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The gut microbiota is a diverse ecosystem that significantly impacts human

health and disease. This article focuses on how the gut microbiota interacts with

inflammatory bowel diseases and colorectal tumors, especially through immune

regulation. The gut microbiota plays a role in immune system development and

regulation, while the body’s immune status can also affect the composition of the

microbiota. These microorganisms exert pathogenic effects or correct disease

states in gastrointestinal diseases through the actions of toxins and secretions,

inhibition of immune responses, DNA damage, regulation of gene expression,

and protein synthesis. The microbiota and its metabolites are essential in the

development and progression of inflammatory bowel diseases and colorectal

tumors. The complexity and bidirectionality of this connection with tumors and

inflammation might render it a new therapeutic target. Hence, we explore

therapeutic strategies for the gut microbiota, highlighting the potential of

probiotics and fecal microbiota transplantation to restore or adjust the

microbial community. Additionally, we address the challenges and future

research directions in this area concerning inflammatory bowel diseases and

colorectal tumors.
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GRAPHICAL ABSTRACT
1 Introduction

The human body harbors a diverse range of microorganisms,

encompassing bacteria, viruses, fungi, protozoa and so on, which

make up about 1-3% of body weight. The intestinal microbiota is

particularly rich, with about 1000 species, consisting mainly of

bacteria (1). The number of intestinal microbiota is about equal to

the number of human cells in the body, and they encode about 100

times more genes than the body’s own genes (2, 3). As the “second

genome”, Intestinal microorganisms fulfill various functions, such

as enhancing the host’s immune system, assisting in digestion,

regulating intestinal hormone and nerve signals, influencing drug

metabolism, detoxifying harmful substances, and affecting the

production of metabolic compounds in the host (4). Increasing

evidence shows that the gut microbiome directly influences

immune regulation, supports the development of the immune

system, and helps maintain its normal function. Conversely, the

immune status of the body can also affect the composition of the gut

microbiota. Thus, the microbiome plays a crucial role in both health

and disease (5). Many studies have revealed a strong link between

gut microbiota dysbiosis and gastrointestinal diseases, malignant

tumors, cardiovascular diseases, neurological disorders, and other

disorders in humans, of which tumors are one of the most studied

diseases (6–12). The effect of gut microbes on immune function,

including immunosuppression and activation of inflammation, has

the most direct impact on GI diseases, the most prominent types of

which are inflammation and neoplasms, because gut microbes

colonize the intestinal tract.

Inflammatory bowel disease (IBD) is a gastrointestinal

condition characterized by chronic inflammation, manifested by

disorders of mucosal structure, altered intestinal microbial

composition, and systemic biochemical abnormalities, and
Frontiers in Immunology 02
includes ulcerative colitis (UC) and Crohn’s disease (CD) (13).

IBD can develop at any age, and is generally common in adolescents

at the first onset of disease. Its incidence continues to rise globally,

with a growing number of children and elderly individuals (14).The

causes and pathogenesis of IBD remain not completely understood,

and abnormalities in immunoregulation play a crucial role in the

onset of IBD. Many immunosuppressants, biological agents and

small molecule substances have been applied to the clinic and have

achieved good efficacy in the treatment of IBD and its related

complications. Patients with IBD face an increased risk of

developing Colorectal cancer (CRC), called colitis-associated

cancer, compared to normal subjects (15). Beneficial gut bacteria

can exert immunosuppressive effects by modulating host immune

cells, while harmful bacteria induce inflammatory cytokines

through interactions with immune cells or their metabolites,

leading to intestinal damage (16, 17). There are a number of

bacteria that can act on both IBD and tumors together, such as a

relative increase in Escherichia coli (E. coli) in the patient’s intestinal

microbiota, and the abundance of Bacteroides fragilis (Bf) is strongly

linked with both active IBD and CRC (18–20). With the substantial

development of IBD genetic susceptibility and gut microecology

research, future treatments may favor individual precision therapy

by targeting the microbiota in order to improve patient symptoms

and further enhance quality of life.

The long-term chronic inflammatory response in the intestine is

associated with the occurrence of cancer. CRC is a common

gastrointestinal tumor and the second leading cause of

cancer-related deaths worldwide. Recent years have seen a rise in

CRC incidence across various countries, and the incidence and

mortality rates vary significantly around the world. According to

the National Cancer Center of China, CRC ranks as the second

most prevalent cancer in men and the fourth in women (21). As
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tumor immunology advances quickly, people have gained a more

in-depth understanding of the body’s anti-tumor immune response

pathway and the immune escape mechanism of tumors, and

significant breakthroughs have been made in immunotherapy for

tumors, but all of them have certain limitations. Most tumors are

insensitive to the various existing immunotherapies, indicating that

they have a strong immune tolerance mechanism. Coupled with the

high degree of heterogeneity of tumors among patients, it is often

difficult for existing single therapies to produce satisfactory results

in clinical applications. Current metabolomics and macrogenomics

research highlights the gastrointestinal microbiome’s dual role in

preventing cancer, promoting tumor development, and influencing

the effectiveness of anticancer treatments (22). Some bacteria in the

gut microbiome exert pro-cancer effects, while others have tumor

suppressor properties (23). Therefore, if the components of gut

microbes can be artificially altered, they may not only serve as

therapeutic targets, but also exert immunomodulatory functions.

Targeting gut microbes for the treatment of intestinal diseases

has a promising future, and we summarize the current mechanisms

of gut microbes in IBD and CRC, as well as the present state of

targeting gut microbes for managing these diseases.
2 Gut microbiota and inflammatory
bowel disease

IBD is a chronic, recurrent inflammatory disorder of the

digestive tract linked to autoimmune processes. The composition

and diversity of the intestinal microbiota are intimately linked to the

onset and progression of IBD (24).
2.1 Anti-inflammatory effects of gut
microbiota

In the human gut microbiota, Firmicutes (F) and Bacteroidetes (B)

constitute approximately 90% of the total bacterial population (25).

