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Efferocytosis is the process by which various phagocytes clear apoptotic cells. In

recent years, an increasing body of evidence has emphasized the importance of

efferocytosis in maintaining internal homeostasis. Intestinal macrophages play a

crucial role in modulating intestinal inflammation and promoting tissue repair.

Inflammatory bowel disease (IBD) is a chronic, progressive, and relapsing

condition, primarily marked by the presence of ulcers in the digestive tract.

The exact mechanisms underlying IBD are not yet fully understood, and current

treatment approaches mainly aim at repairing the damaged intestinal mucosa

and reducing inflammatory responses to ease symptoms.This article provides

new perspectives on IBD treatment and clinical management by examining the

expression of macrophage efferocytosis-related molecules, the effects of

efferocytosis on IBD development, the various roles of macrophage

efferocytosis in IBD, and treatment strategies for IBD that focus on efferocytosis.
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1 Introduction

Efferocytosis refers to the process by which apoptotic cells are cleared by various

phagocytes. Increasing evidence over recent years has emphasized its crucial role in

maintaining internal homeostasis. Billions of cells undergo apoptosis daily in the human

body, and any delay in their clearance can result in secondary necrosis, leading to the release

of toxic intracellular contents. This can, in turn, trigger pathological inflammation and

autoimmune responses (1). As a result, defects in efferocytosis are strongly associated with the

development of several inflammatory and autoimmune disorders. Inflammatory bowel

disease (IBD) is a chronic, progressive, and relapsing condition, characterized primarily by

ulcers in the digestive tract. It includes ulcerative colitis (UC) and Crohn’s disease (CD),

which together affect 6 to 8 million people worldwide, significantly impacting their quality of

life and daily activities, with an increasing incidence in recent years (2). Although the

pathogenesis of IBD is associated with various factors, such as environmental exposure,

genetic predisposition, gut microbiota imbalances, and immune system defects, the exact
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mechanisms are still not fully understood. Current treatment

strategies focus primarily on repairing damaged intestinal mucosa

and reducing inflammation to alleviate symptoms (3). This article

reviews the expression of macrophage efferocytosis-related molecules,

the impact of efferocytosis on IBD, and the multifaceted roles of

macrophage efferocytosis in the disease.

2 The efferocytosis process

Macrophage efferocytosis differs from classical phagocytosis

and requires the coordinated expression of multiple molecules to

complete the process. It is generally divided into four stages:

apoptotic cells release signals that attract macrophages, receptors

on macrophages bind to these signals, macrophages then engulf the

apoptotic cells, and the fusion of lysosomes and phagosomes leads

to the digestion and degradation of the apoptotic cells and their

contents (4).
2.1 Apoptotic cells emit “find me” signals
and “eat me” signals

The “find-me” signals emitted by apoptotic cells are primarily

soluble molecules, which can be classified into three categories:

nucleotides, membrane lipids, and chemokines. Nucleotides, such as

adenosine triphosphate (ATP) and uridine triphosphate (UTP), are the

most prominent “find-me” signals for apoptotic cells (5), and their

release is regulated by the plasma membrane protein Pannexin-1

(PANX1) (6, 7). Membrane lipids, which serve as specific “find-me”

signals for apoptotic cells, include lysophosphatidylcholine (LPC) and

sphingosine-1-phosphate (S1P). The activation of LPC is controlled by

caspase-3-activated phospholipase A2, which converts

phosphatidylcholine to LPC (8). On the other hand, sphingosine

kinase 1 (SphK1) is upregulated in apoptotic cells, driving the

secretion of S1P (9). Chemokines, such as Fractalkine (CX3CL1), are

membrane-bound proteins, and studies suggest that the release of

CX3CL1 can enhance the chemotaxis of macrophages (10). These

soluble signals are released by apoptotic cells into the surrounding

environment, guidingmacrophages to accumulate at the target site and

stimulating their capacity to clear apoptotic cells. Phosphatidylserine

(PS) is the most extensively studied “eat-me” signal, although other

signals include calreticulin (Crt) (11), pentraxin 3 (PTX3) (12), and

changes in surface protein glycosylation or surface charge (13). CD47

(11, 14) is the most well-known “don’t-eat-me” signal (15), and

together, these signals help distinguish dying cells from adjacent

healthy cells, enabling macrophages to effectively phagocytose

apoptotic cells (16, 17).

In addition, research from the Ravichandran group has

identified a novel family of solute carriers (SLC) that are

specifically modified during efferocytosis, which plays a significant

role in regulating the uptake of apoptotic cells. SLC2A1 supports the

phagocytosis of apoptotic cells in vitro and in vivo, not only

promoting the initial engulfment of the first apoptotic cell but

also facilitating the continued uptake of additional apoptotic cells

(18). Furthermore, the release of lactate via SLC16A1contributes to

promoting an anti-inflammatory environment.
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2.2 Corresponding recognition receptors
on the surface of macrophages

Phosphatidylserine (PS) is the most prominent “eat-me” signal

found on apoptotic cells, capable of binding to macrophage surface

receptors either directly or indirectly. In the direct method, PS binds

directly to receptors such as T cell immunoglobulin mucin (TIM)–

1, TIM-4 (19), brain-specific angiogenesis inhibitor 1 (BAI1) (20),

stabilin-2 (21), and advanced glycation end product receptors (17).

