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Background: Pancreatic cancer is a highly lethal disease with increasing

incidence worldwide. Despite surgical resection being the main curative

option, only a small percentage of patients are eligible for surgery.

Radiotherapy, often combined with chemotherapy, remains a critical

treatment, especially for locally advanced cases. However, pancreatic cancer’s

aggressiveness and partial radio resistance lead to frequent local recurrence.

Understanding themechanisms of radiotherapy resistance is crucial to improving

patient outcomes.

Methods: Pancreatic cancer related gene microarray data were downloaded

from GEO database to analyze differentially expressed genes before and after

radiotherapy using GEO2R online tool. The obtained differentially expressed

genes were enriched by GO and KEGG to reveal their biological functions. Key

genes were screened by univariate and multivariate Cox regression analysis, and

a risk scoring model was constructed, and patients were divided into high-risk

group and low-risk group. Subsequently, Kaplan-Meier survival analysis was used

to compare the survival differences between the two groups of patients, further

analyze the differential genes of the two groups of patients, and evaluate their

sensitivity to different drugs.

Results: Our model identified 10 genes associated with overall survival (OS) in

pancreatic cancer. Based on risk scores, patients were categorized into high- and

low-risk groups, with significantly different survival outcomes and immune

profile characteristics. High-risk patients showed increased expression of pro-

inflammatory immune markers and increased sensitivity to specific

chemotherapy agents, while low-risk patients had higher expression of

immune checkpoints (CD274 and CTLA4), indicating potential sensitivity to

targeted immunotherapies. Cross-dataset validation yielded consistent AUC

values above 0.77, confirming model stability and predictive accuracy.
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Conclusion: This study provides a scoring model to predict radiotherapy

resistance and prognosis in pancreatic cancer, with potential clinical

application for patient stratification. The identified immune profiles and drug

sensitivity variations between risk groups highlight opportunities for personalized

treatment strategies, contributing to improved management and survival

outcomes in pancreatic cancer.
KEYWORDS

pancreatic cancer, radiotherapy resistance, prognostic scoring model, immune
microenvironment, personalized immunotherapy
Introduction

Pancreatic cancer is a particularly aggressive cancer, with its

incidence and mortality rates steadily increasing globally (1, 2).

According to the statistics of China’s National Cancer Center in

2021, pancreatic cancer ranks 7th in the incidence of malignant

tumors in men and 11th in women in China, and accounts for 6th

in the malignancy related mortality (3). According to the 2023

Cancer Statistics Report, the death rate of pancreatic cancer will

rank second only to lung cancer by 2030 (4).

PAAD (pancreatic adenocarcinoma) accounts for the vast

majority (85-90%) of all pancreatic cancers, and TCGA’s PAAD

program is almost entirely PDAC (pancreatic ductal

adenocarcinoma) cases. Despite advances in therapeutic strategies,

PAAD remains challenging to treat, primarily due to its late

diagnosis, limited resect ability, and high resistance to

conventional treatments such as radiotherapy (RT) (5). Surgical

resection is the main method for pancreatic cancer patients to

obtain cure and prolong survival time. Unfortunately, only a

minority (15-20%) of patients can be surgically removed (6).

RT is an important treatment for pancreatic cancer, especially

in combination with chemotherapy, which is the preferred

treatment for locally advanced pancreatic cancer (7). Yet, PAAD’s

intrinsic resistance to radiation and tendency for local recurrence

limit the overall effectiveness of RT in improving patient outcomes

(8, 9). This resistance, often coupled with a pro-inflammatory

tumor microenvironment, facilitates tumor progression and

immune escape, ultimately making PAAD more challenging to

treat (10). Therefore, understanding the mechanisms of RT

resistance and the dynamics of the immune microenvironment is

essential for developing more targeted therapies.