IBD patients frequently demonstrate a decline in the F/B ratio, and

studies have indicated that the diversity of Firmicutes in the intestinal

microbiota of IBD individuals reduces, characterized by a significant

decline in anaerobic bacteria of the class Clostridia, particularly the

commensal bacterium Faecalibacterium prausnitzii (F. prausnitzii)

(26–30). F. prausnitzii is capable of generating butyrate, which

suppresses HDAC1, stimulates Foxp3, and blocks the downstream

IL-6/STAT3/IL-17 pathway, maintaining the T helper 17 cell/

regulatory T cell (Th17/Treg) balance and exerting substantial anti-

inflammatory effects (31). Additionally, the abundance of

Phascolarctobacterium is s ignificantly decreased, and

Phascolarctobacterium, when co-cultured with Paraprevotella,

consumes succinate and produces the anti-inflammatory SCFA

propionate (32, 33). The reduction of SCFA-producing

Phascolarctobacterium in IBD patients implies that the anti-

inflammatory impact of SCFA is potentially weakened, potentially

exacerbating IBD symptoms (34). There are also some anti-
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inflammatory bacterial groups, such as non-toxigenic Bacteroides

fragilis (NTBF), whose symbiotic factor polysaccharide A (PSA) can

stimulate CD4+ T cells and induce the anti-inflammatory effects of

Tregs through Toll-like receptor 2 (TLR2), and inhibiting Th17,

promoting immune tolerance (Figure 1) (35). Tan et al. confirmed

that new strains of Bf HCK-B3 and Bacteroides ovatus ELH-B2 can

alleviate LPS-induced inflammation by regulating cytokine production

or restoring the Treg/Th-17 balance (36).
2.2 Pro-inflammatory effects of gut
microbiota

However, certain microbial groups can facilitate inflammatory

responses in IBD. Adherent-invasive E. coli can induce epithelial

mitochondrial fission, influencing intestinal permeability (37).

Enterococcus faecalis (Efa) can enhance colonic cytokine expression

and cause colitis (38). ETBF and its secreted zinc-dependent

metalloprotease toxin, B.fragilis toxin (BFT), triggers Stat3 activation

and Th17 immune responses, promoting mucosal permeability (39,

40). Additionally, Ha et al. discovered that Clostridium innocuum is

abundant in the ‘creeping fat’ (CrF) of severe CD individuals, and this

bacterial group can stimulate tissue remodeling, resulting in the

formation of adipose tissue barriers (41). Henke et al. reported that

Ruminococcus gnavus secretes a Toll-like receptor 4 (TLR4)-

dependent glucorhamnan polysaccharide, effectively inducing

dendritic cells to secrete inflammatory cytokines (TNF-a), thereby
facilitating CD inflammatory responses (42).

An investigation on gut microbiota characteristics revealed that

within the dataset of genera related to IBD, the number of genera

related to CD exceeds that related to UC (43). Additionally, in

contrast to healthy individuals, the a-diversity of IBD is diminished,

with a more pronounced reduction observed in CD; the microbial

community composition (b-diversity) undergoes changes in UC,

while the alterations in b-diversity are more conspicuous in CD

(Figure 2) (43). Pascal et al. discovered that dysbiosis is notably

more pronounced in CD individuals compared to those with UC,

manifested as lower diversity and more unstable microbial

communities (44). In CD patients, the levels of Actinomyces,

Veil lonel la , and E.coli rose, while the enrichment of

Christensenellaceae , Coriobacteriaceae , and particularly

Clostridium leptum declined. Similarly, the level of E.coli also rose

in UC patients, while the levels of Eubacterium rectale and

Akkermansia decreased (45). Intestinibacter abundance increased

in both CD and UC, whereas Efa abundance markedly decreased in

CD (46).
2.3 Microbiome therapy in inflammatory
bowel disease

Adjusting ecological dysbiosis, using fecal microbiota

transplantation (FMT), and supplementing with probiotics,

especially butyrate-producing bacteria, can help improve IBD
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FIGURE 2

Overview of genera associated with CD or UC. To classify genera based only on their abundance being higher or lower in CD or UC compared to
healthy individuals.
FIGURE 1

NTBF promotes immunologic tolerance. NTBF releases PSA through outer membrane vesicles, promoting the production of IL-10 through TLR2
signaling on CD4 Foxp3 Tregs, and inhibiting RORgt Th17, reducing the production of IL-17A, thereby promoting immune tolerance. (Foxp3,
Forkhead Box P3, a key transcription factor for Treg, which is usually used as the marker for Treg. RORgt, retinoic acid related orphan receptor gt, a
key transcription factor for the differentiation and function of Th17).
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(47). As a research hotspot, FMT therapy is capable of restoring

the intestinal mucosal immune homeostasis in IBD patients. The

first utilization of FMT in UC patients was documented in

1989 (48).

2.3.1 FMT
FMT is suitable for moderate to severe IBD, particularly for

active IBD accompanied by concurrent refractory or recurrent

Clostridium difficile infection. Patients might demonstrate more

prominent microbiota alterations and generate certain clinical

effects. Studies have indicated that a single FMT is relatively safe

(49, 50). Nevertheless, the alterations in the intestinal microbiota of

the majority of patients are temporary. Chu et al.’s research implies

that FMT is a complex mixture of biological entities interacting with

the recipient’s microbiota and immune system. By monitoring the

recipient’s microbiota, it was discovered that 10 weeks after

receiving the treatment, the microbiota had significantly deviated

from the donor bacteria (51). Hence, attention ought to be paid to

the colonization dynamics of the gut microbiota during FMT

treatment, and it is also requisite to conduct repetitive

transplantation periodically to maintain the modified microbiota.

Research has shown that multi-stage FMT can restore the

recipient’s microbiota and induce remission in patients with

active UC. This therapeutic approach leads to substantial

alterations to the microbiota composition, encompassing an

increase in the abundance of Firmicutes both during the FMT

period and up to six months afterwards (52). Moayyedi et al. believe

that intensified dosing and multi-donor FMT can effectively achieve

both clinical and endoscopic remission in patients (53).

