. The cells were treated with the indicated drugs at the

indicated dosages. After treatment, the cells were fixed with 4%

paraformaldehyde and permeabilized with 0.05% Triton X-100 in

PBS at room temperature. The cells were then blocked with 5% BSA

for 1 hr, incubated overnight with the indicated primary antibodies

at 4°C and then exposed to secondary antibodies and DAPI. The

images were observed with a ZEISS LSM880 Airyscan.
2.10 SDS−PAGE and western blotting

Total protein was isolated from the cells via lysis buffer

containing a protease inhibitor cocktail (MCE, NJ, USA). The

proteins were separated by SDS−PAGE and transferred onto

PVDF membranes. After being blocked with 5% nonfat milk

powder for 1 hr, the PVDF membrane was incubated with the

target primary antibody overnight at 4°C, followed by secondary

antibody incubation for 1 hr at room temperature. The image of the

target band was visualized with a chemiluminescence kit.
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2.11 Bioinformatics analysis

The breast cancer expression data and survival information files

were downloaded from the TCGA (The Cancer Genome Atlas)

database and GEO database, including GSE20685 (302 samples)

and GSE86166 (355 samples), via R software. Single-cell RNA

sequencing data were obtained from the EMTAB8107,

GSE150660, GSE161529 and GSE176078 datasets. To ensure

consistency in data analysis, the RNAseq raw read count from the

TCGA database was converted to fragments per kilobase of exon

model per million mapped fragments (FPKM) and subsequently

log-2 transformed. The data of the GEO database were sourced

from the Affymetrix® GPL570 platform (Human Genome U133

Plus 2.0 Array). We reannotated the probe sets of the GPL570 array

for genes by mapping all probes to the human genome (hg38).
2.12 Single-cell RNA sequencing analysis

Genes expressed in fewer than three cells were excluded, and

cells expressing fewer than 200 genes were filtered out. A scrublet

was used to remove the doublets. Further quality control was

performed on the basis of the percentage of mitochondrial gene

counts, filtering out cells with > 16.38% mitochondrial gene

counts. We then applied library size normalization via the

“scanpy.pp.normalize_total” function in Scanpy to normalize the

data matrix.

Dimensionality reduction and unsupervised clustering were

performed on the basis of the workflow in Scanpy. The

“scanpy.pp.highly_variable_genes” function was used to select

highly variable genes for downstream analysis, identifying the top

4000 highly variable genes. We then regressed out the effects of total

counts and the percentage of expressed mitochondrial genes for

each cell via the “scanpy.pp.regress_out” function. Additionally, we

scaled each gene to unit variance via “scanpy.pp.scale” with the

parameter “max_value = 10.” After data preprocessing, we reduced

the dimensionality of the data via principal component analysis

(PCA). To remove batch effects from different datasets, we executed

batch integration with the parameters “n_pcs = 47” using

“sc.external.pp.harmony_integrate.” Finally, we used UMAP

implemented by the “scanpy.tl.umap” function to further reduce

the dimensionality of the merged dataset, followed by clustering the

cell neighborhood graph via the Leiden clustering method.
2.13 Xenograft mouse model

A total of 5×106 MDA-MB-231 shNC or shTONSL cells were

injected subcutaneously into the flanks of 4–6-week-old female

nude mice. The tumor volume and mouse weight were observed

and measured every two to three days. Once the tumor volume

reached approximately 50 mm3, carboplatin at a dosage of 100 mg/

kg was administered via intraperitoneal injection once a week

until sacrifice.
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2.14 Assessment of immune infiltration

The immune-related signature gene sets were used to compare

the differences in the expression of immune-related markers

between the two groups. Various immune infiltration scoring

algorithms, including TIMER, CIBERSORT, QUANTISEQ,

MCPCOUNTER, XCELL, and EPIC, were applied. Additionally,

the ESTIMATE score and ssGSEA were used to further assess

tumor purity.
2.15 Prediction of drug sensitivity

The evaluation of differences in drug susceptibility to DNA

damage or genome stability-targeting drugs among patients with

different risk scores was primarily conducted via the Genomics of

Cancer Drug Sensitivity (GDSC) database (27) and machine learning

models for prediction. The R package ‘oncoPredict’ (28) was used to

calculate the estimated IC50 values and determine significant

differences. Compounds from the GDSC1 and GDSC2 databases

mainly targeting DNA damage and genomic stability were selected

for drug sensitivity analysis (Supplementary Table S2). The

expression data and drug response data of cell lines from GDSC1

and GDSC2 were used as training datasets, respectively. The

estimated IC50 of compounds for the target patients was calculated

through the ‘calcPhenotype’ function. Subsequently, the patients were

divided into two risk groups based on the CBRD score, and statistical

tests were performed on the estimated IC50 between the two groups.
2.16 Statistical analysis

