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Introduction: Tumor-infiltrating B lymphocytes (TILBs) play a pivotal role in

shaping the immune microenvironment of tumors (TIME) and in the progression

of lung adenocarcinoma (LUAD). However, there remains a scarcity of research

that has thoroughly and systematically delineated the characteristics of TILBs

in LUAD.

Method: The research employed single-cell RNA sequencing from the

GSE117570 dataset to identify markers linked to TILBs. A comprehensive

machine learning approach, utilizing ten distinct algorithms, facilitated the

creation of a TILB-related index (BRI) across the TCGA, GSE31210, and

GSE72094 datasets. We used multiple algorithms to evaluate the relationships

between BRI and TIME, as well as immune therapy-related biomarkers.

Additionally, we assessed the role of BRI in predicting immune therapy

response in two datasets, GSE91061 and GSE126044.

Result: BRI functioned as an independent risk determinant in LUAD,

demonstrating a robust and reliable capacity to predict overall survival rates.

We observed significant differences in the scores of B cells, M2 macrophages, NK

cells, and regulatory T cells between the high and low BRI score groups. Notably,

BRI was found to inversely correlate with cytotoxic CD8+ T-cell infiltration (r =

-0.43, p < 0.001) and positively correlate with regulatory T cells (r = 0.31, p =

0.008). We also found that patients with lower BRI were more likely to respond to

immunotherapy and were associated with reduced IC50 values for standard

chemotherapy and targeted therapy drugs, in contrast to higher BRI. Additionally,

the BRI-based survival prediction nomogram demonstrated significant promise

for clinical application in predicting the 1-, 3-, and 5-year overall survival rates

among LUAD patients.
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Discussion: Our study developed a BRI model using ten different algorithms and

101 algorithm combinations. The BRI could be a valuable tool for risk

stratification, prognosis, and selection of treatment approaches.
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1 Introduction

In 2022, it was estimated that there were 19.97 million new cancer

cases and 9.74 million cancer deaths globally. Among these, lung cancer

had the highest incidence with 2.481 million new cases, accounting for

12.4% of all new cancer cases worldwide. This makes lung cancer the

leading cancer globally once again, after being surpassed by breast

cancer in 2020. Furthermore, lung cancer remains the most deadly

cancer, constituting 18.7% of all cancer-related deaths (1). Lung tumors

are classified into two broad categories by the World Health

Organization (WHO): non-small cell lung cancer (NSCLC), which

comprises 80-85% of all lung cancer cases, and small cell lung cancer

(SCLC), which accounts for the remaining 15% of cases (2). Despite the

increased chances of successful treatment and prognosis with early

detection, lung cancer remains fatal due to challenges such as the lack of

satisfactory prognostic markers, drug resistance, metastasis, and genetic

heterogeneity (3). Lung cancer is characterized as an immunogenic

cancer marked by chronic inflammation (4). The interactions between

cancer cells and the tumor immune microenvironment play an

irreplaceable role in tumor progression, metastasis, and treatment.

While current immunotherapy research primarily focuses on T cells,

growing evidence suggests that TILBs also play a crucial synergistic role

in tumor control (5). TILBs are a fundamental component of the tumor

immune microenvironment (6). Typically, TILBs do not function alone

but are closely related to T cells and myeloid cells. In most

immunologically “hot” tumors, TILBs are present at levels

significantly higher than in healthy non-lymphoid tissues. In fact,

exhausted or dysfunctional CD8 and CD4 TILs often express the B

cell-recruiting chemokine C-X-C motif ligand 13 (CXCL13), indicating

that they are programmed to seek assistance from TILBs in response to

persistent tumors (7). This interaction ultimately leads to the formation

of tertiary lymphoid structures (TLSs), newly formed lymph node-like

structures within the tumor stroma that appear to actively participate in

initiating and maintaining adaptive immune responses. Similar to T

cells, TIL-TILBs are associated with positive prognostic value in most

cancers, and they can significantly enhance the prognostic impact of

CD4 and CD8 TILs, especially in tumors containing TLSs (8). In

summary, TILBs play an indispensable role in the tumor immune

microenvironment and hold great potential for immunotherapy.

