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Introduction: Lysosomal-associated protein transmembrane-4 beta (LAPTM4B)

protein expression was increased in solid tumors, whereas few studies were

performed in hematologic malignancies. We aimed to study the effect of the

LAPTM4B gene in pan-cancer and Philadelphia chromosome-positive acute B

cell lymphoblastic leukemia (Ph+ B-ALL).

Methods: The differential expression, diagnosis, prognosis, genetic and

epigenetic alterations, tumor microenvironment, stemness, immune infiltration

cells, function enrichment, single-cell analysis, and drug response across cancers

were conducted based on multiple computational tools. Additionally, Ph+ B-ALL

transgenic mouse model with Laptm4b knockout was used to analyze the

function of LAPTM4B in vivo. BrdU incorporation method, flow cytometry, and

Witte-lock Witte culture were used to evaluate the roles of LAPTM4B in vitro.

Results: We identified that LAPTM4B expression was increased in various

cancers, with significant associations with clinical outcomes. LAPTM4B

expression correlated with DNA and RNA methylation patterns and was

associated with drug resistance. It also influenced the tumor immune

microenvironment, with implications for immunotherapy response. In

leukemia, LAPTM4B was expressed in stem cells and associated with specific

subtypes. Knockout of LAPTM4B impeded B-ALL progression in mice and

reduced cell proliferation and caused G0/G1 arrest in vitro.

Discussion: Our study elucidated the role LAPTM4B that promoted the

development and progression in Ph+ B-ALL. Furthermore, LAPTM4B played a

diagnostic, prognostic, and immunological factor.
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Introduction

Tumorigenesis is a multifaceted process influenced by a dynamic

interplay between internal factors and the tumor microenvironment.

Internal factors encompass genetic mutations, epigenetic changes,

and the dysregulation of signaling pathways (1, 2). Tumor

microenvironment is comprised of various factors including

metabolomics, inflammation, angiogenesis, immune system

modulation, extracellular matrix (ECM) (3–7). Crucially,

membrane proteins play a pivotal role during tumorigenesis by

facilitating the transmission of signals between the extracellular

environment and the cell’s interior (8). These proteins participate

some fundamental cellular processes such as growth, differentiation,

and survival (8–10). Therefore, investigating the intricate interplay

between internal factors, the tumor microenvironment, and the role

of membrane proteins is imperative for comprehending the

intricacies of tumorigenesis. Such understanding lays the

foundation for the development of targeted strategies aimed at

preventing and treating cancer effectively. One of the research

interests in our laboratory is to uncover the roles and mechanisms

of membrane proteins in the initiation and development of tumors.

Building upon the reported biological functions of lysosomal

membrane-associated protein transmembrane-4 beta (LAPTM4B)

in existing studies, we aim to comprehensively understand its

involvement in cancer, especially Philadelphia chromosome-

positive acute B cell lymphoblastic leukemia (Ph+ B-ALL).

LAPTM4B is recognized as a late endosomal protein, and it is

also distributed in the plasma membrane. It exhibits widespread

expression in various tissues throughout the body, with

predominant levels observed in the heart, kidney, skeletal muscle,

and hematopoietic stem cells (HSCs). In contrast, its expression is

relatively lower in peripheral blood leukocytes, spleen, and thymus

(11). LAPTM4B involves in multiple biological processes, including

cell cycle, cell growth and proliferation, and autophagy. LAPTM4B

interacts with and integrin and promotes cell growth and

proliferation through a series of enzyme-linked reactions within

the membrane (12). LAPTM4B also regulates cell cycle and engages

in growth signaling pathways, such as PI3K/AKT and MAPK (13).

LAPTM4B also promotes autophagy through the EGFR signaling

pathway (13, 14), and loss of LAPTM4B inhibited later stages of

autophagy by blocking maturation of the autophagosome (15).

Increased LAPTM4B expression has been observed in various

cancers, including breast, liver, lung, ovarian, uterine, and gastric

cancers (11, 16–18). Notably, elevated LAPTM4B levels contribute

to chemotherapy resistance in breast cancer. The overexpression

of LAPTM4B induces resistance to anthracyclines (such as

doxorubicin, daunorubicin, and epirubicin) by retaining the drug

in the cytoplasm and reducing its nuclear localization, thereby

diminishing drug-induced DNA damage (19). In addition to solid

tumors, LAPTM4B is also highly expressed in hematologic

malignancies. LAPTM4B promoted AML progression by

regulating the RPS9/STAT3 axis (20). Elevated LAPTM4B

expression is associated with AML patients harboring NPM1

mutations in conjunction with FLT3-ITD mutations (21). In

chronic myeloid leukemia (CML) bone marrow (BM) cells,

LAPTM4B expression levels were significantly higher than those
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in normal individuals (22). Similar to observations in solid

tumors, CML patients with higher LAPTM4B expression were

associated with resistance to tyrosine kinase inhibitor (TKI)

treatment (23).