In the indirect method, PS binds to macrophage receptors via

bridging molecules, including receptor tyrosine kinases Tyro-3,

Axl, and Mertk (TAM), and integrins (22). These bridging

molecules facilitate the connection between PS and macrophage

receptors, including milk fat globule-EGF factor 8 protein (MFG-E8

or lactadherin) (23), growth arrest-specific factor 6 (Gas6) (24), and

annexin 1 (ANXA1) (25), among others (26).

Furthermore, nucleotides such as ATP and UTP bind to the

purinergic receptor P2Y2 on macrophage surfaces, while LPC and

S1P bind to G protein-coupled receptors G2A and S1PR on

macrophages, respectively (17). These interactions activate the

macrophage efferocytosis receptors, which, through different

signaling pathways, trigger cytoskeletal reorganization and enable

the phagocytosis and clearance of apoptotic cells (26, 27).
2.3 Macrophage phagocytosis of
apoptotic cells

When macrophage surface receptors bind to signals emitted by

apoptotic cells, they activate the programmed clearance system

within the macrophages. This process is initiated through the

activation of key regulatory factors from the Rho family of small

GTPases, such as Rac (28), via two primary mechanisms: the LDL

receptor-related protein 1 (LRP1/CD91) (29) and the adaptor

protein GULP (the mammalian equivalent of C. elegans ced-6)

(30), or through the guanine nucleotide exchange factor (GEF)

DOCK180 and the cell movement protein (ELMO) (20, 31).

Activated Rac triggers actin remodeling through the WASP

pathway, promoting actin polymerization to engulf or capture

apoptotic cells, leading to membrane invagination and the

internalization of the cells, which forms a phagosome. In addition

to these pathways, a third potential signaling pathway may involve

the tyrosine kinase Abl (ABL-1) inhibiting the Abl interactor AbI

(ABI-1), which seems to counteract macrophage efferocytosis,

though the precise mechanism remains unclear (32).
2.4 Degradation and digestion of apoptotic
cells by phagosomes and lysosomes

After the engulfment of apoptotic cells, the large GTPase

Dynamin-Vps34 (a phosphatidylinositol (3)-kinase) pathway is

activated, which in turn activates the small GTPase Rab5,

promoting lysosome maturation (33). Following this, Mon1a (C.

elegans SAND-1) and its partner Ccz1 recruit Rab5 and Rab7 to the

phagosome, activating Rab7 and facilitating the fusion of
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phagosomes with lysosomes (34, 18). Concurrently, acid hydrolases

and nucleases are activated to degrade and acidify the engulfed

apoptotic cell remnants (35, 36). Table 1 presents the molecules

involved in efferocytosis..
2.5 The outcome of efferocytosis

The process of efferocytosis not only acts as a waste disposal

mechanism to remove apoptotic cells but also leads to various

biological outcomes. It can drive macrophage polarization toward a

pro-resolution phenotype, release pro-resolving factors and anti-

inflammatory mediators, promote self-tolerance, and help resolve

inflammation. Upon completion of the degradation and phagocytosis

of apoptotic cells, efferocytosis encourages macrophages to adopt a

pro-resolution phenotype by decreasing the production of pro-

inflammatory cytokines and increasing the levels of pro-resolving

mediators. At the same time, it releases significant amounts of anti-
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inflammatory mediators, such as IL-10 (37) and TGF-b (38), as well

as pro-resolving factors that help mitigate inflammation in IBD.

These factors also stimulate the proliferation and differentiation of

intestinal epithelial cells and fibroblasts, promoting healing of the

intestinal mucosa in IBD (39). Besides these effects, efferocytosis also

interacts with the immune system. For example, regulatory T cells

have been shown to enhance efferocytosis in both in vitro and in vivo

models (40). However, studies also indicate that TH17 cells play a

critical role in the pathogenesis of IBD, with elevated numbers of

Th17 cells present in the intestinal tissues of IBD patients (41).

Infected apoptotic cells can induce Th17 differentiation, triggering

intestinal inflammation. Pathogens often induce cell apoptosis, which

may preferentially activate Th17-mediated immunity, contributing to

IBD (42, 43). This suggests that while efferocytosis generally

promotes anti-inflammatory and resolution responses, it may also

lead to inflammation under specific conditions. Further research is

required to better understand the connection between IBD and

efferocytosis (Figure 1).
TABLE 1 presents the molecules involved in efferocytosis.