However, the role of TILBs in LUAD remains underexplored, and the

mechanisms by which TILBs participate in immunotherapy have yet to

be fully elucidated. Based on machine learning algorithms, pathological

features can serve as potential prognostic biomarkers for renal cell
02
carcinoma (9, 10). Our research endeavors to integrate single-cell

sequencing, transcriptomic profiling, and other multi-omics

approaches, augmented by the application of machine learning—a

burgeoning and potent tool in prognostic modeling—to elucidate the

characteristic genes of TILBs. Through this integrative approach, we aim

to delineate the functional roles of TILBs in the immune

microenvironment and assess their potential significance in the

context of immunotherapy. Our results may provide further evidence

for the critical role of TILBs in the prognosis and treatment of LUAD.
2 Materials and methods

2.1 Dataset acquisition and processing

Figure 1 shows the flowchart of our study. Data on single-cell

expression were sourced from the Gene Expression Omnibus (GEO)

database, particularly from the GSE117570 dataset (n = 4). Data on

RNA sequencing and LUAD genomic mutations were sourced from

The Cancer Genome Atlas (TCGA, n = 488) database. Furthermore,

the LUAD prognostic model was validated using three separate

public datasets: GSE31210 (n =226) (11), and GSE72094 (n = 398)

(12). Expression data from the TCGA and all GEO datasets

underwent normalization via the “sva” package (13) prior to

additional analysis. To explore the relationship between the BRI

and response to immune checkpoint blockade (ICB) therapy, we

analyzed two datasets with documented immunotherapy outcomes:

GSE91061 (14) and GSE126044 (15). Data on drug sensitivity were

sourced from the Genomics of Drug Sensitivity in Cancer (GDSC)

website (https://www.cancerrxgene.org/).
2.2 Analysis of single-cell RNA-seq

The scRNA-seq data were processed using the “Seurat” R

package (16), a dedicated R toolkit for single-cell genomics. Genes

identified in cells with fewer than three and fewer than 50 genes

were omitted and the percentage of mitochondria was limited to less

than 25%. The “LogNormalize” feature in the “Seurat” package was

utilized to normalize expression data. In the initial phase of our

analysis, principal component analysis (PCA) was conducted on the

Seurat object utilizing the “RunPCA” function. To ascertain the

optimal number of principal components (PCs) for subsequent
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analyses, the “ElbowPlot” function was employed. Subsequently, for

dimensionality reduction and visualization, the UMAP algorithm

(17) was applied. The parameter `dim` was set to include the top 15

PCs (dim = 1:15). Cell types were annotated with reference data

from human primary cell atlases using the SingleR software package

(18) To pinpoint the marker genes in each cluster, the “Seurat”

package’s “FindAllMarkers” feature was employed (logFC = 0.5,

Minpct = 0.25) (19). Genes associated with B-cell clusters were

identified as markers related to TILBs.
2.3 Analysis of Weighted
Correlation Networks

WGCNA (Weighted Gene Co-expression Network Analysis)

(20) serves as a dependable instrument for delineating gene

correlation patterns among various samples. WGCNA extends its

focus beyond just differentially expressed genes, amalgamating data

from myriad highly variable genes, aiding in pinpointing relevant

gene groups and elucidating correlation studies with phenotypes.

Utilizing the “WGCNA” package, we developed a scale-free

coexpression network for TLBs-related markers, setting the b value

at 0.85 to preserve some level of independence. Module identification

utilized a dynamic tree-cutting method. For pinpointing gene clusters

linked to LUAD’s clinical results, the module exhibiting the strongest

positive and negative links with both survival duration and status was

chosen for additional research.
2.4 Analysis of clustering in Non-negative
Matrix Factorization

NMF (Non-negative Matrix Factorization) (21) clustering is

capable of breaking down the initial matrix into various non-

negative matrices, with stable clustering being attained by
Frontiers in Immunology 03
continuous decomposition and aggregation, thus identifying

possible characteristics. Utilizing the gene sets from WGCNA’s

chosen modules, the NMF algorithm applied the “NMF” package to

assess if markers related to TLBs could identify varied patterns in

LUAD patients (22). In this analysis, genes were submitted for NMF

clustering based on their expression patterns. It was suggested that

the optimal cluster count occurs at the initial K value, marking the

start of a decline in the cophenetic coefficient, or at the point where

the RSS curve exhibits an inflection point (23).
2.5 BRI derived from integrative methods
in machine learning