Most studies on LAPTM4B have primarily focused on

intracellular signaling in certain types of cancers, and a

comprehensive understanding of LAPTM4B in tumorigenesis is

still lacking. In this study, we aimed to elucidate the expression,

clinical characteristics and immunological characteristics of

LAPTM4B across various cancers. In particular, our investigation

unveiled a significant correlation between LAPTM4B expression

and survival outcomes in Ph+ B-ALL patients. Moreover, it was

confirmed that the loss of the Laptm4b impeded BCR-ABL-induced

B-ALL progression, both in vitro and in vivo.
Materials and methods

Data acquisition and analysis

The standardized pan-cancer dataset was downloaded from

UCSC (https://xenabrowser.net/): TCGA TARGET GTEx

(PANCAN, N=19131, G=60499). A log2(x+1) transformation was

applied to each expression value, and cancer types with fewer than 3

samples were excluded, resulting in the final expression data for 34

cancer types. Additionally, prognostic data for TCGA were sourced

from prior studies (24). Simultaneously, TARGET follow-up data

were supplemented from the UCSC database. Samples with a

follow-up time of less than 30 days were excluded, and cancer

types with fewer than 10 samples were also excluded. The

abbreviations section provides the full names and corresponding

abbreviations of the tumors.

The Ph+ B-ALL data was downloaded from the GEO database.

RMA normalization was performed using the RMA algorithm the

NimbleScan 2.5 software. The dataset GSE34861 comprises 191

adult B-ALL samples and 3 normal pre-B samples, and 78 are Ph+

B-ALL samples in B-ALL samples.
Genetic and epigenetic alterations in
pan-cancer

Genomic alteration data and methylation data were download

from cBioPortal database (https://www.cbioportal.org/). The

correlation between LAPTM4B expression and gene promoter

methylation was evaluated using Spearman rank correlation.

Kaplan−Meier analysis was performed to analyze the relationship

between LAPTM4B methylation and the prognosis of patients.
Clinical characteristics LAPTM4B in
pan-cancer

We developed the Cox proportional hazards regression model

to analyze overall survival (OS), disease-specific survival (DSS),

disease-free interval (DFI), and progression-free interval (PFI) of
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LAPTM4B across cancers. Kaplan−Meier analysis was performed to

analyze the prognostic significance.

The diagnostic significance of LAPTM4B across cancers was

assessed by the Receiver Operator Characteristic (ROC) curve via

“pROC” (v1.17.0.1). The diagnosis accuracy was evaluated by the

Area under Curve (AUC). The AUC is closer to 1, the diagnosis

accuracy is better.

The IC50 values of various compounds in cancer cell lines were

obtained from the GDSC dataset (https://www.cancerrxgene.org),

to assess the relationship between DLAT and the drug response of

tumor cells by the Spearman correlation coefficient. A higher IC50

indicates that cancers are less sensitive to the compounds.
Tumor immune microenvironment analysis

Tumor-infiltrating lymphocytes (TILs) participated in

predicting sentinel node status and associated with prognosis

(25). ssGSEA scores of the correlation between LAPTM4B and

immune cell infiltration for Ph+ B-ALL were calculated using the

xCELL algorithm and TILs. Spearman rank correlation was

employed to assess the association between LAPTM4B expression

and immune cell infiltration in pan-cancer, utilizing the xCELL and

CIBERSORT algorithms.

Immune checkpoint-related genes (ICGs) were obtained from a

previous study (26). Immune-related genes were downloaded from

the TISIDB database (http://cis.hku.hk/TISIDB/index.php). The

relationship of immune-related genes and LAPTM4B in Ph+ B-

ALL was evaluated using ssGSEA. Immune regulatory genes are

distributed in five immune pathways, including chemokine (41

genes), receptor (18 genes), MHC (21 genes), immunoinhibitor (24

genes) and immunostimulator (46 genes). The relationship between

immune-related genes and LAPTM4B expression in pan-cancer was

evaluated by Spearman rank correlation.
Tumor microenvironment analysis in
pan-cancer

We obtained 10,180 tumor samples from a total of 44 tumor

types for immune infiltration scores. ESTIMATE was used to

reflect the degree of infiltration of stromal or immune cells into

tumors. The ESTIMATE algorithm included stromal, immune, and

ESTIMATE scores. Spearman rank correlation was used to evaluate

the correlation between LAPTM4B expression and these three

scores by the R software packages “estimate” and “psych”.