All expression data analysis and statistical analyses were

performed via R and R Studio software (R 4.3.3). Student’s t test

or the Wilcoxon test was used to compare significant differences

between groups. Univariate Cox regression models and Kaplan

−Meier curves were used to analyze survival. A two-tailed p value

test was conducted, with statistical significance defined as p < 0.05.
3 Results

3.1 Establishment of a 3D culture model of
the MDA-MB-231 cell line and
drug treatment

3D culture is increasingly favored for exploring gene functions

and signaling pathways (29). It captures various aspects of cancer

biology by mimicking the in vivo tumor structure (30). Dhimolea

et al. (31) used a 3D culture model to simulate drug-persistent

residual tumors. Figure 1 illustrates a visual flowchart of the study

design with. We cultured the MDA-MB-231 cell line under 3D

conditions. After sphere formation, 100 μM carboplatin was added

to the medium, and the cells were continuously cultured for 15 days

(Figure 2A). The gel was then dissolved, and the surviving cells were
Frontiers in Immunology 05
collected for RNA sequencing. The control group was defined as

carboplatin-sensitive group, while the surviving cells from the

carboplatin-treated group were considered carboplatin-resistant.

Compared to the carboplatin-treated group, the control group

exhibited larger and more irregularly shaped spheres.
3.2 Identification of carboplatin resistance-
related DDR genes associated with clinical
outcomes in patients with breast cancer

To investigate the DDR genes associated with carboplatin

resistance and their impact on prognosis of breast cancer, we first

obtained differentially expressed genes (DEGs) by comparing the

carboplatin-resistant group to the sensitive group from the

transcriptomic data of 3D culture model. Genes upregulated in

the resistant group are highlighted as red blocks and dots

(Figures 2B, C). Enrichment analysis revealed that DEGs were

mainly associated with ncRNA processing, ribosome biogenesis

and protein serine/threonine kinase activity (Figure 2D). By

intersecting the previously reported DDR gene set (23) with the

above DEGs, we identified 153 DDR-related genes linked to

carboplatin resistance (Figure 2E). Further analysis showed 102

upregulated and 51 downregulated genes among these 153 DDR-

related genes (Figures 2F, G). Subsequently, with the clinical

information from TCGA, univariate Cox regression analysis

identified 27 candidate prognostic genes significantly associated

with overall survival (OS) (p<0.05) (Supplementary Table S1). The

correlations heat map with correlation coefficient (Figure 2H)

showed no strong association among the candidate genes.
3.3 Construction of the prognostic model
of carboplatin resistance-related
DDR genes

We further included these 27 genes in a least absolute shrinkage

and selection operator (LASSO) regression model. Based on the

optimal value of l (Figures 3A, B), we identified 13 genes through

the ‘glmnet’ R package to construct a prognostic model. The

correlations among those genes (Figure 3C) and different

expression levels in tumors compared with normal tissue were

determined (Figure 3D). All genes except ENDOV showed

significant differential expression. Among them, 7 genes (TONSL,

TAOK1, RRM2B, FANCM, NONO, ZRANB3 and POLR2C) had

coefficients greater than 0, while 6 genes (FBXO6, ENDOV, XRCC1,

DDB2, GADD45A and BTG2) with coefficients less than 0. Through

this 13-gene model and formula described earlier, we calculated a risk

score for each patient and used the median value as the cutoff point to

divide patients into two groups. The Kaplan−Meier curve indicated

that the risk score was significantly associated with OS, with high-risk

patients tending to have significantly worse OS (Figure 3E). The areas

under the curve (AUCs) for the 1-, 3-, and 5-year receptor operating

characteristic (ROC) curves were 0.841, 0.738, and 0.735,

respectively (Figure 3H).
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DEGs DDR genes

Risk score

Survival 
analysis

Pathway 
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Immune 
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Drug 
sensitivity