Genetic and physiological factors related to both the donor and

the recipient will have an impact on the therapeutic effect. Liu et al.

emphasized the significance of considering the activity of the gut

microbiota in donor samples for FMT. A detailed analysis of the

active microbiota is crucial for understanding the mechanisms

behind the therapeutic effects of FMT (54). Angelberger et al.

identified microbial types associated with disease severity and

FMT treatment success, especially related to the enrichment of

Enterobacteriaceae and the deficiency of Lachnospiraceae (55). This

subset of UC patients is more prone to be an effective subgroup for

FMT treatment. Additionally, research has revealed that triple

antibiotics (amoxicillin, fosfomycin, and metronidazole [AFM])

can synergize with FMT. Pretreatment with AFM to eliminate the

recipient’s dysbiotic Bacteroidetes might facilitate the colonization

of the donor’s Bacteroidetes bacteria during FMT, thereby

alleviating the intestinal microbiota dysbiosis in UC patients

caused by the loss of diversity among Bacteroidetes species (56).

Regarding the short-term safety of FMT in IBD, multiple meta-

analyses have shown no significant differences compared to the

placebo group, with most adverse reactions being mild symptoms

such as gastrointestinal discomfort and fever, and a low incidence of

severe adverse events (57, 58). There is limited literature on long-

term safety. One study mentioned that patients receiving FMT

experienced certain adverse reactions in the long term, including

rashes and myasthenia gravis (59). Additionally, another study
Frontiers in Immunology 05
reported that these patients had a comparable risk of developing

severe diseases such as autoimmune disorders or tumors compared

to the antibiotic group (60). In the future, further improvements in

the preparation and delivery methods of fecal microbiota are needed

to effectively manage these risks and enhance the safety and efficacy

of FMT.

2.3.2 Probiotic
VSL#3 is a probiotic mixture, and several clinical studies have

indicated that it can effectively alleviate IBD symptoms (61, 62).

VSL#3 encompasses eight types of bacteria, namely Bifidobacterium

breve, Bifidobacterium longum(B. longum), Bifidobacterium infantis,

Lactobacillus acidophilus, Lactobacillus plantarum, Lactobacillus

paracasei, Lactobacillus delbrueckii, and Streptococcus thermophilus

(63), which can lower the level of colonic mucosal inflammation by

enhancing the intestinal environment, reshaping the microbial

composition, and regulating specific bacterial levels, thereby treating

or alleviating IBD symptoms (64, 65). Other literature reports that

Lactobacillus GG, B. longum/Synergy 1, and Bifidobacteria-fermented

milk can effectively ameliorate intestinal inflammation in UC

individuals, with the role in maintaining remission (66).

E. coli Nissle 1917 (EcN) is the active strain of the microbial drug

Mutaflor®, a non-pathogenic Gram-negative bacterium that is able to

inhibit the growth of Salmonella and other pathogenic bacteria. It is

the sole probiotic recommended in the ECCO guidelines for UC

patients, and its efficacy in maintaining disease remission is

comparable to that of mesalazine. The fimbriae F1C of EcN enables

it to persistently colonize the intestinal epithelium and directly

stimulate cells to produce defensins, preventing pathogens from

adhering to and invading intestinal cells. It can also interact with

the immune system, decreasing pro-inflammatory cytokines like IL-2,

TNF-a, and IFN-g, while elevating anti-inflammatory cytokines (67).

Clostridium butyricum (CB) is a probiotic utilized clinically for

functional gastrointestinal disorders, and the butyrate it produces

can ameliorate intestinal mucosal inflammation. Hayashi et al.

reported that it can effectively induce colonic mucosal

macrophages to generate the anti-inflammatory cytokine IL-10

through TLR2/MyD88 pathway, thereby suppressing intestinal

inflammation in a mouse IBD model (68).

2.3.3 Diagnostics and personalized medicine
The onset of IBD can be difficult to predict, and invasive

examinations such as colonoscopy are currently commonly used

to determine the inflammatory activity of IBD. There is growing

interest in diagnosing, monitoring, and treating the disease non-

invasively based on the gut microbiota. The rapid progress in

synthetic biology offers the possibility of targeted microbial

engineering, enabling engineered microorganisms to diagnose

IBD by selectively detecting biomarkers. A study has designed an

engineered probiotic, EcN, which non-invasively monitors disease

activity in patients by detecting the IBD biomarker calprotectin in

feces (69). Both nitrate and thiosulfate are biomarkers of intestinal

inflammation. Woo et al. introduced a nitrate-responsive genetic

circuit into EcN, enabling the biosensor to detect thiosulfate and
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nitrate, thereby aiding in the diagnosis of colitis (70). Zou et al.

developed a smart responsive bacterium (i-ROBOT) composed of

EcN, which can monitor thiosulfate and drive the tunable release of

the immunomodulator AvCystatin based on its fluctuations (71).

By targeting specific microRNAs (miRNAs) in IBD through FMT

based on the patient’s microbiome profile, these miRNAs can

function in specific intestinal cells, reducing off-target effects and

improving stability. This provides a new approach for developing

personalized treatment strategies (72).
3 Gut microbiota and colorectal
cancer

Chronic inflammation promotes the occurrence and development

of tumors and is one of the most common risk factors for cancer. The

process by which intestinal inflammation progresses to CRC through

dysplasia is faster than the classic adenoma-sequence seen in sporadic

CRC (73). IBD patients often exhibit the expression of inflammatory

genes and excessive infiltration of inflammatory cells. This mucosal

inflammation promotes cell proliferation and ultimately contributes to

the development of CRC. Individuals with long-term IBD have a 2–3

times higher risk of developing CRC compared to the general

population. The three most common theories regarding the

development of CRC from IBD under microbial induction include

the alpha-bug hypothesis, driver-passenger hypothesis, and common

ground hypothesis (74). Based on genomic mutation diversity, CRC

can be categorized into two main types: colitis-associated colorectal

cancer (CAC) and sporadic colorectal cancer (SCC). The gut

constitutes a complex environment populated by bacteria, fungi,

and viruses, with an overall count potentially reaching 100 trillion.