Efferocytosis-Related Processes Surface ligands of apoptotic cells Macrophage cell-surface receptors

Apoptotic cells release "find me" signals ATP,UTP,LPC,S1P, CX3CL1 S1PR,P2Y,G2A,CX3CR1, CXCL

Apoptotic cells release "eat me" signals PS,Crt,PTX3.et Tim-1,Tim-4,Tyro-3,Axl,Mer,
integrin,P2Y2,G2A,S1P1-5

Phagocytic process – Rac1,Rho,Rab5/7,LRP1,DOCK180,
ABL-1

Degradation and digestion process – PPARs,LXR,ABCA1,Rab17, LC3
FIGURE 1

Efferocytosis mechanism diagram. Apoptotic Cell Finding: Apoptotic cells release recognition signals such as ATP/UTP, LPC, S1P, and CX3CL1, which
bind to receptors on the macrophage surface, including P2Y2, G2A, S1PR, and CX3CR1, respectively. Apoptotic Cell Eating: Apoptotic cells express
“eat me” signals like PS, which can bind directly to macrophage receptors such as TIMS, BAI1, and Stabilins. Additionally, PS can also bind to
macrophage receptors indirectly through bridging molecules such as Gas6 and MFG-E8, which connect to TAMS and integrins. Apoptotic Cell
Engulfment: After binding, apoptotic cells activate Rac1 through two pathways: LRP1/CD91/GULP and Dock180/ELMO. This activation triggers actin
polymerization via the WASP pathway, leading to the formation of a phagocytic cup and the invagination of the plasma membrane. Apoptotic Cell
Internalization and Degradation: After internalization, apoptotic cells are processed through the large GTPase Dynamin-Vps34 pathway, which
activates Rab5 and promotes lysosomal maturation. Mon1a and Ccz1 subsequently recruit Rab5 and activate Rab7 on the phagosome. This Rab7
activation leads to the activation of acid hydrolases and nucleases, which degrade and acidify the engulfed apoptotic cell remnants. Anti-
inflammatory mediators, such as TGF-b and IL-10, are released, dampening the inflammatory response.
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3 Multiple mechanisms restrict the
development of IBD
through efferocytosis

IBD is an idiopathic condition primarily characterized by

symptoms like rectal bleeding and weight loss, stemming from

chronic and excessive inflammation of the gastrointestinal tract (44).

IBD development involves a range of factors, both genetic and

environmental. Genetic studies, including GWAS, have revealed

more than 200 genetic loci associated with IBD (45), with the

nucleotide-binding oligomerization domain 2 (NOD2) being one of

the most prominent loci. Mutations in this locus can activate the NF-

kB inflammatory pathway and initiate autophagy (46), and studies

suggest that this factor can suppress macrophage function.
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Consequently, the accumulation of apoptotic cells that enhances

efferocytosis might play a crucial role in terminating the

inflammatory response (47). Moreover, the gut microbiota has been

shown to contribute significantly to IBD pathogenesis, likely due to

abnormal host-microbiota interactions affecting the immune system

(48). Immune dysfunction in IBD ismarked by epithelial damage and a

failure to properly regulate immune responses (49), which include both

innate and adaptive immune dysfunctions. This leads to abnormalities

in intestinal epithelial cells (IECs), dendritic cells (DCs), macrophages,

T cells, and other factors. In this process, several molecules such as

TNF-a (50), IL-6 (49), IL-9 (51), IL-23 (52), and IL-17 (53) may be

dysregulated, but efferocytosis can suppress these molecules while

promoting the release of anti-inflammatory mediators (39). The

following discussion will describe how efferocytosis can limit the

progression of IBD from multiple angles (Figure 2).
FIGURE 2

IBD pathogenesis diagram. (A) In the intestinal lamina propria, macrophages can stimulate the production of pro-inflammatory cytokines such as IL-
6, IL-23, and TNF. IL-6 binds to its receptor in a soluble form, activating T cells and triggering the translocation of STAT-3. This process then
promotes the transcription of anti-apoptotic genes such as Bcl-2 and Bcl-xl, which reduces T-cell apoptosis, thereby intensifying intestinal
inflammation (54). (B) IL-6 also induces the differentiation of CD4+ T cells into Th17 cells (55), which release cytokines such as IL-17A, IL-17F (56), IL-
21 (57), and IL-22. These cytokines, together with IL-23, contribute significantly to the development of IBD (56). During this process, the expression
of the transcription factor RORgt in Th17 cells is enhanced. (C) Under the combined influence of IL-12 and IL-6, CD4+ T cells differentiate into Th1
cells (55), which mainly produce IFNg, IL-6, and TNF, while increasing the expression of T-bet and STAT4. This leads to an exaggerated Th1 cell
response, which is a major contributor to the development of Crohn’s disease. (D) Stimulation by IL-4 leads to the differentiation of CD4+ T cells
into Th2 cells, which release cytokines such as IL-5, IL-6, IL-13, and TNF (58). Research has shown that NKT cells in ulcerative colitis release more
IL-13, a Th2 cytokine, than T cells in Crohn’s disease (58). Thus, Crohn’s disease is typically associated with a Th1 response, while ulcerative colitis is
thought to be driven by Th2 cells. However, this distinction is still debated. (E) Besides adaptive immune responses, innate immune mechanisms also
play a role in IBD. CD103+ DCs, which depend on retinoic acid and TGF-b, promote the development of Foxp3+ Tregs, which release IL-10 and
TGF-b (59). These cytokines have a suppressive effect on inflammation and protect against the development of IBD. (F) NKT cells, a subset of
lymphocytes, can be activated indirectly by cytokines such as IL-12 and IL-18 secreted by innate lymphoid cell group 3 (60). These cells rapidly
produce Th1, Th2, and Th17 cytokines, contributing to inflammation. (G) TNF is a key pro-inflammatory cytokine involved in IBD pathogenesis
through several pathways. Recent studies indicate that TNF-like ligand 1A (TL1A) is a crucial mediator of intestinal inflammation (61). TL1A enhances
the ability of IL-12, IL-4, or IL-23 to promote the differentiation of Th1, Th2, and Th17 cells (62, 63). It may also induce Th9 differentiation and
increase IL-9 secretion by upregulating TGF-b and IL-4 expression, exacerbating DSS-induced colitis in mice (64).
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3.1 Efferocytosis restricts IBD through
multiple metabolic pathways