Subsequently, potential predictive indicators within WGCNA

modular gene collections were pinpointed through univariate Cox

regression analysis. Subsequently, a unified BRI model was created

integrating 10 machine-learning techniques and 101 different

algorithmic combinations. The comprehensive algorithms

encompassed Random Survival Forest (RSF), Elastic Network

(Enet), Lasso, Ridge, Stepwise Cox, CoxBoost, Partial Least

Squares Regression for Cox (plsRcox), Supervised Principal

Components (SuperPC), Generalized Boosted Regression

Modeling (GBM), and Survival Support Vector Machine

(survival-SVM). Regarding model invocation, we adopted a “1 +

1” approach, where the first machine learning algorithm selects the

feature variables, and the second machine learning algorithm builds

the model based on these feature variables. The optimal modeling

method is selected by comparing the C-index of each combined

model evaluated on the test set. The TCGA cohort was equally

divided into the training group and the internal validation group

according to the relative proportion of survival status, whereas the

test groups comprised GSE31210, and GSE72094.The Harrell

concordance index (C-index) was computed across all groups. An

ideal model was characterized by having the greatest average C-
FIGURE 1

The flowchart of research.
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index and in cases where multiple models shared an identical

average C-index, the TCGA cohort’s C-index was favored. The

BRI score for each LUAD patient was determined by analyzing gene

expression in the BRI and their respective coefficients. The patients

in question were divided into groups with high and low BRI.
2.6 Assessment of the efficiency of BRI

Subsequently, comprehensive survival graphs were created for

groups with low and high BRI. For evaluating the forecasting

precision of BRI in LUAD, time ROC and clinical ROC curves

were charted using the “timeROC” packages (24). Survival

differences used log-rank testing with Kaplan-Meier curves.

Multivariate Cox models adjusted for TNM stage, gender, age and

BRI, reported through hazard ratios with 95% confidence intervals.
2.7 Assessment of immune
microenvironment landscape based on BRI

The ESTIMATE (25), algorithm calculates a composite score of

immune and stromal cells to reflect the overall immunogenicity of

the tumor microenvironment, The CIBERSORT algorithm provides

a detailed profile of immune cell infiltration but relies on the

accuracy of the reference gene expression signature matrix. The

QUANTISEQ algorithm infers the abundance of immune cells by

analyzing the expression levels of specific gene modules, yet it

requires high-quality preprocessing of the data. While xCell

provides broad cell type coverage and robustness in immune

infiltration analysis, it is limited in quantifying absolute cell

proportions and identifying the presence of specific cell types. To

overcome the limitations of individual algorithms, we integrated the

results from multiple algorithms to provide a more comprehensive

assessment of the immune microenvironment Utilizing the

“immunedeconv” package (26), three distinct algorithms

(CIBERSORT, QUANTISEQ, XCELL) were employed to measure

the varying percentages of immune cells infiltrating the system. The

relationship between BRI/ts and immune cells was examined using

Spearman’s rank correlation analysis. Furthermore, the quantity of

immune cells and their activity or function scores were assessed

through a single-sample gene set enrichment analysis (ssGSEA)

using the “GSVA” package (27). Following this, the “ggpubr”

package(https://cran.r-project.org/web/packages/ggpubr/) was

utilized to contrast the expression rates of shared immune

checkpoints and genes related to human leukocyte antigen (HLA)

between groups with high and low BRI.
2.8 Assessment of therapeutic benefits
BRI-based

We utilized two datasets with immunotherapy outcomes,

GSE91061 and GSE126044, to investigate the relationship

between the BRI and immune checkpoint blockade (ICB)
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treatment response. Using our machine learning model, we

assigned BRI to patients in both datasets and stratified them into

high-BRI and low-BRI groups. We then compared the proportions

of stable disease (SD) and progressive disease (PD) versus complete

response (CR) and partial response (PR) between the two groups.