Key gene
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functional
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Single-cell
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In vivo
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Adherent culture
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15 days

15 days RNA sequencing

4435 360153

FIGURE 1

Flow chart of the study. Carboplatin-resistant and -sensitive models were established by 3D culture system and performed transcriptome
sequencing, identifying 153 DDR genes associated with carboplatin resistance. By integrating these findings with TCGA data, we conducted
univariate regression analysis to identify candidate genes associated with prognosis. Subsequently, we applied a LASSO regression model to
construct a 13-gene risk score system. This system was further analyzed for pathway enrichment, immune infiltration, and drug sensitivity between
high- and low-risk groups. Within this model, we selected TONSL as a key gene and conducted molecular experiments to investigate its roles in
DNA damage repair and immune infiltration.
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To evaluate the performance of this risk score, we included two

datasets, GSE26085 and GSE86166, for validation. Consistent with

the above results, the OS rate of the high-risk group was significantly

lower than that of the low-risk group (Figures 3F, G, I, J).
3.4 Biological processes and pathway
activation states

To explore the biological significance of the two groups, we first

analyzed the DEGs between the groups comparing high risk group

to low-risk group (Figure 4A). Genes such as SLC6A15, NFE4, and

EPHA7 were significantly upregulated in the patients with high risk.
Frontiers in Immunology 07
GO enrichment analysis revealed that the DEGs were involved

primarily in intermediate filament organization and feeding

behavior in the biological process category (Figure 4B), cornified

envelope and apical plasma membrane in the cellular component

category (Figure 4C), and hormone activity and serine-type

endopeptidase activity in the molecular function category

(Figure 4D). KEGG pathway analysis revealed that, compared

with those in the low-risk group, the upregulated DEGs in the

high-risk group were enriched mainly in neuroactive ligand

−receptor interactions, metabolism of xenobiotics by cytochrome

P450, and the estrogen signaling pathway (Figure 4E); the

downregulated genes were enriched primarily in the cAMP

signaling pathway, the PPAR signaling pathway, and regulation of
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FIGURE 2

Establishment of 3D-culture model and identification of carboplatin resistance-related DDR genes. (A) The morphology of the 3D culture model on
days 7 and 15 with Overview image and zoomed-in image. (B) Heatmap of expression profiles of 3D-culture model comparing carboplatin-treated
group to control group. Red blocks represent genes with upregulated expression. Blue blocks represent genes with downregulated expression.
(C) Volcano plot of expression profiles of 3D-culture model comparing carboplatin-treated group to control group. (D) GO enrichment analysis of
the differentially expressed genes of 3D-culture model. The top 10 enriched pathways are displayed for each category. (E) The intersecting genes
between the DEGs of 3D culture model and DDR gene list. (F) Heatmap of expression profile of 153 overlapped DDR genes in carboplatin-treated
group compared to control group. Red blocks represent genes with upregulated expression. Blue blocks represent genes with downregulated
expression. (G) Volcano plot of expression profile of 153 overlapped DDR genes. (H) Correlation heatmap among the 27 DDR genes associated with
prognosis and their correlation coefficient.
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lipolysis in adipocytes (Figure 4F). To further explore differences

between the two groups, we performed GSVA. Pathways such as the

mitotic spindle, G2M checkpoint, and Myc targets were

significantly upregulated in the high-risk group, whereas

pathways such as the p53 pathway, xenobiotic metabolism, and

myogenesis were significantly upregulated in the low-risk

group (Figure 4G).
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3.5 The immune landscape of the high-risk
and low-risk groups

Owing to the close interaction between the DDR and the

immune system in tumor cells, we analyzed immune infiltration

differences among patients classified by this DDR gene-related risk

score. First, we examined five immune-related gene sets—
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FIGURE 3

Construction of the prognostic model of carboplatin resistance-related DDR genes. (A, B) Charts to show the Log Lambda value and the 13
prognostic DDR genes with non-zero coefficient. (C) Correlation heatmap among the 13 selected genes of the risk score system and their
correlation coefficient. (D) Differential expression of 13 genes of the risk score system in normal and tumor tissues in breast. The darker the color of
the upper squares, the smaller the p-value. (E–G) Kaplan-Meier curve for OS in the TCGA database, GSE26085, GSE86166 datasets based on the risk
score derived from the gene signature. The orange short lines represent the high-risk group, while the blue short lines represent the low-risk group.
(H–J) ROC curve for OS in three datasets of 1, 3, 5-year.
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chemokines, chemokine receptors, MHC, immunoinhibitors, and

immunostimulators. In the overall cohort, genes such as CCL14,

CCL16, CCR10, TGFB1, TMEM173, and TNFSF13 were

significantly upregulated in the low-risk group (Figure 5A).