Macrophages are essential for maintaining intestinal immune

homeostasis and have recently been identified as a potential target for

treating inflammatory bowel disease (IBD). Several studies have

highlighted the strong connection between macrophage activation

and cellular metabolism (65). In the context of IBD, various

immunometabolic alterations influence macrophage phenotype and

function by regulating metabolic reprogramming and transcription,

which in turn affects disease progression. Research indicates that

during efferocytosis, a specific family of solute carrier (SLC) genes

undergoes modification. At different stages of efferocytosis, various

SLCs and other molecules are activated, facilitating SLC2A1-

mediated aerobic glycolysis while suppressing oxidative

phosphorylation. Furthermore, SLC16A1 contributes to the release

of lactate, which promotes anti- inflammatory effects (18, 66).

Through this process, SLC2A1-mediated glucose uptake and

glycolytic intermediates enhance actin polymerization during

efferocytosis, facilitating the uptake and clearance of apoptotic cells

(18). Recent findings suggest that activation of 6-phosphofructo-2-

kinase/fructose- 2,6-bisphosphatase 2 (PFKFB2) boosts glycolysis,

increasing lactate release and regulating the expression of

efferocytosis receptors like MerTK and LRP1, which extend the

efferocytosis process (67). Thus, whether through SLC or PFKFB2-

mediated glycolysis, there is a clear link between glycolysis and

efferocytosis, although additional mechanisms remain to be explored.

The resolution of inflammation in efferocytosis is often closely

tied to cellular metabolic processes. Studies have pointed to a

unique relationship between apoptotic cell breakdown, fatty acid

oxidation (FAO), and mitochondrial respiration during

efferocytosis. One study observed that after efferocytosis, long-

chain fatty acids accumulated in macrophages, activating the

respiratory chain and generating metabolic intermediates that

promoted macrophage anti-inflammatory responses (68).

Although the direct link between this pathway and IBD was not

identified, this non-classical mitochondrial response plays a crucial

role in tissue repair and healing during damage and may offer new

therapeutic avenues for IBD in the future. Other research suggests

that efferocytosis can activate the tryptophan (TRP) pathway,

triggering several pro-resolving programs, such as the induction

of pro-resolving proteins, which further enhance efferocytosis (69).

This study, using atherosclerosis as a model, connects the resolution

of inflammation with efferocytosis and provides a theoretical basis

for treating similar chronic inflammatory diseases like IBD.

Additionally, macrophage arginase 1 (Arg1) and ornithine

decarboxylase (ODC) convert apoptotic cell-derived arginine and

ornithine into agmatine, thereby promoting efferocytosis (70). This

research, using atherosclerosis as a model, demonstrates that

disruption of this metabolic pathway can impair efferocytosis,

leading to further inflammation and tissue necrosis in chronic

inflammatory conditions. Conversely, enhancing this pathway

could break the pathological cycle, offering new therapeutic

possibilities for chronic inflammatory diseases.
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3.2 Nuclear receptor gene deficiency in
IBD, efferocytosis restricts IBD by
activating nuclear receptors.

Defects in efferocytosis can lead to the development of various

inflammatory and autoimmune disorders. Macrophage nuclear

receptors, such as peroxisome proliferator-activated receptor

(PPARg) and liver X receptor (LXR), are involved in these

processes. Research has shown that LXR expression is notably

reduced in the intestinal tissues of IBD patients (71, 72). In vivo

stimulation of apoptotic cells can activate LXR, leading to an

increase in the expression of the apoptotic cell recognition

receptor tyrosine kinase Mertk. This activation enhances

efferocytosis, helping prevent and treat DSS-induced colitis and

ulcerative colitis (71, 73). PPARg and LXR have similar roles, and

their mechanisms of action share notable similarities. Studies have

suggested that activating PPARg can effectively reduce the signs and

symptoms of IBD and its progression (74). During macrophage

efferocytosis, PPARg functions as a transcriptional sensor of dying
cells, responding to apoptotic cell signals and coordinating their

clearance, which promotes self-tolerance and alleviates IBD (75). In

this process, macrophage clearance of apoptotic cells reduces the

production of reactive oxygen species, which are pro-inflammatory

mediators activated by PPARg (76). Additionally, PPARg activation
further enhances macrophage efferocytosis (77).