The “oncoPredict” package was utilized to compute the IC50 values,

signifying drug sensitivity, where lower values denote increased

sensitivity. Data on the three-dimensional configurations of

chemotherapy and specific treatment targets were sourced from

the PubChem database. Within the GSE91061 group, patients were

classified according to their treatment reaction: those showing

partial (PR) and complete (CR) response were deemed

responders, whereas individuals with progressive (PD) and stable

(SD) disease were labeled as non-responders. The “ggpubr” package

was employed to assess the differences in IPS, TIDE score, and IC50

values among groups with high and low BRI.
2.9 Statistical analysis

Every statistical evaluation was conducted utilizing R software

(version 4.4.0). To evaluate categorical variables, the c2 test was

utilized, while continuous variables underwent comparison through

the Wilcoxon rank-sum test (applicable to samples with non-

normal distribution and varying variances) or the T test

(applicable to both sets of samples with normal distribution and

identical variance). To assess the relationship between two

continuous variables, Pearson’s rank correlation analysis was

conducted. To evaluate the variance in Kaplan-Meier survival

rates, the bi-directional log-rank test was employed.
3 Results

3.1 Single-cell analysis revealed cell
subtypes an TILBs markers

Through rigorous quality control measures, we preprocessed

the data and obtained 4,585 high-quality cell samples from four

LUAD tissue samples. The number of sequenced genes exhibited a

significant positive correlation with sequencing depth (Figure 2A).

Following normalization, samples with either excessively low or

high gene counts, as well as those with a disproportionately high

percentage of mitochondrial genes, were excluded (Figure 2B). We

selected the top 15 PCs before the inflection point, where the

explained variance reaches a relatively stable plateau. These 15

PCs were chosen to capture the most significant sources of variation

in the data while minimizing noise. For subsequent dimensionality

reduction using UMAP, we set the parameter dim <- 1:15 to include

these top 15 PCs. Additionally, we optimized the UMAP

embedding parameters to a=0.9922 and b=1.112 to ensure a

balanced trade-off between local and global structure preservation

in the embedding. UMAP analysis identified 17 distinct clusters

across all samples (Figure 2C). Subsequent cell subtype annotation

was performed using SingleR with reference data from the Human
frontiersin.org

https://cran.r-project.org/web/packages/ggpubr/
https://doi.org/10.3389/fimmu.2025.1524120
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Fang et al. 10.3389/fimmu.2025.1524120
Primary Cell Atlas (Figure 2D). We used the FeaturePlot function to

display the distribution of characteristic markers for various cell

types, which further validated the accuracy of cell annotation.

(Supplementary Figure S1) The analysis revealed that clusters 11

and 16 were identified as TILBs. Utilizing the “FindAllMarkers”

function of the Seurat package, we identified genes that were

significantly highly expressed in the B cell clusters as TILBs

markers. Additionally, a total of 701 marker genes were

associated with TILBs (see Supplementary Table 1).
3.2 Pinpoint crucial modules linked to
clinical results in LUAD

WGCNA utilized 701 TILBs genes, aiming to pinpoint essential

survival modules, encompassing both the overall survival rate and

duration in LUAD patients. An ideal power value of 11 for (b = 8)

was ascertained. Following the establishment of the soft threshold, a

coexpression network was developed, featuring (b = 0.85) (scale-free

(R^2 = 0.920) (Supplementary Figure S2A). Five distinct modules

were developed for subsequent examination. The connections

among. A total of five modules were created for further analysis.

The relationships between these modules were visualized
Frontiers in Immunology 05
(Supplementary Figure S2B), and a clustering dendrogram of the

five modules is shown (Supplementary Figure S2C). The blue

module, consisting of 104 genes, and the gray module, comprising

419 genes, exhibited the highest numbers of positive and negative

correlations, respectively (see Supplementary Table 2).
3.3 NMF clustering identified four TILBs
subtypes in LUAD

Utilizing the expression profiles of 523 TILBs markers chosen

by WGCNA, a clustering algorithm of NMF was employed to

categorize the molecular variants of LUAD patients. The suggestion

was made that the ideal cluster count ought to be the initial K value

at which the cophenetic coefficient starts to significantly diminish.