Similarly, in the TNBC cohort, the immune signature genes were

consistently overexpressed in the low-risk group compared with the

high-risk group (Figure 5C). Additionally, we used several

algorithms such as TIMER, CIBERSORT, CIBERSORT-ABS,

MCPCOUNTER, QUANTISEQ, EPIC, and XCELL to compare
Frontiers in Immunology 09
immune cell composition and infiltration levels between the two

groups (Figures 5B, D).

Next, we evaluated tumor purity across risk groups. In both the

overall cohort and the TNBC cohort, the ESTIMATE score and

immune score were significantly lower in the high-risk group,

indicating reduced immune infiltration and a higher proportion

of tumor cells in the tumor microenvironment of the high-risk

group (Figures 6A–C, F–H). In the overall cohort, the low-risk

group showed higher infiltration of CD8+ T cells, activated NK
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cells, mast cells, and follicular helper T cells (Figures 6D, E).

Similarly, in the TNBC cohort, overall immune cell infiltration

was greater in the low-risk group, particularly for CD8+ T cells,

regulatory T cells (Tregs), and activated NK cells (Figures 6I, J).
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These findings suggested that breast cancer patients with high-

risk scores have lower immune cell infiltration. Conversely, patients

with low-risk scores, especially those with TNBC, may be more

sensitive to immunotherapy.
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FIGURE 5

Immune profiling of the two groups in all breast cancers and triple-negative breast cancers. (A, C) Heatmaps of differential immune-related genes among
the overall patients and TNBC patients among two risk groups. Each section with different color represented different set of genes. (B, D) Heatmaps of
tumor-related infiltrating immune cells based on TIMER, CIBERSORT, CIBERSORT-ABS, MCPCOUNTER, QUANTISEQ, EPIC, and XCELL algorithms among
the overall patients and TNBC patients among two risk groups. Each section with different color represented different algorithms.
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3.6 Analysis of drug sensitivity in high- and
low-risk groups

We further investigated the therapeutic responses of patients in

two risk groups to other DNA damage drugs and genome stability-

related drugs. In both overall breast cancer and TNBC patients, the
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high-risk group exhibited significantly lower drug sensitivity

compared to the low-risk group (Figure 7 and Supplementary

Figure S1). Specifically, notable differences were observed in

sensitivity to the platinum drug oxaliplatin, the topoisomerase

inhibitors irinotecan and topotecan, the PARP inhibitor

talazoparib, and the cytarabine derivative gemcitabine. These
313
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FIGURE 6

Immune landscapes and tumor purity in two risk groups. (A) Comparison of ESTIMATE score between two risk groups among the overall patients.
(B) Comparison of immune score between two risk groups among the overall patients. (C) Comparison of stromal score between two risk groups
among the overall patients. (D, E) The immune cell proportions between two risk groups among the overall patients through CIBERSORT and
ssGSEA analysis. (F) Comparison of ESTIMATE score between two risk groups among the TNBC patients. (G) Comparison of immune score between
two risk groups among the TNBC patients. (H) Comparison of stromal score between two risk groups among the TNBC patients. (I, J) The immune
cell proportions between two risk groups among the TNBC patients through CIBERSORT and ssGSEA analysis. ns p>0.05, * p<0.05, ** p<0.01,
*** p<0.001.
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differences were statistically significant among all breast cancer

patients (Figure 7A) and TNBC patients (Figure 7B). The findings

were validated using the independent dataset GSE20685

(Supplementary Table S3), which confirmed that the high-risk

group defined by this risk score model has reduced sensitivity to

DNA damage-related drugs. This risk score may serve as a valuable

tool for guiding drug selection in breast cancer treatment.
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3.7 The role of the hub gene TONSL