In the early phase of efferocytosis recognition, the externalization

of intracellular phospholipids and extracellular molecules on

apoptotic cells leads to the binding of proteins S and Gas6,

activated by bridging molecules like TIM4, to phosphatidylserine

(PS), and subsequently to the TAM family receptors. This binding

activates downstream transcription factors such as LXRa, LXRb, and
PPARg, which suppress inflammatory signaling pathways in

macrophages (78, 79), thereby inhibiting the inflammatory

response and preventing the continued development of IBD.
3.3 Efferocytosis engulfs neutrophil
extracellular traps to restrict IBD

Neutrophils have a dual role in inflammation. During acute

inflammation, they are rapidly recruited to the affected site to

eliminate pathogens and mediate inflammatory responses through

various pathways. In chronic inflammation, the role of neutrophils

has also gained attention. Studies have shown that neutrophil

extracellular traps (NETs) are present in the inflamed colon,

where they can worsen tissue damage and contribute to

thrombotic tendencies during active IBD (80). Additionally, NETs

may disrupt the intestinal mucosal barrier through several

mechanisms (81). NETs represent a distinctive form of cell death,

occurring when dying neutrophils release their nuclear DNA, which

combines with cytoplasmic proteins to form a unique structure

(82). Efferocytosis can regulate the release of NETs by DNase I-

dependent digestion, reducing their accumulation (83), which is

significant in inhibiting the progression of IBD. Furthermore,
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1524058
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2025.1524058
research indicates that in autoimmune vasculitis (AAV), NETs

accumulate, and blocking CD47 can prevent disease progression

by restoring efferocytosis (84). Although this study did not directly

examine this pathway in IBD, the similarities in the pathogenesis of

AAV and IBD may offer valuable insights for IBD research. In

addition to releasing NETs, apoptotic neutrophils also secrete

reparative proteins, such as Annexin A1, which interacts with

FPR2. This interaction can inhibit the recruitment of

inflammatory cells by reducing integrin activation triggered by

chemokines, while simultaneously enhancing macrophage

efferocytosis (85, 86). Neutrophils also release antimicrobial

peptides like a-defensins, which suppress macrophage mRNA

translation, thereby increasing macrophage phagocytic activity

and reducing the production of pro-inflammatory cytokines (87,

88), which helps to limit the development of IBD.
3.4 Efferocytosis restricts the development
of IBD through
immunological mechanisms

The complex pathogenesis of IBD results from the intricate

interactions between the gut microbiota, environmental factors, and

the immune system. Immunological mechanisms underlying IBD

involve dysregulation of both innate and adaptive immunity. TH17

cells are critical in IBD development, as demonstrated by elevated

levels of IL-17A and IL-17F in the inflamed intestinal mucosa of

IBD patients (56). In addition to producing IL-17, TH17 cells also

promote the secretion of other effector cytokines, including IL-9

and IL-22. These cytokines, along with TH9/IL-9, perpetuate a pro-

inflammatory loop that contributes to IBD progression (89).

Efferocytosis, the process of clearing apoptotic cells, plays a key

role in the production of anti-inflammatory mediators such as

TGF-b, PGE2, and IL-10. IL-25 has been shown to regulate TH1/

TH17 immune responses in an IL-10- dependent manner (90),

thereby slowing IBD progression. This highlights IL-25 as a

promising candidate for therapeutic strategies in IBD treatment.

Furthermore, Treg cells have been observed to enhance IL-13

secretion during the resolution of inflammation, which stimulates

macrophages to release IL-10. The released IL-10 activates

macrophage Vav1 through autocrine or paracrine signaling,

resulting in Rac1 activation and promoting macrophage

efferocytosis. This series of events aids in controlling

inflammation and provides a potential new therapeutic approach

for treating chronic inflammatory diseases (40).
3.5 Autophagy genes enhance efferocytosis
to restrict the development of IBD

Autophagy plays a role in enhancing macrophage phagocytosis

of apoptotic cells, and efferocytosis shares several regulatory factors

with classical autophagy, particularly in terms of fusion and

degradation with lysosomes. There is a strong association between

deficiencies in autophagy genes and the enhancement of
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efferocytosis in various diseases (91). Research has shown that

mice deficient in the autophagy-related gene NRBF2 experience

impaired fusion of phagosomes containing apoptotic cells and

lysosomes in macrophages through the MON1-CCZ1-Rab7

module. These mice are more susceptible to DSS-induced colitis,

exhibiting severe intestinal inflammation and an accumulation of

apoptotic cells (92). Thus, the lack of autophagy genes may lead to

defective macrophage efferocytosis, contributing to the worsening

of symptoms in several inflammatory diseases, including IBD.
3.6 Multiple mechanisms inhibit
inflammatory responses through
efferocytosis to restrict the development
of IBD