Ultimately, in the TCGA-LUAD dataset (Figure 3A), the ideal

cluster number K was determined to be 4. The heatmap depicting

the related consensus matrices within the TCGA dataset is depicted

in Figure 3B. The overall survival rate for patients suffering from

LUAD in cluster 3 was superior to those in clusters 1, 2, and 4 of the

TCGA group (Figure 3C). Furthermore, the analysis of B cell scores

in samples from four distinct clusters showed that patients in cluster

3 exhibited elevated B cell scores (Figure 3D). This additionally
FIGURE 2

Identification of genes associated with B cells by single-cell data analysis. (A) Correlation analysis between nFeature_RNA\persent.mt and
nCount_RNA after quality control. (B) The number of nFeature_RNA, nCount_RNA, and mitochondrial genes in each sample. (C) All cell samples
were divided into 17 groups using UMP method. (D) Each group is annotated by SingleR method based on reference data from the Human Primary
Cell Atlas.
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indicates the beneficial predictive function of TILBs in patients

with LUAD.
3.4 Comprehensive development of a
consensus BRI

A univariate Cox analysis identified 86 genes possibly associated

with TILBs, demonstrating a notable link with the prognosis of

LUAD (see Supplementary Table 3). The TCGA-LUAD group

segmented its data into training and internal validation categories

based on inventory levels, to house 101 unique predictive models. For

RSF, we utilized the default parameter settings (e.g., the number of

trees was set to 1000, and the minimum number of samples required

at each leaf node was set to 5). Feature importance scores were used to

identify key genes. For LASSO regression, the optimal regularization

parameter (l) was determined through cross-validation to achieve

feature selection and model fitting. For Coxboost, the selection
Frontiers in Immunology 06
coefficient of the CoxBoost model, where variables with a selection

coefficient greater than 0 are considered. For other algorithms,

parameter tuning was conducted based on 10-fold cross-validation

to ensure model robustness and generalizability. In every model, the

C-index was calculated for each group, with the results depicted in

Figure 4A. Findings showed that the predictive model, created

through the integration of RSF and superPC, was attaining the top

average C-index of 0.65.Using RSF, we selected 27 key variables,

including FUCA2, PHF1, TUBA4A, CUTA, N4BP2L2, ST6GAL1,

YWHAZ, DERL1, AHSA1, CD83, PABPC1, SEC61G, MCM5,

KPNA4, RHOH, DDX5, HSPA4, RILPL2, TCP1, ABHD14A,

PMAIP1, HERPUD1, EPOR, PNISR, CHORDC1, PTGES3, and

CIRBP Figure 4B). Further, we performed superPC modeling using

these 27 genes and determined the optimal number of folds for cross-

validation (Figure 4C). As expected, high BRI in LUAD patients were

associated with poorer overall survival rates in the GSE31210

(Figure 4D) (p < 0.01) and GSE72094 (Figure 4E) (p <

0.0001) datasets.
FIGURE 3

The NMF algorithm identified two TLBs-related subtypes in LUAD. (A) For the TCGA cohort, the cophenetic, dispersion, and sparseness distributions
were evaluated across values of K = 2 to 6, K = 2was determined as the first value where the cophenetic coefficient showed a significant drop.
(B) The consensus map shows gene expression across four clusters (C) Kaplan–Meier survival curves for the four identified clusters are shown for
the TCGA cohort. (D) The violin diagram illustrates the difference in B-cell scores between the four clusters using the estimate algorithm.
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FIGURE 4

Integrative machine learning identified a consensus TLBs-related index (BRI). (A) The C-index of 101 kinds of prediction model based on
combination of 10 machine learning algorithms. The combination of RSF and superPC produced the optimal model, achieving the highest average
C-index of 0.67. (B) Through the RSF algorithm, 27 genes were screened as important variables for superPC modeling. (C) Use n.fold to determine
the folds of cross-validation during the model building process in superPC. According to the final model, each sample obtained its own BRI score,
which was divided into two groups: BRI high and BRI low according to the score. Kaplan–Meier survival curves for the two groups are shown in the
GSE31210 cohort (D), GSE72094 cohort (E).
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https://doi.org/10.3389/fimmu.2025.1524120
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Fang et al. 10.3389/fimmu.2025.1524120
3.5 Evaluation of the performance of BRI

We analyzed the interaction relationships among the 27

feature genes in the model (Figure 5A). Time ROC analysis
Frontiers in Immunology 08
assessed the discriminatory ability of BRI for overall survival in

LUAD patients (Figure 5B), with 1-, 3-, and 5-year AUCs of

0.65, 0.63, and 0.63, respectively. In the GSE31210 cohort, the

AUCs were 0.75, 0.71, and 0.75 (Figure 5C), while in the
FIGURE 5

Evaluation of the performance of BRI. (A) The network node diagram illustrates the interaction between the 27 genes involved in model
construction. TimeROC analysis evaluated the discrimination of BRI in the overall survival rate of patients with LUAD cohort (B), GSE31210 cohort
(C), GSE72094 cohort (D), with 1-, 3-, and 5-year. (E) Univariate ox regression analyses considering clinical parameters and BRI in the TCGA,
GSE31210, and GSE72094 cohorts. (F) Multivariate Cox regression analyses considering clinical parameters and BRI in the TCGA, GSE31210, and
GSE72094 cohorts.
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GSE72094 cohort, they were 0.68, 0.62, and 0.65 (Figure 5D).