We downloaded all level 4 simple nucleotide variation data of

TCGA samples from GDC (https://portal.gdc.cancer.gov/). Tumor

mutation burden (TMB) was analyzed using MAftools package

(Version 2.8.05) of R software. Tumor stem cell infiltration

analysis was performed based on DNA methylation dry score

(DNAss) and RNA dry score (RNAss) (27). Spearman rank

correlation was used to evaluate the correlation between

LAPTM4B expression and TMB, microsatellite instability (MSI),

purity, DNAss and RNAss.
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Single-cell analysis and
enrichment analysis

We conducted the single-cell level expression of LAPTM4B at in

leukemia using TISCH2 (28). TISCH2 encompasses 190 tumor scRNA

sequence datasets with 6 million cells across 50 cancer types. To assess

the functional and signaling aspects with LAPTM4B, we conducted

Gene Set Enrichment Analysis (GSEA) on HALLMARK and

KEGG pathways. Based on the median expression of LAPTM4B in

cancer, the group was divided into high and low expression groups.
The development of LAPTM4B knockout
Ph+ B-ALL model and in vitro assay

The B6. LAPTM4Bloxp/loxp mice were generated at Biocytogen

Pharmaceuticals (Beijing) Co., Ltd, which were intercrossed with

B6.CMV-Cre mice to generate B6. LAPTM4B-/- mice. BCR-ABL

induced B-ALL model was developed as previously described (29).

Briefly, bone marrow (BM) cells were collected from 8-week-old

WT and LAPTM4B-/- mice (n=3) and resuspended with BCR/ABL

viral infection medium, centrifugation at 1000g for 90min at 37°C,

then cultured at 37°C for 3 h. Then, viral transfected cells were

injected into lethally irradicated recipient mice at a dosed of 1x10^5

B cells/mouse via the tail vein.

After the WT or LAPTM4B-/- BM cells were transfected with

BCR/ABL, then seeded in DMEM medium containing 10% FBS in

24-well plates at series initial cell numbers of 5x10^5 (500k),

3x10^5 (300k), 1x10^5 (100k), 3x10^4 (30k), 1x10^4 (10k), and

2.5x10^3 (2.5k). Each well cell numbers were adjusted to 1x10^6

cells/well with WT mice BM cells and cultured with DMEM

medium containing 10% FBS. The cell number in each well was

counted on day 7 post seeding.
Cell cycle experiments by the BrdU
incorporation method

BrdU was added directly into the prepared cell medium at final

concentration of 10 uM, and incubated for 1h. After collection and

washing, cells were suspended with PBS containing 0.5%

paraformaldehyde on ice for 20 minutes. Then cells were washed

with PBS and resuspended with 70% ethanol overnight. Next day, after

washing with PBS, cells were resuspended with 2N HCL/0.5% triton

X-100 at room temperature for 20 min to denature. After

neutralization with 0.1M sodium borate, cells were suspended with

PBS containing 0.5% BSA and 0.5%Tween 20 and stained with anti-

BrdU antibody-FitC (BD Biosciences) at room temperature for 20min.

The cells were resuspended with PBS containing RNase and incubated

at 37 ℃. After adding PI, cells were analyzed using flow cytometry.
Statistical analysis

R software (version 4.2.1) was utilized for this analysis. The

Wilcoxon’s test and analysis of variance (ANOVA) were applied for
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comparisons involving two and multiple groups, respectively.

Spearman correlation coefficient was employed for correlation

analysis. All experiments were conducted in triplicate.
Results

Expressions and alterations of LAPTM4B in
human cancers

In order to examine the expression profile of LAPTM4B in pan-

cancers, we evaluated its expression across 34 cancer types using data

from TCGA, TARGET, and GTEx databases. Our findings revealed

high LAPTM4B expression in 28 cancer types compared to normal

tissues, including glioblastoma (GBM), lower-grade glioma (LGG),

uterine corpus endometrial carcinoma (UCEC), breast invasive

carcinoma (BRCA), cervical squamous cell carcinoma and

endocervical adenocarcinoma (CESC), lung adenocarcinoma

(LUAD), esophageal carcinoma (ESCA), stomach and esophageal

carcinoma (STES), colon adenocarcinoma (COAD), colon

adenocarcinoma/Rectum adenocarcinoma esophageal carcinoma

(COADREAD), stomach adenocarcinoma (STAD), head and neck

squamous cell carcinoma (HNSC), lung squamous cell carcinoma

(LUSC), liver hepatocellular carcinoma (LIHC), high-risk Wilms

tumor (WT), skin cutaneous melanoma (SKCM), bladder

urothelial carcinoma (BLCA), thyroid carcinoma (THCA), rectum

adenocarcinoma (READ), ovarian serous cystadenocarcinoma (OV),

pancreatic adenocarcinoma (PAAD), testicular germ cell tumors

(TGCT), uterine carcinosarcoma (UCS), acute lymphoblastic

leukemia (ALL), acute myeloid leukemia (LAML), Adrenocortical
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carcinoma (ACC), and cholangiocarcinoma (CHOL). While, low

LAPTM4B expression was observed in 4 cancer types, Pan-kidney

cohort (KIPAN), prostate adenocarcinoma (PRAD), kidney renal

clear cell carcinoma (KIRC), and kidney chromophobe (KICH)

(Figure 1A). Specifically, LAPTM4B exhibited high expression in

BLCA, BRCA, CHOL, COAD, ESCA, HNSC, LIHC, LUAD, LUSC,

READ, STAD, and UCEC, while showing low expression in KICH,

KIRC, PRAD, and THCA compared to adjacent paired normal

tissues (Figure 1B). These results suggest that elevated LAPTM4B

expression is associated with cancer progression in a majority

of cases.