Glucocorticoids (GCs) are frequently used to treat

inflammatory conditions such as IBD. GCs activate the

glucocorticoid receptor (GR), which suppresses pro-inflammatory

genes while activating anti-inflammatory genes (93). The

glucocorticoid-induced leucine zipper (GILZ), a well-know target

of GR, mediates anti-inflammatory and pro-resolution effects,

promoting macrophage reprogramming and enhancing

efferocytosis. This reprogramming leads to the polarization of

macrophages toward the M2 phenotype, initiating pro-resolution

programs (94), which reduce inflammatory responses. IL-23 is also

a significant pro-inflammatory cytokine in the pathogenesis of

ulcerative colitis (UC) and Crohn’s disease (CD) (95). The uptake

of apoptotic neutrophils by macrophages can reduce IL-23

transcription, thereby inhibiting inflammatory responses (96).

Moreover, apoptotic cells heavily depend on TGF-b to coordinate

anti-inflammatory responses in macrophages and to suppress the

production of inflammatory mediators (97).
3.7 Various other cells in the intestinal
tissue act as phagocytes to enhance
efferocytosis and limit inflammatory
responses in IBD

In the DSS-induced colitis model, BAI1-deficient mice display

more severe colitis, characterized by an increased accumulation of

unresolved apoptotic cells and higher levels of inflammatory

cytokines. Targeted overexpression of BAI1 in colonic epithelial

cells, which enhances efferocytosis, can significantly reduce colonic

inflammation (98). Paneth cells, specialized epithelial cells in the

intestine, function as phagocytes, facilitating the uptake of

surrounding apoptotic cells to help maintain intestinal

homeostasis (99). These cells play a crucial role in the progression

of IBD. The autophagy-related gene ATG16L1 is a genetic risk

factor that plays a key role in CD. Paneth cells with a deficiency in

Atg16L1 exhibit significant abnormalities in the efferocytosis

pathway and are closely linked to adipokines, leptin and

adiponectin, which directly influence responses to intestinal

damage, thus affecting the intestinal epithelium and contributing
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to the progression of CD (100, 101). Consequently, promoting

efferocytosis in Paneth cells and intestinal epithelial cells may

effectively reduce intestinal inflammation in patients with

mucosal inflammation, offering potential therapeutic implications

for IBD and other inflammatory bowel diseases (Figure 3).
4 Targeting efferocytosis in
IBD treatment

IBD is a prevalent inflammatory condition affecting individuals

globally, with various treatment options available. Traditionally,

IBD has been managed through drug therapies aimed at controlling

symptoms, such as aminosalicylates (102), corticosteroids (CS)

(103), immunomodulators, and biologics (104, 105), with surgical

resection and other general measures utilized as needed. In recent

years, new treatment strategies have emerged to improve clinical

outcomes, including apheresis therapy (106), modulation of gut
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microbiota (107), and cellular therapies (108). Besides Western