Moreover, both univariate and multivariate Cox regression

analyses indicated that BRI is an independent risk factor for

overall survival in the TCGA, GSE31210, and GSE72094 cohorts

(Figures 5E, F).
3.6 Analyzing the tumor microenvironment
through the lens of BRI

Using the xCell algorithm to estimate the microenvironment

and stroma scores in LUAD patients, we found significant

differences in microenvironment and stroma scores between

patients with high and low BSI (Figures 6A, B). Subsequently,

using three distinct algorithms (CIBERSORT, QUANTISEQ,

XCELL) for immune cell scoring in LUAD patients, we also

observed significant differences in the scores of B cells, M2

macrophages, NK cells, and regulatory T cells between the high

and low BSI score groups (Figure 6C). Notably, BRI was found to

inversely correlate with cytotoxic CD8+ T-cell infiltration (r = -0.43,

p < 0.001) and positively correlate with regulatory T cells (r = 0.31,

p = 0.008), highlighting the complex interplay within the immune

microenvironment. To further investigate the correlation between

BSI and tumor immunity in lung cancer, we analyzed the

differences in the expression of immune markers between patients

with high and low BRI. Significant differences were found in the

expression levels of TNFRSF9, TNFSF4, TNFRSF25, TNFRSF14,

CD160, PDCD1LG2, CD276, IDO2, CD70, CD40LG, CD200R1,

CD274, HLA-DOB, HLA-J, and HLA-F between the two groups

(Figure 6D). Lastly, we explored the correlation between BRI and

the abundance of immune cells using several immune cell-related

algorithms, which revealed that BRI were significantly negatively

correlated with the abundance of most immune cells (Figure 6E)

(see Supplementary Table 4). Additionally, through Gene Set

Enrichment Analysis (GSEA), we identified that the differentially

expressed genes between the two groups were primarily enriched in

pathways related to B cell receptor signaling and Th1 and Th2 cell

differentiation, among other tumor immune processes

(Supplementary Figure S3).
3.7 BRI-based treatment strategy for LUAD

We first conducted an overall assessment comparing the

therapeutic response indicators between patients in the low-BRI

and high-BRI groups (Figure 7A). We validated whether the BRI is

associated with patient response to immunotherapy in two datasets

(GSE126044 and GSE91061) that include patient outcomes of

immune checkpoint blockade (ICB) therapy. Based on our

prognostic model, we assigned a BRI to each patient. First, we

combined the patient data from the two datasets and compared the

BRI between patients with progressive disease/stable disease (PD/

SD) and those with partial response/complete response (PR/CR).

We found that patients in the PD/SD group had higher BRI

(Figure 7B). Subsequently, we categorized patients in each dataset
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into high-BRI and low-BRI groups based on their BRI and

compared the ratios of PD/SD to PR/CR between the two groups.

We observed that a greater proportion of patients in the low-BRI

group responded to immunotherapy (Figure 7C). Subsequently, our

investigation focused on the IC50 metrics for standard

chemotherapy and specialized therapeutic medications.

Consequently, patients with LUAD and low BRI exhibited

reduced IC50 values for Buparlisib (Figure 7D), Docetaxel (Figure

7E), Erlotinib (Figure 7F), Osimertinib (Figure 7G), Topotecan

(Figure 7H), Vinorelbine (Figure 7I). Additionally, we constructed a

nomogram based on TCGA data to predict patients’ survival

(Supplementary Figure 4).
4 Discussion

Tumor immunotherapy has become the most promising cancer

treatment strategy, completely transforming the landscape of lung

cancer treatment. However, due to the complexity of the tumor

immune microenvironment, the efficacy of immunotherapy in

some lung cancer patients remains unsatisfactory (28). This study

developed a BRI (biomarker-based risk index) that was identified as

an independent risk factor for overall survival in patients with

LUAD. The outcome of our study revealed that the BRI score is a

predictive indicator in assessing immune microenvironment and

the response to immunotherapy.