The quantity of microbial cells in the gut is projected to be around ten

times that of human cells (75). Colorectal cancer can affect themakeup

of the intestinal microbiota and may also be affected by the gut

microbiota and their secretions. Weisburger and his colleagues

released the first report associating the intestinal microbiota with

CRC (76). Subsequently, an expanding body of research has

confirmed the link between pathogenic bacteria and CRC.
3.1 Pro-carcinogenic effects of gut
microbiota

Compared with healthy individuals, the gut microbiota

composition of CRC individuals has experienced substantial

transformations, featuring enrichment of Firmicutes and

Proteobacteria (77). Certain specific bacterial species have also

been found to be related to the occurrence and development of

CRC, including Fusobacterium nucleatum, Escherichia coli,

Enterococcus faecalis, Streptococcus gallolyticus, and Bacteroides

fragilis (78, 79). These microorganisms can generate toxins and

metabolites that regulate the proliferation and invasion of tumor

cells, or contribute to the occurrence and progression of CRC by
Frontiers in Immunology 06
inhibiting immune responses, promoting the expression of

oncogenes, and other means (Table 1).

3.1.1 Fusobacterium nucleatum
Research shows that Fusobacterium nucleatum (Fn) is highly

prevalent in CRC, with its abundance in cancerous tissues being over

400 times greater than in adjacent normal tissues (104, 105). The surface

adhesion protein FadA, expressed by Fn, is a cell surface virulence factor

and a crucial component in regulating bacterial adhesion and invasion

(106). FadA attaches to cadherin on intestinal epithelial cells, activating

the E-cadherin/b-catenin pathway, which affects cyclin D1, directly

influencing the proliferation and growth of epithelial cells and

promoting inflammatory responses and tumor formation. The FadA

binding site on E-cadherin consists of an 11-amino acid stretch, and a

peptide synthesized from this region can eliminate the carcinogenic

effects induced by FadA. The expression levels of the FadA gene in the

colon tissues of individuals with adenomas and adenocarcinomas are 10

to 100 times greater compared to those in normal individuals (80). The

metabolic product of Fn, formate, has been shown to induce

tumorigenesis and enhance tumor stemness, promoting glutamine

metabolism and driving colorectal cancer progression through the

AhR signaling pathway (81). Additionally, research has revealed that

short-chain fatty acids (SCFAs) produced by Fn can regulate Th17

responses in an FFAR2-dependent manner, suppressing anti-tumor

immune cells and facilitating tumor angiogenesis (82).

3.1.2 Colibactin-producing E.coli
Colibactin-producing E.coli (CoPEC) is strongly associated with

CRC (107). One study found that mucosa-associated and

internalized E. coli levels are higher in tumors than in normal

tissues, and E.coli colonization in the mucosa is linked to a poorer

prognosis in CRC (19). E. coli from the B2 phylogenetic group

carries a genomic island, the polyketide synthase (pks), which

produces the genotoxin colibactin. This toxin can induce DNA

damage, cell cycle arrest, mutations, and chromosomal instability in

eukaryotic cells. Iftekhar et al.’s research confirmed the in vitro

transforming potential of pks+ E.coli, which can undergo malignant

transformation by infecting colonoid organoids, causing DNA

double-strand breaks, mutations, and promoting tumor

development. This emphasizes the relevance of Wnt-independent

CNV mutations as early driving factors in colorectal cancer,

indicating a clear connection between the mutagenic

characteristics of colibactin and its action and the occurrence of

colorectal cancer. Additionally, the actual transforming activity of

colibactin is likely higher than the estimated activity (90).

3.1.3 Enterococcus faecalis
Efa, similar to E. coli, can contribute to carcinogenesis by

damaging the colonic epithelium, augmenting bacterial

colonization on the mucosal surface, and facilitating epithelial cell

renewal (108, 109). Huycke et al. discovered that Efa generates

extracellular superoxide and hydrogen peroxide, leading to DNA

damage. These extracellular free radicals are correlated with the
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advancement of adenomatous polyposis and colorectal cancer (92).

Furthermore, its metabolic product biliverdin can modulate the

PI3K/AKT/mTOR signaling pathway, prominently elevating the

expression levels of IL-8 and VEGFA, fostering tumor cell

proliferation and angiogenesis (93).

3.1.4 Streptococcus gallolyticus subspecies
gallolyticus

Streptococcus gallolyticus subspecies gallolyticus (Sgg),

recognized as Streptococcus bovis biotype I, employs Pil3 pili to

adhere to colonic mucus. Literature reports suggest that the

abundance of Sgg is significantly heightened in colorectal cancer

patients. Sgg can enlist CD11b+TLR4+ cells, promoting the

expression of IL-8, COX-2, and IL-1, and escalating the levels of

tumor progression-related transcription factors like b-catenin, c-
Myc, and PCNA, thereby driving inflammation and facilitating

tumor proliferation (95–98). It also possesses the capacity to

stimulate CYP1A enzyme activity through an AhR-dependent
Frontiers in Immunology 07
mechanism, regulating the biotransformation pathways of colonic

epithelial cells and further promoting tumor progression (99). On

the contrary, the specific environmental conditions of elevated bile

acid concentrations in colorectal cancer patients can facilitate Sgg

colonization, with secondary bile acids significantly enhancing the

activity of gallolysin (110).

3.1.5 Bacteroides fragilis
Bf is another commensal bacterium, which is classified into

toxigenic and non-toxigenic types. Research has demonstrated that

the existence of enterotoxigenic B. fragilis (ETBF) is strongly linked

to active IBD and CRC (Figure 3). The toxin BFT can stimulate c-

myc expression and IL-8 release, resulting in DNA oxidation and

epithelial barrier damage, and activating STAT3/Th17 immune

responses (39, 111, 112). It can also activate NF-kB and

upregulate COX-2 in intestinal epithelial cells, generating an

inflammatory environment (100). The co-colonization of ETBF

and enterotoxigenic E.coli in mice enhances the production of the
TABLE 1 Pro-carcinogenic effects of gut microbiota.