To further understand the role of these DDR genes in cellular

regulation, we selected TONSL for exploration. TONSL exhibited

the highest hazard ratios among the model genes significantly

overexpressed in tumor tissues and was associated with OS in

breast cancer patients (Figure 3B, Supplementary Table S1). We
FIGURE 7

Drug sensitivity in high- and low-risk groups. (A) Estimated IC50 of the indicated drugs among two risk groups in the overall patients. (B) Estimated
IC50 of the indicated drugs among two risk groups in the TNBC patients. The statistical test was the ‘Wilcoxon test’.
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FIGURE 8

The role of gene TONSL in DNA damage response. (A) RT-qPCR of knockdown efficiency of TONSL in MDA-MB-231 cells. (B, C) The cell viability of
MDA-MB-231 reciving carboplatin and olaparib with or without TONSL knockdown. (D) Comet assay of shNC cells with 0h, 1h, 4h recovery time after
treatment compared with shTONSL cells and quantitative analysis of tail moment. (E) Subcutaneous transplantation tumor isolates. (F) Tumor growth of
shNC/shTONSL MDA-MB-231 cells in vivo with injection of carboplatin. (G) RT-qPCR of FANCD1, XRCC2, DDB2 and NEIL3 between shNC/shTONSL
MDA-MB-231 cells. (H) Immunofluorescence staining of gH2AX with different recovery time after carboplatin treatment in shNC and shTONSL cells. (I)
Western blot of cells treated with different doses of carboplatin for two hours or recovered for different time after same treatment of carboplatin. ns
p>0.05, * p<0.05, *** p<0.001, **** p<0.0001.
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then successfully knocked down TONSL in MDA-MB-231 cells via

shRNA (Figure 8A). CCK8 assays showed that TONSL knockdown

significantly increase cell sensitivity to carboplatin (Figure 8B) and

olaparib (Figure 8C) compared to control cells. Comet assay

revealed reduced DNA repair efficiency in TONSL-knockdown

cells following carboplatin treatment (Figure 8D). In the mouse

xenograft tumor models, tumors with reduced TONSL expression

showed an improved response to carboplatin, resulting in smaller
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tumor sizes compared to the control group (Figures 8E, F). To

investigate the potential regulatory role of TONSL in DNA damage

repair, we referenced studies (32, 33) and validated key gene

expressions via RT-PCR. TONSL knockdown significantly

reduced the expression of FANCD1 and XRCC2, both key players

in the Fanconi anemia and homologous recombination repair

pathways, while DDB2 and NEIL3 showed no statistically changes

(Figure 8G). Immunofluorescence staining indicated an increase in
FIGURE 9

Expression of TONSL in different cell types. (A) Major cell types based on characteristic gene expression. (B) Expression of TONSL in 13 cell types.
(C-F) tSNE plot of intratumoral immune cells and TONSL showing the correlation between infiltration of different immune cells and TONSL
expression across normal tissue, ER+ breast cancer, HER2+ breast cancer and TNBC. (G) Dot plot of expression of TONSL through major cell types
in tissues among normal and different molecular subtype.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1522149
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Dong et al. 10.3389/fimmu.2025.1522149
nuclear gH2AX foci, a DNA damage marker, in TONSL-

knockdown cells (Figure 8H). Additionally, these cells exhibited

elevated PAR chain production, gH2AX levels, and cleaved caspase-

3 expression following treatment (Figure 8I). These results

collectively suggest that TONSL enhances DNA repair by

regulating FANCD1 and XRCC2 expression and that its

reduction sensitizes breast cancer cells to carboplatin.

We also performed single-cell analysis to investigate TONSL

expression across different cell types. Thirteen major cell types were

identified on the basis of characteristic gene expression (Figure 9A).

Among these 13 cell types, TONSL was expressed primarily in

dendritic cells (DCs) and epithelial cells (Figure 9B). High

expression was observed in epithelial cells across normal, ER+ breast

cancer, HER2+ breast cancer, and TNBC tissues (Figures 9C–G).