The amplification of LAPTM4B was observed most frequently

in UCS, BRCA, BLCA, OV, PRAD, and LIHC, (Figure 1C), and

common in most cancers (Figures 1C, D). Moreover, we found 34

mutation sites between amino acids 0 and 317, including 24

missense mutations, 2 truncating, 8 SV/fusion, and S265N as the

most frequent mutation sites within LAPTM4B across cancers

(Figures 1E, F).

To elucidate potential associations between LAPTM4B and

intracellular epigenetic alterations, we examined the status of

genomic methylation and the expression of genes involved in

mRNA methylation in various types of cancer cells using data from

cBioPortal database. We found that there were significant negative

correlations between LAPTM4B expression and gene promotor

methylation in most tumors (Supplementary Figure 1A). Increased

methylation of LAPTM4B mRNA was related to poorer OS in

patients with GBM and LGG (Supplementary Figures 1B, C).

Furthermore, the relationships between LAPTM4B and genes

involved in mRNA m1A, m5C, m6A modifications were evaluated.

LAPTM4B expression was significantly positively related to these
FIGURE 1

The expression and genetic alteration analysis of LAPTM4B across cancers. (A) LAPTM4B expression levels in tumor and normal samples. (B) Paired
differential analysis of LAPTM4B expression in matched tumor and normal samples from TCGA. (C) Bar chart of LAPTM4B mutations across cancers.
(D) Mutation counts and types of LAPTM4B across cancers. (E) Mutation diagram of LAPTM4B across protein domains. (F) Landscape of genetic
mutation of LAPTM4B across cancers. * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001, ns means non significance.
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RNA modification genes in almost all tumors (Supplementary

Figure 1D). These results indicated that LAPTM4B could influence

tumor development by regulating the repair of RNA and DNA

methylation in cancers.
Treatment outcome associated with
LAPTM4B alterations in pan-cancers

To evaluate the clinical significance of elevated LAPTM4B

expression in various cancers, we conducted a Cox proportional

hazards model analysis encompassing OS, DSS, DFI, and PFI.
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Univariate Cox regression analysis of OS, DSS, PFI, and DFI

revealed that LAPTM4B served as a significant risk factor for

patients in multiple cancer types, including LIHC, B-ALL, SARC,

GBMLGG, SKCM, AML, ACC, UVM, CESC, HNSC, KICH,

MESO, UVM, BRCA, and PCPG (Figure 2A). Additionally,

Kaplan−Meier survival analyses of OS, DSS, and PFI were further

explored across cancers (Figures 2B–D).

The performance of the gene signature for diagnostic accuracy

was evaluated by the ROC curves. Figure 3 showed that 17 types of

cancer had high diagnostic accuracy (AUC >0.9), including CHOL,

ESCA, GBM, HNSC, LAML, LGG, LUAD, LUSC, OV, PAAD,

READ, SKCM, STAD, TGCT, THYM, UCEC and UCS. These
FIGURE 2

The prognostic analysis of LAMPTM4B across cancers. (A) Forest plots of LAPTM4B by univariate Cox regression analysis across cancers. OS, DSS,
PFI, and DFI. Kaplan−Meier curves showing the relationships of LAPTM4B expression with (B) OS. (C) DSS. (D) PFI in pan-cancer.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1522293
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhou et al. 10.3389/fimmu.2025.1522293
results suggested that LAPTM4B had good diagnostic value in a

variety of cancers. The detailed results of all cancers were exhibited

in the Supplementary Table 1.

To assess the potential correlation between elevated LAPTM4B

expression and the drug response of tumor cells, we conducted

Spearman correlation coefficient analysis using data from the GDSC

dataset. Our findings revealed increased LAPTM4B expression had

increased IC50 values of 14 compounds, including rTRAIL, B-Raf

inhibitors (PLX-4720, dabrafenib, SB590885), FTI-277 (FTase
Frontiers in Immunology 06
inhibitor), bexarotene (RXR agonist), dactolisib (PI3K/mTOR

inhibitor), luminespib (HSP90 inhibitor), palbociclib (CDK4/6

inhibitor), (5Z)-7-Oxozeaenol (TAK1 inhibitor), QS11

(ARFGAP1 inhibitor), among others, which suggested that

increased LAPTM4B lead drug resistance. Conversely, a negative

association was observed with elesclomol and afatinib (EGFR/HER2

inhibitor) responses (Table 1). These results suggest that increased

LAPTM4B expression may confer resistance to a broad spectrum of

therapeutic agents in tumor cells. Moreover, we also found that
FIGURE 3

ROC curve of LAPTM4B expression in the TCGA and GTEx database in pan-cancer. Cancers with AUC > 0.9.
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LAPTM4B was positively correlated with RNAss and DNAss across

most of the cancers (Supplementary Figures 2A, B), which indicates

that high expression of LAPTM4B might be associated with cancer

tumor recurrence and metastasis.
Immune status analysis of LAPTM4B in
pan-cancer

To explore the relationship between LAPTM4B expression and

immune status in pan-cancer, we conducted a correlation analysis.