Microbial species Virulence factor Mechanism Citation

Fusobacterium nucleatum FadA Activation of the E-cadherin/b-catenin/Wnt signaling pathway (80)

Formate Promote tumor stem cell renewal and activate the AhR signaling pathway (81)

SCFA Regulate FFAR2-dependent Th17 response (82)

Hydrogen sulfide Affect the autophagy process (81, 83)

Fap2 Target TIGIT to inhibit immune cell activity (84)

Outer Membrane Vesicle Promote inflammatory environment by activating ERK, CREB, and NF-kB through TLR4 (85)

Downregulate NEIL2 and induce DNA damage (86)

Reduce m (6)A modification through the YAP/FOXD3/METTL3/KIF26B axis (87)

Facilitate cell adhesion through the ALPK1/NF-kB/ICAM1 axis (87, 88)

Promote glycolysis by increasing lncRNA ENO1-IT1 transcription (89)

Colibactin-producing E.coli Colibactin DNA damage (90)

Induce EMT and emergence of chemotherapy-resistant tumor stem cells (91)

Enterococcus faecalis O2
− and H2O2 DNA damage (92)

Biliverdin Activate the PI3K/AKT/mTOR signaling pathway to promote angiogenesis (93)

Gelatinase Disrupt intestinal epithelial barrier and promote inflammation (94)

Streptococcus gallolyticus Pil3 pilus Adhere to colonic mucus (95)

Recruit CD11b+ TLR4+ cells to suppress immune response (96)

Increased expression of pro-inflammatory factors (97)

Activate b-catenin, c-Myc, and PCNA (98)

Regulate intestinal epithelial cell biotransformation pathways in an AhR-dependent manner (99)

Bacteroides fragilis BFT Activate STAT3/Th17 immune response (39)

BFT Activate NF-kB and MAPKs to induce IL-8 secretion (100)

Upregulate JMJD2B levels through TLR4-NFAT5 dependent pathway to regulate tumor stemness (101)

Downregulate miR-149-3p to promote PHF5A-mediated KAT2A RNA alternative splicing (102)

Regulate HDAC3/miR-139-3p pathway (103)
fr
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inflammatory factor IL-17 and causes DNA damage, thereby

accelerating the progression of CRC (113). ETBF can upregulate

the level of JMJD2B in the TLR4-NFAT5-dependent pathway,

inducing the regulation of CRC stemness (101). By reducing miR-

149-3p, it additionally promotes the PHF5A-mediated RNA

alternative splicing of KAT2A in CRC cells, thereby facilitating

intestinal inflammation and tumors (102).
3.2 Anti-carcinogenic effects of gut
microbiota

However, the connection between the gut microbiota and the

host’s immune balance is intricate, and not all microbiota exert a

cancer-promoting effect. The metabolic products of certain gut

microbial groups also possess the capability to influence the anti-

tumor activity of immune cells.

3.2.1 Lactic acid bacteria
Certain beneficial bacteria that contribute to maintaining the

ecological balance of the gut are capable of suppressing the growth

of opportunistic pathogens, enhancing the barrier function of the

intestinal epithelium, and typically exerting a protective role in

cancer prevention. Lactic acid bacteria, among the most common

beneficial microbes, produce organic acids that have antibacterial

effects. Additionally, Lactococcus lactis and Streptococcus lactis

secrete nisin, a bacteriocin that blocks the growth of most Gram-

positive bacteria and their spores (114). This also implies that the
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role of the same bacterial group in tumors located in different parts

of the digestive tract can be diametrically opposite.

3.2.2 Other SCFA-producing microbiota
As one of the main metabolic products, SCFAs are essential in

suppressing intestinal inflammation and serve as key protective

factors in preserving the normal immune function of the intestinal

mucosa, which can to some extent counteract tumor growth. Luu

et al.’s research initially experimentally demonstrated that microbial

metabolites like valproic acid and butyric acid boost immune cell

anti-tumor activity through metabolic and epigenetic changes.

Treating cytotoxic T lymphocytes (CTLs) and chimeric antigen

receptor (CAR) T cells with valproic acid and butyric acid in vitro

enhances mTOR function as a key metabolic sensor and inhibits

class I histone deacetylases. This leads to anti-cancer effects and

supports their use in improving cancer immunotherapy (115). Kang

et al. discovered that Roseburia intestinalis has tumor-suppressive

effects on the MSI-high and MSS subtypes of CRC. This bacterium

can directly bind the butyric acid it produces to Toll-like receptor 5

(TLR5) on CD8+ T cells, activating the TLR5-dependent NF-kB
pathway to enhance the function of cytotoxic CD8+ T cells, thereby

exerting anti-tumor effects and enhancing the efficacy of anti-PD-1

therapy (116).

In summary, the relationship between the gut microbiota and

tumors is intricate and bidirectional. Tumor progression can

modify the microbiota, and alterations in the microbiota can also

influence tumor progression (117). The intestinal microbiota and its

metabolites significantly influence the development and
FIGURE 3

ETBF promotes tumorigenesis by distinct mechanisms. BFT can activate the STAT3 and NF-kB pathways, increasing the production of cytokines IL-
17A and IL-8, thereby creating a pro-inflammatory environment. ETBF can upregulate JMJD2B levels in the TLR4-NFAT5-dependent pathway.
JMJD2B regulates the stemness of tumor cells by enhancing NANOG expression through demethylation. ETBF can also promote cancer progression
by downregulating miR-149-3p through METTL14 methylation. On one hand, it facilitates the differentiation of Th17 cells via exosomes; on the other
hand, it further promotes the RNA selective splicing of KAT2A mediated by PHF5A.
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progression of CRC, and clarifying the functions and potential

mechanisms of the microbiota is essential for delving into more

effective treatment strategies for CRC.
3.3 Microbiome therapy in colorectal
cancer

Modulating the intestinal microbiota is a potential strategy for

treating colorectal cancer. Various methods can alter the gut

microbiota composition, improve the intestinal environment,

enhance the immune system, and inhibit tumor growth (Figure 4).

3.3.1 FMT
FMT involves introducing beneficial microorganisms obtained

from the feces of healthy donors into the digestive systems of

patients. This procedure aims to restore the native microbial

community, increase the proportion of regulatory T cells in the

mucosa, and promote cooperation among microorganisms,

ultimately helping to treat both intestinal and extra-intestinal

diseases (118). FMT is FDA-approved for treating refractory

Clostridium difficile infections and has a higher cure rate

compared to standard therapies (119, 120). FMT preparations can

be administered orally using freeze-dried or frozen granules, or

through invasive procedures like colonoscopy or gastroscopy (121).