Notably, TONSL was specifically overexpressed in DCs within the

TNBC population (Figure 9F).
4 Discussion

As the most prevalent malignant tumor among women

worldwide, breast cancer urgently requires treatment strategies

that improve prognosis and enhance quality of life. Carboplatin, a

DNA cross-linking agent that induces DNA strand breaks, is one of

the first-line treatments for breast cancer, particularly for TNBC

patients. However, resistance to carboplatin remains a significant

clinical challenge, often resulting in tumor recurrence and

metastasis. The development of a prognostic model holds

considerable clinical relevance. By integrating key genes

associated with drug resistance, prognosis, and tumor biology, the

risk score system enables precise stratification of patients into high-

and low-risk groups. This stratification not only aids in predicting

prognosis but also identifies individuals who may benefit from

tailored therapeutic interventions (34, 35). A DDR gene model

associated with carboplatin resistance could serve dual purpose. On

one hand, it may help predict prognosis and identify high-risk

breast cancer patients with potential carboplatin resistance, who

may benefit from alternative therapeutic strategies. This allows real-

time monitoring of drug efficacy and timely adjustments to treatment

regimens to prevent resistance and disease progression. On the other

hand, it provides an assessment of prognostic risk, enabling

personalized follow-up management strategies. High-risk patients, as

identified by the model, would require more frequent follow-up and

monitoring to prevent adverse events and improve long-term

outcomes. Thus, such a model could significantly enhance

personalized care in breast cancer management, particularly for

patients with limited responsiveness to platinum-based and DNA-

damaging agents.

In addition to conventional factors affecting drug sensitivity—

such as drug accumulation, drug efflux, factors that prevent drugs

from interacting with their targets, pathways that eliminate target

damage, and those involved in the cellular damage response (36, 37)

—the molecular mechanisms of drug resistance play a more direct

role in determining clinical outcomes. These mechanisms are the

primary focus of current research aimed at addressing and
Frontiers in Immunology 15
overcoming platinum resistance. In this study, on the basis of

transcriptomic data from our 3D-culture carboplatin-resistant

model, we constructed and validated a risk score model. Using

this model, breast cancer patients were stratified into high- and low-

risk groups. Patients in the high-risk group exhibited significantly

worse prognoses compared with those in the low-risk group. We

further analyzed the DEGs, enriched pathways, and biological

functions between the two groups. These findings provide insights

into the molecular mechanisms underlying carboplatin resistance

and suggest potential avenues for therapeutic intervention.

The immune microenvironment plays multiple roles in vivo,

influencing various physiological processes such as inflammation,

tissue repair, and immune surveillance. It also regulates tumor

growth and metastasis, making it a valuable therapeutic target. For

instance, modulating the inflammatory immune microenvironment

has been shown to promote healing in muscle injuries (38). In

tumors, based on immune infiltration levels, they can be classified as

immune-cold or immune-inflamed. Transforming the immune

microenvironment of immune-cold tumors and enhancing

immune cell activity can bolster the immune system’s ability to

attack tumors, thereby improving drug response and survival

outcomes (39, 40). DNA damage has been shown to trigger

innate immune responses, largely due to the accumulation of

nuclear DNA in the cytoplasm (41, 42). A hallmark of malignant

tumors is genomic instability (43), where DNA double-strand

breaks and replication stress continuously drive chromosomal

instability (44). This process is closely associated with the

activation of the interferon gene (STING) pathway, which is

mediated by the cGAS sensor protein that stimulates cytoplasmic

DNA, forming a crucial node between cancer cells and the immune

microenvironment (45). Conversely, an activated innate immune

system can suppress tumorigenesis by eliminating senescent cells

with oncogene activation or chronic DNA damage through the

production of reactive oxygen species (ROS) and reactive nitrogen

species (RNS) (46, 47). Therefore, we further analyzed immune

infiltration levels and drug sensitivity across different risk score

populations. Compared with the high-risk group, the low-risk

group exhibited higher levels of immune infiltration, especially of

CD8+ T cells and NK cells, as well as greater sensitivity to DNA

damage-related drugs. CD8+ T cells and NK cells are pivotal players

in tumor immunity. Tumor-specific CD8+ T cells recognize and

eliminate cancer cells by detecting tumor-derived peptides presented

on MHC I molecules through their T-cell receptors (48). NK cells

identify tumor cells via germline-encoded activating receptors, and

most circulatingNKcells exist in a cytotoxic effector state, enablingNK

cells tomount antitumor immune responses at early stages (49). These

two cell types exhibit complementary roles in tumor immune response

(50). Among patients in high-risk group, reduced immune infiltration

suggests potential benefits from combination immunotherapies, such

as PD-1/PD-L1 inhibitors, targeted suppression of inhibitory

cytokines, cancer vaccines, or autologous immune cell infusions,

may enhance antitumor efficacy (50). Recent advancements have

also led to the development of cancer vaccines capable of inducing

dual antitumor responses fromTcells andNKcells (51).Therefore, the

CBRD risk score system may provide potential predictive value for
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combination immunotherapy strategies, particularly for high-risk

breast cancer patients with diminished immune infiltration.