Overall, we found that LAPTM4B expression was associated with

immune subtypes in 19 cancer types and correlated with molecular

subtypes in 14 cancer types (Supplementary Figures 3A, B).

Additionally, we analyzed stromal and immune cell scores to

investigate the relationship between LAPTM4B expression and

the tumor immune microenvironment (TIME) across cancers.

We observed a positive correlation between LAPTM4B expression

and StromalScore, ImmuneScore, and ESTIMATEScore in PAAD,

OV, and UVM (Figure 4A). While, LAPTM4B expression showed a

negative correlation with these scores in GBM, LGG, LAML, BRCA,

CESC, LUAD, STES, SARC, KIRP, KIPAN, STAD, LUSC, WT,

SKCM, SKCM-M, THCA, NB, and TCGT (Figure 4A). To explore

the correlation between LAPTM4B expression and immune cells,

we developed a heat map of LAPTM4B with immune cells by

CIBERSORT and xCell. Our result revealed that LAPTM4B was

associated with CD8+ T cells, macrophages M2 and Tregs in many

cancers, which suggested that high LAPTM4B expression had

inhibitory immune microenvironment (Figures 4B, C). Overall,
Frontiers in Immunology 07
our findings suggested that elevated LAPTM4B expression might

be associated with a potential decrease in patients’ immune anti-

tumor capabilities.

To investigate whether LAPTM4B expression levels are associated

with TMB, MSI, and tumor purity, we conducted analyses using

Spearman correlation analysis. The results showed that LAPTM4B

expression was positively correlated with TMB in ACC, BRCA,

GBMLGG, LAML, LGG, LUAD, PAAD, and THYM, while

exhibiting a negative correlation in COAD, COADREAD, ESCA,

PRAD, SKCM, and THCA (Figure 5A). The MSI analysis revealed a

positive correlation of LAPTM4B expression with MSI in KIPAN,

TGCT, and UVM, while a negative correlation in COAD,

COADREAD, DLBC, GBMLGG, LGG, PAAD, PRAD, and THCA

(Figure 5A). Additionally, LAPTM4B showed a significant correlation

with tumor purity, with positive associations in CESC, ESCA, GBM,

GBMLGG, HNSC, KIPAN, KIRP, LGG, LUAD, LUSC, SARC,

SKCM, STAD, STES, TGCT, and THYM, and negative associations

in BLCA, LIHC, OV, PCPG, PRAD, UCS, and UVM (Figures 5A).

These findings suggest that LAPTM4B expression might serve as a

potential biomarker for immunotherapy.

Subsequently, the correlations of expression levels between

LAPTM4B and immune checkpoint genes and immune regulatory

genes in cancers were also investigated. We found that LAPTM4B

expression was positively related to immune regulatory genes in

majority tumor types, especially in PRAD, UVM, THYM, LIHC,

BLCA, and OV. While, LAPTM4B expression was negatively related

to immune regulatory genes in TGCT, GBM, LUAD, SARC, KIPAN,

and SKCM (Figure 5B). Additionally, LAPTM4B expression was

positively related to immune checkpoint genes in most types of

tumors, except for some tumors, which were mainly TGCT, GBM,

SKCM, and SARC (Figure 5C). In general, these results suggested

that LAPTM4B might regulate immune cell infiltration and

immune-related genes functions in most tumor types.
Single-cell and enrichment analysis of
LAPTM4B expression in leukemia

LAPTM4B could be a diagnostic, prognostic or therapeutic factor

in hepatocellular carcinoma, breast cancer, bladder cancer, renal clear

cell carcinoma, nasopharyngeal cancer, lung cancer, osteosarcoma,

glioblastoma, gastric cancer, pancreatic ductal adenocarcinoma,

ovarian cancer, neck squamous cell carcinomas, prostate cancer,

endometrial cancer, colorectal cancer, gallbladder carcinoma,

esophageal cancers, cervical carcinoma, melanoma, pancreatic

carcinoma and AML and so on (17, 18, 20, 30–51). However, none

study was performed in ALL, so we focused on ALL, particularly Ph+

B-ALL, to elucidate and clarify the biological functional characteristics

of LAPTM4B. Taking the advantages of single-cell sequencing and

open public data, we found that LAPTM4B was expressed mainly in

normal HSCs, progenitors, and AML cells (Figures 6A, B). In an ALL

sample, we found that LAPTM4B was highly expressed in

proerythroblasts, but not malignant cells (Figures 6C, D). Interesting,

an analysis based on an expression profiling of 191 B-ALL samples and

3 normal pre-B samples showed that LAPTM4B was more highly

expressed in BCR/ABL B-ALL than other subtypes (Figure 6E). Then,
TABLE 1 Summary of Spearman’s correlation between LAPTM4B
expression and drug response (IC50 value) in cancer cell lines based
upon the GDSC dataset.