Mounting evidence has identified that the TILBs (tumor-

infiltrating lymphocytes B cells) within the TME promotes

immunosuppression and thus the associated tumor survival and

progression. In ovarian cancer and melanoma, plasmablast-like

TILBs express higher levels of IFNg and chemokines (CCL3,

CCL4, CCL5), which attract T cells, macrophages, and NK cells,

and are indeed associated with higher T cell infiltration (29).

TILBs can also promote the formation and maintenance of TLS

(tertiary lymphoid structures) through the secretion of

lymphotoxin a1b2 (30), which has been shown to be essential

for reducing tumor growth in mouse melanoma models.

Conversely, B cell-derived lymphotoxin promotes the growth of

androgen-independent prostate tumors in mice. Evidence from

one study demonstrated that TILBs possess tumor antigens

acquired in vivo (31), and CD69+ CD21+ CD27+ TILBs isolated

from human lung cancer samples can stimulate autologous CD4+

TILs in vitro (32, 33). However, the crosstalk of TILBs with other

cells in tumors and the functions they perform require

further research.

In the current study, we established a methodology to quantify

the infiltration of TILBs in tumors, aiming to elucidate the

interactions between TILBs and other cells within the tumor

immune microenvironment, with the hope of identifying more

precise personalized immunotherapies. Our study developed a

BRI model using 10 different algorithms and 101 algorithm

combinations within the TCGA cohort. After analyzing single-cell

sequencing data, WGCNA, NMF, and univariate Cox analysis, 86

markers were ultimately selected for model construction and the

final model was composed of 27 genes, which was constructed by
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RSF and superPC algorithms. The integration of multiple machine

learning algorithms allowed for dimensionality reduction, leading

to a more simplified and translatable prognostic model. The AUC

values for this BRI model were 0.702 at 1 year, 0.678 at 3 years, and
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0.664 at 5 years. The predictive performance of the BRI model was

also validated in the GSE31210, and GSE72094 datasets.

Additionally, BRI was identified as an independent risk factor for

overall survival in patients with LUAD.
FIGURE 6

Dissection of the tumor microenvironment based on the BRI. LAUD patients with low BRI had higher Microenvionmentscore (A) and Stromascore
(B) The score of each LUAD case were calculated with the Xcell algorithm. (C) The immune cell score of patients with LUAD was calculated using
the estimate algorithm, and there was a difference between the two groups with high and low BRI. (D) The expression differences in immune
checkpoints between the two groups with high and low BRI. (E) The correlation between BRI score and the abundance of immune cells was
calculated using three algorithms, including CIBERSORT, QUANTISEQ, XCELL. *p < 0.05, **p < 0.01, ***p < 0.001, ****p<0.0001.
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In subsequent analyses, patients were stratified into BRI-high

and BRI-low groups based on the median BRI. Kaplan-Meier

survival curve analysis indicated that the BRI-low group exhibited

a higher survival rate. Through Gene Set Enrichment Analysis

(GSEA), we identified that the differentially expressed genes
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between the two groups were primarily enriched in pathways

related to B cell receptor signaling, Th1 and Th2 cell

differentiation, among other tumor immune processes. Notably, B

cells can modulate T cell responses under specific therapeutic

conditions (34). Subsequently, we performed immune infiltration
FIGURE 7

TLBs-related index (BRI)-based treatment strategy for LUAD. (A) Comparison of pharmacological indicators between the low BRI group and the high
BRI group. (B) In the datasets GSE91061 and GSE126044, there was a significant difference in BRI between patients in the PD/SD group and those in
the PR/CR group (p = 0.0047). (C) In the datasets GSE91061 and GSE126044, there were significant differences in the proportions of PD/SD and
PR/CR between patients in the low BRI group and those in the high BRI group (GSE126044, p = 0.025; GSE91061, p < 0.001). The IC50 values of
Buparlisib (D), Docetaxel (E), Erlotinib (F), Osimertinib (G), Topotecan (H), Vinorelbine (I) were lower in patients with LUAD with low BRI
*p < 0.05, ****p<0.0001.
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analyses using CIBERSORT, XCELL, and QUANSTEQ algorithms.