medical treatments, traditional Chinese medicine (TCM) offers

distinct advantages in treating IBD. For example, baicalin has

been shown to increase interferon factor 4 protein expression and

reverse LPS-induced macrophage activation, thereby modulating

macrophage polarization and enhancing inflammatory responses in

DSS-induced colitis in mice (109). Indirubin, a key component of

Qingdai, has been found to alleviate DSS-induced colitis in mice

when administered orally (110). However, research on how TCM

regulates the immune microenvironment remains insufficient, with

a primary focus on anti-inflammatory effects and a lack of novel

approaches. As treatment strategies continue to advance, the

focus of IBD management has shifted from simply addressing

clinical symptoms and preventing complications to promoting

healing of the colonic mucosa, evidenced by the resolution of

endoscopic ulcers (111, 112). Additionally, new and emerging

treatment approaches continue to offer promising avenues for

IBD therapy.
FIGURE 3

Summary of the mechanism of efferocytosis in IBD. (A) Neutrophils release antimicrobial peptides, such as a-defensins, which inhibit macrophage
mRNA translation, thereby reducing the production of pro-inflammatory cytokines and lessening the inflammatory response. (B) Glucocorticoid
treatment increases the expression of AnxA1 and its receptor ALXR, which regulate the inflammatory response, boost Rac1 activity in macrophages,
and promote efferocytosis through CD36, reducing intestinal inflammation and maintaining homeostasis. Additionally, glucocorticoids elevate the
expression of GILZ, a leucine zipper protein, which, together with protein S secreted by neutrophils, mediates anti-inflammatory and pro-resolution
effects, enhancing macrophage reprogramming and efferocytosis. (C) Efferocytosis triggers the activation of the SLC gene family, promoting lactate
release, which exerts anti-inflammatory effects. It also activates the tryptophan (TRP) pathway to promote key pro-resolution programs, including
the induction of pro-resolving proteins, thereby enhancing efferocytosis. Moreover, macrophage arginase 1 (Arg1) and ornithine decarboxylase
(ODC) convert apoptotic cell-derived arginine and ornithine into putrescine, further enhancing efferocytosis and reducing the inflammatory
response. (D) Following efferocytosis, various chemokines (CCL5, CXCL2, CCL22) and anti-inflammatory mediators (IL-10 and TGF-b) are released,
helping to suppress the inflammatory response and repair damaged intestinal mucosal epithelium. (E) Nuclear genes in macrophages regulate the
transcription of surface receptors, enhancing efferocytosis and suppressing inflammation. Deficiencies in macrophage nuclear receptor genes may
promote the development of IBD, while efferocytosis can activate nuclear receptors to prevent IBD development.
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4.1 Single infusion of apoptotic cell therapy

Research suggests that a single infusion of apoptotic cells can

significantly improve the clinical symptoms of DSS-induced colitis

(47). Apoptotic cells can inhibit pro-inflammatory signaling pathways

and serve as a primary mechanism for resolving inflammation, mainly

through their suppression of the transcription factor NF-kB and

inflammatory bodies. NF-kB plays a central role in regulating gene

expression during inflammation, particularly in the production and

secretion of IL-1b (113). In DSS-induced colitis models, treatments

such as anti-IL-1b therapy and the inhibition of inflammatory bodies

(114, 115) have shown that NF-kB can reduce the activity of

macrophages and dendritic cells in the lamina propria, along with

inflammatory bodies. Therefore, the accumulation of apoptotic cells at

the inflammation site is likely a key mechanism in halting the

inflammatory response. The development of IBD is influenced by

both genetic and environmental factors, with DSS exposure

contributing to disease onset. Additionally, studies have

demonstrated that extracellular vesicles from apoptotic cells can

promote TGF-b production in macrophages and suppress

inflammatory responses in experimental colitis models (116).

Consequently, a single infusion of apoptotic cells to trigger the

resolution phase of inflammation via efferocytosis presents a

promising treatment approach for IBD, marking a new area of

exploration. However, there remains a lack of extensive research and

practical experience in this field. Overall, it holds considerable potential

for future IBD therapies.
4.2 Apoptotic cell clearance enhancers

Efferocytosis is a continuous process in the body, where the

phagocytic capacity is both expansive and constrained. Studies have

demonstrated that enhancing efferocytosis in intestinal epithelial cells

and Paneth cells can improve the clearance of apoptotic cells and

mitigate inflammatory responses (98, 99). In severe IBD cases,

intestinal tissues often show an elevated number of apoptotic

colonic epithelial cells (117, 118). This suggests that an increase in

apoptotic cells or a malfunction in their clearance may contribute to

the intensification of inflammation. Therefore, boosting efferocytosis

in the early phases of IBD, accelerating the removal of apoptotic cells,

and promoting efferocytosis by intestinal epithelial cells could be

crucial in reducing inflammation later in the disease. Recent

advancements have introduced a “chimeric efferocytosis receptor”

that enhances macrophage efferocytosis, allowing them to engulf more

apoptotic cells and initiate anti-inflammatory signaling, alleviating

colitis symptoms. However, the findings are still preliminary, and the

effectiveness is restricted to BAI1 and TIM-4 receptors, which have

specific limitations. It remains uncertain whether this approach will

function effectively in human inflammatory conditions, but it provides

a new avenue for IBD treatment (119). In conclusion, from a

pharmacological perspective, developing agents to enhance

apoptotic cell clearance, including strategies that boost efferocytosis

by intestinal epithelial cells and Paneth cells, represents a promising

therapeutic approach for IBD that deserves further investigation.
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4.3 Introducing pro-resolving factors for
the treatment of IBD

As mentioned earlier, the pro-resolving factors secreted

following efferocytosis can stimulate the proliferation and

differentiation of various intestinal cells, aiding in the repair of

the intestinal mucosa, while also releasing anti-inflammatory

mediators to help resolve inflammation. These macrophage-

secreted pro-resolving factors are collectively known as

SuperMApo, a novel biological complex that includes all

cytokines released by macrophages during efferocytosis, such as

TGF-b, IL-10, IL-1RA, and others. These factors primarily

coordinate the actions of fibroblasts and intestinal epithelial cells

(IECs) to support mucosal healing and pro-resolution responses

(120–122). This has been confirmed through three experimental

models: the initial T-cell transfer model (123), the DSS-induced

colitis model, and the biopsy forceps injury model of the colonic

mucosa (124). From a resolution pharmacology perspective,

introducing these pro-resolving factors in the early stages of IBD

can enhance the clearance of apoptotic cells by IECs, thereby

reducing inflammation in the later stages of the disease.