Compound Correlation P

PLX-4720 0.124416709 0.00090156

Dabrafenib 0.11962461 0.001516679

FTI-277 0.114908293 0.007683379

Bexarotene 0.113597156 0.009879376

Dactolisib 0.111929208 0.005476148

SB590885 0.110085002 0.004245134

Luminespib 0.107308826 0.011816945

Palbociclib 0.102470636 0.012099797

BX795 0.10112307 0.008624826

(5Z)-7-Oxozeaenol 0.091295862 0.019248295

rTRAIL 0.086089865 0.033004286

GSK269962A 0.084235228 0.031895828

NSC-87877 0.080602051 0.038372314

QS11 0.077092171 0.044075024

Elesclomol -0.081062898 0.049755553

Afatinib -0.102577808 0.006747785
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we performed the analysis of the function and pathways of LAPTM4B-

related genes in Ph+ B-ALL.We found that genes associated with HSCs

and leukemia stem cells (LSCs) were up-enriched in high LAPTM4B

expression samples (Figures 6F, G), as well as genes associated with cell

cycle, DNA replication, MYC target, E2F and G2M checkpoint

pathways were also up-enriched in in Ph+ B-ALL (Figures 6H–I).
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Relationships between LAPTM4B
expression and immune status in Ph+

B-ALL

To evaluate the association of LAPTM4B expression with TME in

Ph+ B-ALL, we conducted an ESTIMATE analysis to calculate the
FIGURE 4

Association between LAPTM4B expression and immune status across cancers. (A) Relationship between LAPTM4B expression and the StromalScore,
ImmuneScore, and ESTIMATEScore. Relationships between LAPTM4B expression and the immune cells by CIBERSORT algorithm (B), and the xCell
algorithm (C). * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001, ns means non significance.
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stromal score, immune score, ESTIMATE score, and tumor purity

within Ph+ B-ALL. We found that LAPTM4B expression was not

significantly associated with TME in Ph+ B-ALL (Supplementary

Figure 4). Then, the relationship between LAPTM4B and immune

cells in Ph+ B-ALL was conducted using xCell algorithm method. The

scores of CD4+ memory T cells, CD8+ T cells, HSC, preadipocytes, and

Tgd cells were higher; while, the scores of CD4+ Tem, eosinophils,

epithelial cells, MSC, and NKT were significantly lower in the high

LAPTM4B expression patient samples (Figure 7A). LAPTM4B

expression was negatively related to macrophages M2, NKT, mv

endothelial cells, and CD4+ Tem; while they were positively

correlated with CD4+ memory T cells, Th2 cells, Tgd cells, CD4+ T
Frontiers in Immunology 09
cells and microenvironment Score (Figure 7B). Moreover, immune

infiltration scores of tumor-infiltrating lymphocytes (TILs) type in

different LAPTM4B expression groups were also evaluated using

ssGSEA. The central memory CD4 T cells, effector memory CD4 T

cells, immature B cells, plasmacytoid dendritic cells, and immature

dendritic cells were highly expressed in the high LAPTM4B expression

patient samples (Figure 7C).

The correlation between LAPTM4B expression and immune-

related genes was also assessed. As previous reports, there were 79

genes related to immune checkpoint (26). We found that

TNFRSF14 and TNFSF14 were lowly expressed in the high

LAPTM4B expression samples (Supplementary Figure 5A).
FIGURE 5

Association between LAPTM4B expression and genes in microenvironment immune cells across cancers. Relationship between LAPTM4B and TBM,
MSI, and purity. Correlation between LAPTM4B and immune regulatory genes (A), and immune checkpoint genes (B, C). *p<0.05.
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Additionally, TNFRSF14 was negatively correlated with LAPTM4B

expression; whereas, CTLA4, HLA-E, and ICOS were positively

associated with LAPTM4B expression (Supplementary Figure 5B).

Moreover, the correlation between LAPTM4B and the chemokine

genes was also evaluated. We found that CCL1, CCL11, CCL15,

CCL19, CCL21, CCL22, CCL24 and CCL25 were lowly expressed in
Frontiers in Immunology 10
high LAPTM4B expression samples (Supplementary Figure 5C).