Among the genes identified in our constructed models, we

focused particularly on TONSL, which encodes the Tonsoku-like

DNA repair protein. TONSL has emerged as a crucial player in

homologous recombination (HR), replication fork repair, and

chromatin formation (52–55). It is amplified in approximately 20%

of breast cancers (56) and plays a pivotal role in addressing

replication stress and DNA double-strand break (DSB) repair,

particularly within the HR pathway (53). Previous studies have

highlighted TONSL’s role in promoting tumorigenesis, with its

overexpression upregulates DNA repair-related genes in pathways

such as HR and Fanconi anemia, conferring resistance to damage

(32). Through a series of functional cell experiments, we

demonstrated that TONSL knockdown increases sensitivity to

carboplatin and olaparib, decreases the repair efficiency for

carboplatin-induced damage, and improves therapeutic efficacy. We

also performed single-cell analysis to determine the expression of

TONSL in the tumor immune microenvironment. Single-cell

sequencing technology has become increasingly refined, providing

valuable insights into various diseases and playing a crucial role in

exploring cellular heterogeneity within tumor tissues (57). Traditional

bulk RNA sequencing analyzes the average transcriptome of all cells

within a sample, potentially masking transcriptional differences

specific to certain cell types. In contrast, single-cell sequencing

enables the analysis of gene expression at the individual cell level,

revealing cell-to-cell communicationpathways anduncoveringunique

cellular states within tumors. It offers a more precise understanding of

the tumor microenvironment (58). Notably, TONSL is specifically

overexpressed inDCswithinTNBCcomparedwithnormal tissues and

other subtypes. In summary, TONSL plays a significant role in tumor

resistance to DNA-damaging drugs, potentially participating in the

regulation of the immune microenvironment.

Among the remaining genes, studies have shown that FBXO6

can enhance sensitivity to platinum-based drugs by inhibiting

CHK1 (59) and promote sensitivity to radiotherapy by mediating

ubiquitination of CD147 (60). XRCC1 is a critical DNA damage

repair gene involved in various repair pathways. It mediates the

recruitment of PARP1 and PARP1 to sites of DNA damage and

promotes resistance to platinum-based drugs (61, 62). RRM2B is

typically associated with maintaining mitochondrial DNA stability

(63); however, studies suggest that RRM2B is also amplified in

various tumors, impacting DNA damage repair and treatment

responses. NONO negatively correlates with cisplatin reactivity by

regulating STAT3 activity (64). DDB2 is identified as a protein

involved in nucleotide excision repair (NER), but it is not required

for repairing platinum-induced DNA damage. Thus, its high

expression may enhance sensitivity to platinum-based drugs (65).

GADD45A is involved in DNA repair, cell cycle arrest, and

apoptosis. Sustained expression of GADD45A might increase

cellular sensitivity to cisplatin (66).

Specifically, this study employed a 3D culture system to

construct a resistance model combined with public database for

joint analysis. Compared to previous studies that typically relied
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solely on public database, this research demonstrated

methodological innovation. The data integrated both in vivo and

in vitro information, with the 3D culture model encompassing

interactions among various cell types and extracellular components

(67). This approach more comprehensively reflected the

physiological conditions of the tumor microenvironment,

providing a more holistic perspective for the study and enhancing

the translational applicability of the findings.

However, this study still has certain limitations. First, the dataset

sources originate primarily from cell lines and public databases,

which were not fully represent the complexity and heterogeneity of

human tumors. Secondly, clinical and genomic data from patients

treated with carboplatin monotherapy were lacking, which hindered

our ability to directly elucidate the prognostic value of platinum-

resistance-related genes and enhance the robustness of our findings.

Thirdly, the method for the construction of the risk model had

potential constraints, such as bias in included variables, over-

compression of coefficients, selection bias of regularization

parameters, and instability in variable selection.

In summary, on the basis of transcriptomic data from the

constructed 3D carboplatin resistance model, we established a DDR-

related risk assessment model. This model not only has predictive

value for prognosis but may also reveal immune infiltration, aiding in

the further assessment of patients’ sensitivity to DNA-damaging drugs

and the potential benefits of immunotherapy.
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