FMT has been combined with immune checkpoint inhibitors

(ICIs), and a clinical trial by Routy et al. showed that FMT can

boost the efficacy of anti-PD-1 therapy (122). Currently, research is

predominantly centered on patients with refractory melanoma, but

it indicates the potential and safety of FMT in cancer therapy.

Additionally, clinical trials are ongoing to assess the utilization of
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FMT capsules for enhancing the efficacy of anti-PD-1 therapy in

gastrointestinal cancer patients (123). The success of FMT relies on

both transplanting the microbiota into the recipient’s digestive tract

and ensuring long-term colonization to sustain the therapeutic

benefit (124). Furthermore, FMT still bears numerous risks, with

a 19% incidence of adverse events related to FMT between 2000 and

2020, typically associated with gastrointestinal discomfort, and

severe adverse events mainly occur in patients with mucosal

barrier damage (125). Clinical research on FMT as an adjuvant

therapy for cancer is limited; thus, it is of paramount importance to

standardize its application to ensure its safety and long-

term efficacy.

3.3.2 Probiotic
Probiotics, being beneficial microorganisms for the host’s

health, can inhibit tumor cell proliferation by regulating the gut

microbiota and immune response (126, 127). Compared with FMT,

they notably reduce the risk of infection for patients. Commonly

utilized probiotics such as Bifidobacterium and Lactobacillus have

recognized effects in treating various gastrointestinal disorders

(128). Research has indicated that Lactobacillus plantarum can

suppress the proliferation of colon cancer cells through the cell

cycle regulatory ability mediated by butyric acid (129). Many

studies regarding the application of probiotics to treat cancer

focus on enhancing immune function, which might assist in

combating cancer (120). For instance, Bifidobacterium plays a

role in strengthening anti-tumor immunity in anti-PD-L1

treatment (130). There are also investigations on engineered

probiotics for targeted tumor therapy (131). The substrate of

probiotics—prebiotics, has also been demonstrated to participate

in tumor treatment. Fructo-oligosaccharides (FOS) and galacto-
FIGURE 4

Microbiome therapies correct dysbiosis caused by colorectal cancer. Here are various methods listed from non-selective modification to targeted
treatment, and they can enhance the efficacy of other colorectal tumor treatments.
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oligosaccharides (GOS) are two significant groups of prebiotics that

selectively encourage the proliferation of beneficial probiotics. They

increase the production of SCFAs, which lead to subtle

modifications in the intestinal microbiota and potentially enhance

the effectiveness of oncology treatments (132–134). Probiotics and

prebiotics hold great potential in the domain of cancer treatment.

3.3.3 Antibiotic
Besides augmenting the profusion of probiotics, the application

of antibiotics for eradicating pathogenic microorganisms

constitutes another strategy for manipulating the gut microbiota.

Clinical trials have emerged demonstrating the preventive

utilization of rifaximin to curtail infections, gastrointestinal

toxicity, and diarrhea associated with cancer treatment (135).

Rifaximin proves efficacious in preventing recurrent/refractory

Clostridium difficile infections, regulating bacterial metabolism,

and enhancing mucosal barrier function. Preventive antibiotic

treatment is frequently employed in combination with

chemotherapy or immunotherapy; however, studies have

discovered that antibiotic administration is correlated with

diminished chemotherapy efficacy, decreased responsiveness to

immune checkpoint inhibitors (ICIs), and adverse prognosis (136,

137). It can curtail the effectiveness of PD-1 blockade in cancer

individuals via the MAdCAM-1-a4b7 axis, adversely influencing

prognosis (138) . Antib iot ics can remove pathogenic

microorganisms, though they may also disturb the balance and

composition of the body’s microbial community, detrimental to

beneficial bacteria, and giving rise to dysregulation of host-

microbiota interactions (139). They can reduce the gut microbial

load by a factor of 10,000, and some specific microbial species could

remain absent for an extended duration after their administration

(5). With the progression of nanotechnology, the targeted delivery

of antibiotics for selectively eliminating pathogenic microorganisms

provides more potentialities for adjusting the gut microbiota to treat

digestive disorders. Nanomaterials, serving as carriers, convey

therapeutic drugs to target sites, protecting them from

degradation and reducing their accumulation in non-target areas,

which helps to minimize side effects (140, 141). The targeted action

of bacteriophages holds significance for the specific elimination of

pathogenic microorganisms (142). Research has devised

bacteriophage-mediated nanoparticles targeting nuclear-positive

fusobacteria, augmenting the chemotherapeutic effect on CRC

(143). Nanomedicine might be an efficacious treatment strategy

for regulating the intestinal microbiota in the future.

3.3.4 Diagnostics and personalized medicine
The gut microbiota exhibits unique variability and plasticity

among different individuals, making it an important component of

personalized medicine. Some studies have already utilized gut

microbiota data by integrating multi-omics data to detect CRC.

Mulenga et al. proposed a novel feature engineering method that

can accurately classify CRC using gut microbiota data through a

deep neural network (DNN) model (144). Additionally, research

has shown that Raman spectroscopy (RS) can enable real-time

analysis of microbial community composition and metabolic
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enhancing diagnostic potential, and enabling personalized

treatment (145). Currently, engineered microorganisms are

receiving more attention due to their potential applications in the

diagnosis and treatment of CRC and IBD (146). A study utilized

genetic engineering to enable engineered commensal E. coli to

specifically adhere to the surface of CRC cells. By secreting

myrosinase, these bacteria convert natural compounds from

cruciferous vegetables consumed by the host into organic small

molecules with anti-cancer activity, significantly inhibiting tumor

proliferation (131). Furthermore, combining gut microbiota with

precision medicine is an important approach to enhance drug

efficacy and reduce drug toxicity (147). Linking microbiota

research with clinical diagnostic and therapeutic strategies holds

promise for achieving microbiota-based diagnostics and

personalized medicine.
3.4 Gut microbiota modulates other
colorectal tumor therapies

Recently, it has been discovered that the intestinal microbiome is

strongly associated with the efficacy, toxicity, and side effects of

commonly used colorectal cancer treatments. The gut microbiome

has different regulatory effects on chemotherapy and immunotherapy;

it can improve the effectiveness of immunotherapy while promoting

resistance to chemotherapy.
3.4.1 Gut microbiota promotes chemotherapy
resistance