But, no significant difference was observed on immunoinhibitory

genes, immunostimulatory genes, receptor genes, and MHC genes

except for IL6, LTA,ULBP1, and XCR1 (Supplementary Figures 6A-

D). These results suggested that the high expression of LAPTM4B

might affected immune microenvironment in Ph+ B-ALL.
FIGURE 6

Expression of LAPTM4B at the single-cell level and its related signaling in B-ALL. LAPTM4B expression profiles at single-cell level in AML (A, B), and
B-ALL (C, D). The expression of LAPTM4B in different subtypes in B-ALL (E). GSEA analysis of LAPTM4B was related to hematopoietic stem cells (F),
and leukemia stem cells (G) in Ph+ B-ALL. KEGG (H) and HALLMARK (I) analysis suggested that LAPTM4B was correlated with the cell cycle, MYC,
E2F, and G2M checkpoint pathways in Ph+ B-ALL. * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001, ns means non significance.
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FIGURE 7

Association between LAPTM4B expression and immune-related cells in ph+ B-ALL. (A) Boxplots of immune cells in different LAPTM4B expression
groups by xCell algorithm. (B) Scatterplot of LAPTM4B correlated with immune cells. (C) Boxplots of TILs in different LAPTM4B expression groups.
* p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001, ns means non significance.
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LAPTM4B deletion impairs the
development and progression of
Ph+ B-ALL

To instigate the involvement of LAPTM4B in the development

of Ph+ B-ALL, we employed a Ph+ B-ALL mouse model. Bone

marrow (BM) cells from wild type (WT) or LAPTM4B-/- mice were

transfected with retrovirus containing BCR/ABL and then injected
Frontiers in Immunology 12
into lethally irradicated recipients (Figure 8A). Overall, the survival

time of recipients receiving LAPTM4B-/- BM cells was significantly

longer than that receiving WT BM cells (Figure 8B). We also

monitored the number of leukemic cells with BCR/ABL

(represented with GFP and B220) in peripheral blood of mice

receiving BCR/ABL-transduced WT or LAPTM4B-/- BM cells on

the day 10, 20 and 30 post-BM transplantation. We found that the

percentages of B-lymphoid leukemic cells were significantly lower
FIGURE 8

LAPTM4B promoted the development and progression of Ph+ B-ALL. (A) The schematic diagram to establish the mouse model. The Kaplan-Meier
curve (B), and the counts of GFP+/B22+/IgM- Ph+ B-ALL cells (C) in LAPTM4B-/- and wild type Ph+ B-ALL mouse model. The cell counting (D), and
the cell cycle (E) in LAPTM4B-/- and wild-type Ph+ B-ALL cells in vitro. * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001, ns means non significance.
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in mice receiving BCR/ABL-transduced WT or LAPTM4B-/- BM

cells than in those receiving BCR/ABL-transduced WT BM cells at

all time points measured (Figure 8C). To investigate the role of

LAPTM4B in BCR/ABL-induced leukemogenesis, we conducted an

in vitro assay for proliferation of BCR/ABL transformed BM B-

lymphoid progenitors, as described in methods. BCR-ABL-

transformed B-lymphoid progenitors from LAPTM4B-/- BM cells

exhibited much lower number than it transformed those from WT

BM cells (Figure 8D). Further, in vitro Brdu assays for cell

proliferation rate showed that LAPTM4B deletion impaired Ph+

B-ALL cell proliferation and caused G0/G1 arrest (Figure 8E).

These findings demonstrated that LAPTM4B deletion significantly

impaired the development and progression of Ph+ B-ALL.
Discussion

LAPTM4B is required for lysosomes function, participates in

the cell death program, promotes autophagy and tolerance to

metabolic stress in cancer cells (52) (53), and is an essential gene

for adjuvant drug resistance (15, 54). Our results revealed the role

LAPTM4B plays in pan-cancer and Ph+ B-ALL. We determined the

expression levels of LATPM4B mRNA in various cancers, and

confirmed the most common types of LAPTM4B mutations and

their locations. The correlation between epigenetic alterations and

LAPTM4B were evaluated. We also assessed the diagnostic,

prognostic and therapeutic values of LAPTM4B expression across

cancers and differentiated its expression levels across several

immune and cellular subtypes of cancers. We associated

LAPTM4B expression levels with tumor microenvironment and

the infiltration levels of immune cells and genes in various cancers.

Besides, the expression of LAPTM4B at the single-cell level and

function in B-ALL were explored. We identified that the loss of the

LAPTM4B gene impeded BCR-ABL-induced B-ALL progression,

both in vitro and in vivo. We also explored the immunological

function of LAPTM4B in Ph+ B-ALL.

LAPTM4B was not highly expressed in all tissues, its expression

was high in the testis, heart, skeletal muscle and uterus (11), while

we found that it was highly expressed in most cancers. And the

amplification was the most frequent alteration. However, the

expression of LAPTM4B was discovered lowly expressed in

KIPAN, KIRC, KICH and PRAD, while the genetic alterations

were mainly amplification in these cancers. Therefore, there were

other factors affected the expression of LAPTM4B. As we known,

abnormal methylation of DNA and RNA promotes various diseases

and cancers (55–61). And we found that LAPTM4B expression was

significantly related to DNAmethylation and RNAmodifications in

these cancers. Theses might partly explain the inconsistencies

between alteration and expression.