The results indicated that the BRI-low group exhibited higher levels

of infiltration by B cells, M2 macrophages, NK cells, CD4+ T cells,

and regulatory T cells, which correlates with the previously noted

better prognosis for this group. Based on these findings, we further

explored the relationship between BRI and the benefits patients

derive from immunotherapy. Immunotherapy based on immune

checkpoints is viewed as a hopeful strategy for patients with LUAD,

particularly for those in advanced phases (35). Focusing on immune

checkpoint molecules like PD-1 and CTLA-4 has the potential to

revitalize anti-cancer immunity (36). T cells are acknowledged as

key to the effectiveness of existing cancer immunotherapies (37).

Conversely, B cells exhibiting a lower BRI score demonstrate

elevated TIME (tumor immune microenvironment) scores,

increased CTLA4 immunophenoscores, and reduced scores in

tumor immune dysfunction and exclusion, immune monitoring,

and immune evasion. A higher TIDE score suggests a greater

chance of immune evasion and a diminished effectiveness of ICI

(immune checkpoint inhibitor) therapy (38, 39). Reduced

immunophenoscore indicates an improved reaction to ICI

therapies (40). Consequently, patients with LUAD and lower BRI

might gain greater advantages from immunotherapy. Recognizing

TILBs’ vital function in chemotherapy, our study focused on

analyzing the IC50 values for both standard chemotherapy and

specific therapeutic drugs. Our research found that LUAD patients

with elevated BRI exhibited reduced IC50 scores for medications

like Crizotinib, Savolitinib, Ulixertinib, 5-Fluorouracil, Cisplatin,

Docetaxel, Gemcitabine, and Paclitaxel. This implies a higher

susceptibility of these patients to chemotherapy and specialized

treatments. This study is specifically designed to evaluate whether

TILBs offer additional prognostic significance beyond the

conventional TNM staging system, with a particular focus on

patients with early-stage LUAD. The BRI may serve as a valuable

tool for oncologists to identify patients who would benefit from

chemotherapy drug treatment or ICB therapy, while also potentially

sparing low-risk individuals from unnecessary overtreatment.

This study has several limitations that warrant consideration.

Firstly, the C-index of our BRI model was not sufficiently high,

indicating potential limitations in the predictive accuracy of our

BRI model. This suggests the need for further validation using larger

and more diverse clinical datasets to assess the model’s robustness

and generalizability in real-world settings. Additionally, the roles of

most BRI-associated genes in LUAD remain unclear, highlighting

the need for further in vivo and in vitro studies to elucidate their

mechanisms of action and functional significance, particularly in

the context of potential challenges for clinical application, such as

the model’s complexity and the implications of the low C-index.

Future research should address these gaps to enhance the clinical

utility of the BRI model.
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SUPPLEMENTARY FIGURE 1

The accuracy of cell annotationwas assessed usingmarker genes of various cell types.

SUPPLEMENTARY FIGURE 2

Identification of key modules associated with clinical outcomes in the TCGA-

LUAD dataset was conducted using WGCNA. (A) The analysis involved
assessing the scale-free fit index and mean connectivity across various

soft-thresholding power values, with a target fit index of 0.85. (B) A
Frontiers in Immunology 13
heatmap depicted gene interactions between modules, with different

colors representing various modules on the axes and varying shades of

yellow indicating the strength of interactions. (C) The WGCNA algorithm
identified five co-expression modules, each shown as a branch in the

dendrogram, grouping genes with similar expression patterns. (D) Another
heatmap illustrated the correlation between these modules and clinical

outcomes such as survival time and status, highlighting that genes in the
turquoise and blue modules had the most significant positive and negative

cor re la t ions wi th c l in ica l outcomes and were se lected for

further investigation.

SUPPLEMENTARY FIGURE 3

The differentially expressed genes between BRI-high and BRI-low were

primarily enriched in pathways related to B cell receptor signaling,Th1 and
Th2 cell differentiation, Intestinal immune network for IgA production,

Primary immunodeficiency, Th17 cell differentiation in LUAD, GSE31210 and
GSE72094 cohorts.

SUPPLEMENTARY FIGURE 4

In the TCGA-LUAD cohort, a nomogram was constructed incorporating

patient age, gender, tumor stage, and BRI to predict the 1-year, 3-year, and
5-year survival rates.
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