The intestinal microbiota can modulate chemotherapeutic drug

metabolism, affecting cancer response to treatment and the host’s

sensitivity to toxicity (148). Geller et al. are of the opinion that

bacteria can metabolize the chemotherapeutic drug gemcitabine

into its inactive form, giving rise to gemcitabine resistance. This

metabolic process hinges on the expression of a long isoform of the

bacterial enzyme cytidine deaminase (CDDL), which is

predominantly present in Gammaproteobacteria, and co-

treatment with the antibiotic ciprofloxacin can eliminate this

resistance (149). The gut microbiota also influences the anticancer

activity of cyclophosphamide, cisplatin, and 5-FU (150–152). These

effects might be associated with the translocation of Gram-positive

bacteria in the course of mucosal inflammation, subsequently

triggering cytotoxic ROS and causing pathogenic Th17 cells to

invade tumors (148, 151). Translocated bacteria can interact with

the immune system and induce inflammation, thereby affecting the

efficacy of chemotherapy (153). Cancer treatment demands an

intact commensal microbiota to attain the optimal response,

which mediates its effects by regulating the function of myeloid-

derived cells in the tumor microenvironment (150). Metabolites of

the gut microbiota can also modulate the efficacy of chemotherapy.

For example, 3-Oxocholic acid, a metabolite associated with

Prevotella, reduces the chemotherapeutic effect of FOLFOX in

vitro (154). Additionally, after CoPEC infects CRC cells, the

production of colibactin induces the accumulation of lipid
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droplets in cancer cells, limiting genotoxic stress to some extent.

CoPEC infection also enhances phosphatidylcholine remodeling

through enzymes in the Land’s cycle, providing cancer cells with

sufficient energy to sustain survival during chemotherapy, thereby

leading to chemoresistance (155). The intestinal microbiota is

closely linked to the effectiveness of tumor chemotherapy, but

more research is needed to elucidate the mechanisms by which

these differential or chemotherapy-adapted bacteria influence

chemotherapy responses.

3.4.2 Gut microbiota facilitates tumor
immunotherapy

The objective of immune checkpoint blockade is to restore and

augment the capacity to assail cancer cells by suppressing the tumor’s

immune resistance. In immune therapy-related investigations, the two

most targeted immune checkpoint regulatory factors are cytotoxic T

lymphocyte-associated antigen-4 (CTLA-4) and programmed cell

death protein-1 (PD-1) or its ligand PD-1 ligand-1 (PD-L1).

Presently, immune checkpoint inhibitors (ICI) have been sanctioned

by the FDA for the treatment of specific CRC. The gut microbiota has

been shown to affect how cancer responds to checkpoint inhibitors.

Sivan et al. found that the gut microbiota can influence the

effectiveness of anti-PD-1/PD-L1 monoclonal antibodies in mice,

with Bifidobacterium being correlated with anti-tumor effects by

activating dendritic cells, leading to the activation and infiltration of

CD8+ T cells in the tumor microenvironment to enhance the efficacy
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of immunotherapy (130). Oral administration of Bifidobacterium

alone yielded anti-cancer effects similar to PD-L1-specific antibody

therapy, and the combination of the two nearly completely inhibited

tumor growth. Manipulating the microbiota might regulate cancer

immunotherapy. Research indicates that Fn may counteract CRC by

altering the tumor immune microenvironment. Gao et al. reported

that Fn stimulates PD-L1 expression via the STING signaling pathway

and boosts the presence of IFN-g (+) CD8 (+) tumor-infiltrating

lymphocytes (TILs), thereby enhancing the tumor’s sensitivity to PD-

L1 blockade and exerting anti-tumor effects(Figure 5) (156). In certain

cases, the gut microbiome is closely related to the response to ICI and

may enhance the anti-cancer effects induced by immunotherapy,

including immune responses at the tumor site, although the exact

mechanisms remain unclear (157). Recently, Wang et al. elucidated

that Fn and its abundant butyrate production can increase the

sensitivity of microsatellite stable (MSS) CRC to PD-1 treatment,

thereby improving treatment outcomes (158). Additionally, the

utilization of antibodies may disrupt the equilibrium of immune

tolerance, resulting in the development of autoimmune diseases.

Research has shown that Bifidobacterium can alleviate CTLA-4

blockade-induced intestinal mucosal immune reactions without

significantly influencing anti-tumor immunity (159). Lo et al. found

that colitis induced by anti-CTLA-4 therapy is related to the

composition of the gut microbiota, and the inflammation is caused

by the unchecked activation of CD4+ T cells and the attenuation of

Tregs through their interaction with the Fc domain of the CTLA-4
FIGURE 5

Fn involved in immunotherapy. Fn can activate the cGAS-STING signaling pathway in CRC cells, thereby upregulating PD-L1 expression through NF-
kB (p65) transcription and enhancing anti-tumor effects. Fn can also recruit IFN-g+ CD8+ TILs, increasing IFN-g production and enhancing the
efficacy of anti-PD-L1 therapy, thereby killing tumor cells.
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antibody (160). In summary, the intestinal microbiota can impact the

clinical prognosis of cancer immunotherapy.
4 Clinical relevant research

Modulating the gut microbiota can play an important role in

the treatment of IBD and CRC, and some progress has been made,

but extensive research is still needed to determine the efficacy of

these treatment options. Several clinical trials have reported that

FMT, probiotics, and prebiotics can manipulate the gut

microbiota to treat IBD (Table 2) (15). Although the safety and

long-term efficacy of FMT require further evaluation, the majority

of studies suggest that it has a beneficial impact on achieving

clinical, endoscopic, and histological remission (161). VSL#3 has

been confirmed by multiple clinical studies to effectively improve

IBD with a certain degree of safety. It can reduce endoscopic

recurrence after CD surgery, induce remission in patients with

mild to moderate active UC, and alleviate inflammation. Its

combination with standard therapy is more effective in treating
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UC than standard therapy alone (15, 162). EcN has also been

recognized through double-blind trials as an alternative to

mesalazine for the treatment of UC, demonstrating efficacy and

safety comparable to the gold standard in maintaining

remission (163).