A total of 17 types of cancer had high diagnostic accuracy

(AUC >0.9), suggesting that LAPTM4B had good diagnostic value.

Meanwhile, LAPTM4B was a risk factor in many cancers. Besides,

we found that increased LAPTM4B expression led resistance to a

broad spectrum of therapeutic agents in tumor cells. These results

were consistent with previous studies that LAPTM4B could be a

diagnostic, prognostic and therapeutic factor in hepatocellular
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carcinoma, breast cancer, hepatocellular carcinoma, bladder

cancer and renal cell carcinoma and so on (17, 18, 30–38).

LAPTM4B expression was different in different molecular or

immune subtypes of cancer, which results in different survival in

the overall population and particular subtype of cancer. Therefore,

immune features should be also considered in the further study.

TMB can reflect the proportion of somatic mutations in tumors

(62). MSI refers to the arbitrary length change of microsatellites in

tumor tissue due to insertion or deletion of repeat units (63). The

purity of the tumor usually related to prognosis (64). TMB, MSI,

and tumor purity are emerging biomarkers associated with the

immunotherapy response. ESTIMATE reflects the degree of

infiltration of stromal or immune cells into tumors. High

stemness scores represent the activity of tumor stem cells, and are

associated with drug resistance and the continuous proliferation of

tumor cells, and are correlated with poorer survival (27). Our results

exhibited that LAPTM4B was significant correlated with these

indexes. Besides, we showed that LAPTM4B was related to

different immune cells in various cancers. In general, the

infiltration of activated CD8+ T cells, Tem and Tcm CD8+ cells,

and Tem CD4+ cells was associated with good prognosis, whereas

MDSCs and Tregs were correlated with bad prognosis (65). A

previous study identified that LAPTM4B inhibited human

regulatory T cells produced TGF-b1 (66). Besides, LAPTM4B was

upregulated in CML TKI-resistant patients (23). Therefore,

LAPTM4B might be an immunotherapeutic factor in

various cancers.

Then, we found that LAPTM4B is expressed primarily in stem

cells at single-cell level in leukemia, and highly expressed in BCR/

ABL subtype of B-ALL, and upregulated stem cell pathway in Ph+

B-ALL. A previous study also identified LAPTM4B as a candidate

gene related to stemness, which was the downstream target of

HOXB4 in hematopoietic progenitor cells (67). Similarly, the study

verified that LAPTM4B was closely related to the stemness of HCC

(16). These studies illustrated that LAPTM4B might regulate stem

cell-related genes. Additionally, LAPTM4B might participated in

the signaling pathways of MYC, E2F, cell cycle, and T/B cell

receptor. And in the Ph+ B-ALL mouse model, LAPTM4B

knockout prolonged survival, inhibited cell proliferation and

arrest of G0/G1. The results were similar to the previous study,

which exhibited that LAPTM4B promoted the entry of cells from

the G1 into the S phase in breast cancer (68).

In B-cell malignancies, leukemic cells can alter the normal

microenvironment, in favor of their growth, survival and

resistance to cytotoxic therapies (69). Immune cells are important

constituents of the tumor stroma and play a crucial role in tumor

development and progression60 (70, 71). Our study showed that

LAPTM4B expression was associated with HSC, preadipocytes,

immature B cells, and immature dendritic cells in Ph+ B-ALL.

These results validated that LAPTM4B was related to stem cell

pathways as before analyzed. Moreover, the results demonstrated

that high LAPTM4B expression had low TNFRSF14 and TNFSF14

expression, and was positively correlated with the CTLA4 and ICOS

checkpoint gene. TNFSF14 was an immune-activating gene, mainly

expressed in activated T cells, activated natural killer cells and

immature dendritic cells (72). TNFRSF14 is a receptor for BTLA,
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TNFSF14/LIGHT, and homotrimeric TNFSF1, is involved in

lymphocyte activation. CTLA4 also known as CD152, is a protein

receptor that acts as an immune checkpoint and negatively regulates

the immune response (73). ICOS, also called CD278, ICOS were

immune checkpoint proteins expressed on activated T cells. Tumor-

infiltrating Tregs expressed high levels of cell surface molecules

associated with T-cell activation, such as CTLA4, PD-1, LAG3,

TIGIT, ICOS, and TNF receptor superfamily members (74). These

results suggested that LAPTM4B might influence the efficacy

of immunotherapy.

In summary, our study systematically performed a

comprehensive pan-cancer analysis of LAPTM4B, and explored the

expression, immunological features, and functions of the LAPTM4B

gene in the Ph+ B-ALL mouse model. We demonstrated the

abnormal expression profiles of LAPTM4B and it was related to

clinical diagnosis, prognosis, genetic and epigenetic alterations,

immunological features, and drug response. Additionally, we

identified that increased LAPTM4B expression was associated with

an unfavorable prognosis and promoted the development and

progression in Ph+ B-ALL, and was related to immune status.

These results could help illustrate the underlying oncogenic role

and immunological function of LAPTM4B in cancers.
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