Additionally, this process helps trigger mechanisms involved in

mucosal healing (39) and promotes myofibroblast contraction to

facilitate wound closure (125), making it a promising potential

treatment approach for IBD (39).
4.4 Synthetic biomimetic drugs targeting
efferocytosis for the treatment of IBD

Macrophages play a multifaceted role in the immune system

and inflammatory responses, making them an attractive target for

the treatment of various inflammatory diseases. Inspired by

macrophages’ ability to selectively engulf apoptotic cells while

leaving healthy cells unharmed, Zheng Ying and colleagues

created a biomimetic drug delivery system (Effero-RLP) by

hybridizing apoptotic red blood cell membranes with liposomes.

This system targets inflammation via macrophage-mediated

efferocytosis. The researchers encapsulated rosiglitazone (ROSI),

an agonist of the anti-inflammatory peroxisome proliferator-

activated receptor g (PPAR-g), within the delivery system.

Through efferocytosis, ROSI is directed to the site of

inflammation. In a DSS-induced colitis model, Effero-RLP

significantly enhanced macrophage efferocytosis, induced

polarization of macrophages to an anti-inflammatory phenotype,

and accumulated in inflamed colonic tissues to treat IBD (126).

Additionally, b-cyclodextrin, a biomimetic nanodrug sensitive to

reactive oxygen species and coated with macrophage membranes,

has shown high efficiency in treating UC (127). These biomimetic

drug therapies offer several benefits, including enhanced clinical

efficacy for IBD and precise drug delivery targeting. However,

challenges such as material preparation and binding efficiency

remain, and the approach still faces several hurdles before

reaching clinical trials.
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4.5 Enhancing efferocytosis directly with
pharmacology for the treatment of IBD

COL is a biased agonist that partially occupies the ligand-binding

pocket of formyl peptide receptor 2 (FPR2), a receptor involved in

regulating inflammation. COL enhances efferocytosis by directly

binding to FPR2 and has shown significant therapeutic effects in

DSS-induced colitis (38). Additionally, macrophage efferocytosis

receptors Axl and MerTK, which are IL-4-dependent, play a role

in repairing damaged intestinal tissue, suggesting that targeting Axl/

MerTK on macrophages could offer a new therapeutic approach for

IBD treatment (128). These findings suggest that enhancing

macrophage efferocytosis pharmacologically can alleviate colitis

symptoms, and IBD is a disease that could benefit from such

treatment. Therefore, this research provides valuable insights for

developing new therapies for various IBD conditions.
5 Discussion

In recent years, an increasing number of studies have highlighted

the connection between efferocytosis and IBD. The role of

efferocytosis in IBD primarily involves two aspects: promoting pro-

resolving responses and supporting the repair of the intestinal

mucosa. This article outlines the efferocytosis process and its

associated molecules, and reviews the key mechanisms by which

efferocytosis affects IBD. These mechanisms include the secretion of

pro-resolving factors that encourage the proliferation and

differentiation of fibroblasts and intestinal epithelial cells (IECs) to

repair the damaged mucosa (39), as well as the release of anti-

inflammatory mediators such as TGF-b (38) and IL-10 (37), which

help suppress intestinal inflammation. Furthermore, macrophages

and other cells enhance efferocytosis by modifying metabolism and

activating receptors, indicating the potential and feasibility of boosting

efferocytosis to treat diseases like IBD. During the literature review, it

was also found that intestinal epithelial cells and Paneth cells are

involved in efferocytosis (98, 99), affecting the progression of IBD.

Additionally, the immunological mechanisms underlying IBD are

related to efferocytosis (41, 42). However, the current research still

lacks direct studies linking IBD mechanisms with efferocytosis, with

most studies focusing on inflammatory and pro-resolving responses.

There is a need for more research exploring the relationship between

IBD-associated immune mechanisms and efferocytosis.

A considerable body of evidence demonstrates a strong

association between defects in macrophage efferocytosis and the

progression of IBD (129), indicating the potential of macrophages

as a novel therapeutic target for IBD. The present review examines

various potential therapies targetingmacrophage efferocytosis for IBD

treatment, though most of these approaches lack practical application

and corresponding advancements in drug research and development.

Furthermore, questions regarding the long-term efficacy and real-

world feasibility of these treatment methods remain unresolved,

necessitating further in-depth and comprehensive investigations.

Research also emphasizes the link between IBD and the onset of

colon cancer and other malignancies, with factors such as genetic

predisposition, impaired intestinal barrier function, and
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immunological dysregulation underlying persistent intestinal

inflammation in IBD (130). Both deficiencies and enhancements

in efferocytosis have been implicated in promoting cancer

progression (26). The defining features of UC and CD include

chronic, unresolved gastrointestinal inflammation, which over time

may lead to complications such as fibrosis, organ damage, and

subsequent organ failure, including CD-associated strictures,

abscesses, and fistula formation (131). Consequently, achieving a

balance in the transition between M1 and M2 macrophages and

optimizing the regulation of efferocytosis remains a critical area for

further investigation, with significant implications for improving

the clinical management of IBD patients.
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