Additionally, there is additional data on the utilization of gut

microbiota to assist in the treatment of CRC. For patients

undergoing chemotherapy after CRC surgery, the intake of

probiotics can effectively mitigate chemotherapy-induced

disruptions in gut microbiota and gastrointestinal complications

such as diarrhea (164). Moreover, probiotic therapy is beneficial for

postoperative recovery, associated with lower individual

postoperative mortality rates, shorter hospital stays, and a

reduction in surgical site infections and postoperative ileus,

among other complications (165, 166). In summary, the

application of probiotics can enhance the efficacy of anti-cancer

treatments, reduce CRC complications, and improve prognosis.

While numerous in vitro and animal experiments have

demonstrated the potential of gut microbiota in adjuvant CRC

treatment, clinical research remains limited, particularly trials
TABLE 2 Summary of key clinical trials.

Clinical
Trial ID

Study title Patient
population

Intervention Main finding

NCT00175292 A randomized controlled trial of VSL#3 for the
prevention of endoscopic recurrence following
surgery for Crohn’s disease

CD VSL#3 VSL#3 can prevent serious endoscopic recurrence.

NCT00114465 VSL#3 versus placebo in maintenance of remission
in Crohn’s disease

CD VSL#3 VSL#3 demonstrates efficacy in preventing
pouchitis onset.

NCT00803829 Synbiotic treatment of ulcerative colitis patients UC Synbiotic (Synergy 1/
B. longum)

Short-term treatment improved the clinical
manifestations of chronic inflammation.

NCT04102852 Lactobacillus rhamnosus GG (ATCC 53103) in
mild-moderately active ulcerative colitis patients

UC Lactobacillus
rhamnosus GG (LGG)

LGG effectively exerts anti-inflammatory effects.

NCT04969679 Additive effect of probiotics (Mutaflor®) in patients
with ulcerative colitis on 5-ASA treatment

UC E. coli Nissle
1917 (Mutaflor®)

EcN can prevent disease progression in mild-to-
moderate patients and achieve both clinical and
endoscopic remission.

NCT01896635 Fecal microbiota transplantation in ulcerative
colitis (FOCUS)

UC FMT infusions Intensive dosing and multi-donor FMT can induce
clinical remission and endoscopic improvement.

NCT02460705 Fecal microbiota transplant for inflammatory
bowel disease

CD Biologically active
human fecal

material (OpenBiome)

Single-dose FMT demonstrates modest therapeutic
efficacy but is associated with potential risks.

NCT01560819 Gut microbial transplantation in pediatric
inflammatory bowel diseases (GMT)

UC FMT FMT contributes to clinical remission with
acceptable adverse effects.

NCT01847170 Impact of fecal biotherapy (FBT) on microbial
diversity in patients with moderate to severe
inflammatory bowel disease

CD FMT FMT increases intestinal microbial diversity with an
acceptable safety profile.

NCT02097797 Impact of the fecal flora transplantation on Crohn’s
disease (IMPACT-Crohn)

CD FMT Higher colonization by donor microbiota was
associated with maintenance of remission.

NCT02516384 Fecal microbiota transplantation (FMT) in the
management of ulcerative colitis (UC)

UC FMT Odoribacter splanchnicus in FMT recipients limits
colonic inflammation.

NCT01545908 Fecal biotherapy for the induction of remission in
active ulcerative colitis

UC Fecal
microbiota enema

FMT induced clinical remission in patients, with no
significant difference in adverse events compared to
the control group.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1523584
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cui et al. 10.3389/fimmu.2025.1523584
related to FMT. Issues such as how to alleviate adverse reactions

when used in conjunction with other anti-cancer drugs still need to

be addressed.
5 Conclusion

The composition and quantity of intestinal microbiota vary in

different states of the human body. The diversity of Firmicutes exhibits

a decreasing tendency in IBD patients but significantly rises in CRC

patients. The same microbial community can play diverse roles in

different circumstances. Although LAB is a key metabolite in the

carcinogenic process of GC, facilitating the colonization of related

pathogens in the stomach, while also exerting antibacterial and

bactericidal effects in the intestine, playing a protective role in

preventing CRC. Fn, a prevalent anaerobic bacterium found in the

oral cavity, is an opportunistic pathogen closely related to CRC. Its cell

surface virulence factors and metabolic products can promote tumor

formation and progression, while also enhancing the sensitivity of

tumors to immunotherapy and inducing effective anti-cancer effects.

The article also mentions that Efa and ETBF both can boost

inflammatory responses in IBD and have cancer-promoting effects

on CRC. Nevertheless,NTBF and BfHCK-B3 have positive impacts on

colonic epithelial cells, enhancing barrier function, alleviating

inflammation, and promoting immune tolerance.

The heterogeneity of the digestive tract microbiota offers a strong

impetus for personalized treatment strategies for IBD and tumors due

to its high efficacy and targeted nature. With the progress in detection

and identification technologies, the development of targeted therapies

based on individual microbiota, such as antibodies or other biological

agents, has become more feasible. Currently, common probiotics

such as Bifidobacterium and Lactobacillus can be used alongside other

anti-tumor treatments, like immunotherapy and chemotherapy, to

achieve better synergistic effects. Engineered bacteria and FMT

treatments are also being explored, aiming to improve IBD

inflammation or normalize tumor immunity by regulating the

intestinal microbiota. However, several challenges remain

unresolved, such as the lack of standardization in FMT preparation

and delivery protocols.

Future research must first further clarify the specific

mechanisms by which gut microbiota influence IBD and tumors,

particularly how different microbial communities and their

metabolites affect host immune responses and the tumor

microenvironment. Additionally, the synergistic mechanisms

between microbiota and other anti-cancer therapies also require

in-depth exploration. Furthermore, how to achieve personalized

diagnosis and treatment through precise regulation of microbiota is

a critical issue, including the development of engineered bacteria

and the optimization of FMT technology. Finally, reducing the risks

associated with microbiota-related treatments and improving their

safety and long-term efficacy are also key points for future research.
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The gut microbiota exhibits a “double-edged sword” characteristic

in both IBD and CRC, necessitating therapeutic strategies that

carefully balance treatment efficacy with safety considerations.

With technological advancements and deeper investigations,

microbiota-related research is expected to open new avenues for

the treatment of IBD and tumors.
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