To address these challenges, recent studies have focused on

identifying specific gene expression profiles and immune cell

infiltration patterns associated with RT resistance and immune

evasion in PAAD. Through these investigations, researchers aim to

stratify patients into high- and low-risk groups, thereby enabling

more personalized treatment approaches. Genes that exhibit

differential expression in response to RT have shown promise as

predictive markers, offering insight into patient prognosis and

potential therapeutic targets.
02
In this study, we utilized two independent GEO datasets

(GSE179351 and GSE225767) to identify genes associated with RT

resistance in PAAD and constructed a prognostic scoring model

validated across multiple datasets. Additionally, we explored the

differences in drug sensitivity between these risk groups, offering

valuable insights for individualized treatment strategies. This study

provides a comprehensive framework for understanding the immune

and molecular landscape of PAAD, contributing to the broader goal of

personalized therapy. By integrating gene expression, immune cell

profiles, and drug response data, our findings support the development

of more targeted, effective treatments for PAAD, ultimately aiming to

improve patient survival and quality of life. Future research should

focus on validating these biomarkers in larger cohorts and exploring

immune-related predictive markers to further refine therapeutic

strategies in PAAD.
Materials and methods

Data collection

To obtain the data needed for this study, we used Gene Expression

Omnibus (GEO), a public functional genome database. We used two

words “pancreatic cancer” and “radiation” as the keywords to obtain

the required items, and finally selected the series GSE179351 and

GSE225767 as the data set for our main analysis.

To obtain patient gene expression and clinical data, we included

cases from The Cancer Genome Atlas (TCGA) project. We

collected gene expression data from PAAD cases, including 179

tumor samples and 4 normal samples. All TCGA data, mRNA

expression and clinical details were manually downloaded from the

website and collated by R software.
Analysis of differentially expressed genes

GEO2R was used to identify differentially expressed genes in the

geo data sets GSE179351 and GSE225767 after RT compared to

before RT. The differentially expressed genes (DEGs) in PAAD

samples in TCGA database were identified by R package “edgeR”.
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Using |log2FC| ≥1 and p-value <0.05 as selection criteria, the range

of DEGs was determined for further analysis. Volcano mapping

using R software packages “limma” and “ggplot2”. Using gene

annotation and analysis resources website “Metscape” (https://

www.metascape.org/) for gene function analysis of enrichment.
Cox regression analysis and prognostic
model construction

After obtaining 121 co-up-regulated genes and 27 co-down-

regulated genes between GSE179351 and GSE225767 as candidate

genes for constructing radiation-resistant gene plates, we used

univariate Cox regression to select the gene that was most

correlated with OS (overall survival) in PAAD patients, and the

p-value was set at 0.05.

Then, using the results of univariate Cox regression, we

performed proportional risk regression analysis (multivariate Cox

model) by the following formula.

Riskscore =oni = 1(Coefficienti � xi)

Where, the risk score is the product of the mRNA expression of

each key predictor gene (xi) and coefficient, which is derived from

multivariate Cox regression analysis. Using the survival and

survminer packages in R, 178 TCGA-PAAD patients were divided

into high-risk group and low-risk group. On the basis of this

grouping routine, survival differences between OS and risk scores

were observed between the two groups. Logistic regression model

was established by using R software package “glmnet”.
Parameter setting and data set partitioning
of random forest model

Random forest model was performed by R package

ggRandomForests (v2.2.1). Regarding the allocation of the

training and testing sets, 148 (83%) of samples to the training set

and 30 (27%) to the testing set. In the parameter, there are 183

nodes and 454 edges contained inside this representation. Number

of trees was set to 1000 and minimum size of terminal node was set

to 10. Other parameters were default settings.
Cell culture

PANC-1 cells were purchased from Wuhan Promoter Life

Science & Technology Co., Ltd. (China). All cell lines were

cultured at 37°C in an atmosphere of 5% CO2 using DMEM

medium containing 10% fetal bovine serum (FBS) (Gibco) and

1% penicillin/streptomycin. When cell confluence reached 70%-

80%, they were subjected to ionizing radiation treatment.
Real-time qPCR

Trizol was used to extract RNA from cells. After RNA

extraction, the quantity and quality of the RNA were analyzed
Frontiers in Immunology 03
using the Qnano spectrophotometry method from Yeasen. A

reverse transcription reaction was performed using 1 mg of total

RNA with Takara’s reverse transcription kit (RR047A). The

resulting cDNA was subjected to qPCR analysis using Hieff

UNICON® Universal Blue qPCR SYBR Green Master Mix

(Yeasen, Cat #11184ES08), and quantification was performed

using Yeasen 80520ES03. In all experimental replicates, all

expression levels were normalized to GAPDH. The primers used

were as follows:

ADAMTS12 Forward (5′-CTTTGAAGGCGGCAACAGCAGA-3′)
ADAMTS12 Reverse (5′-TCTCACAGTCTGGCAGGAAGAG-3′)
AKR1C2 Forward (5′-CCGAAGCAAGATTGCAGATGGC-3′)
AKR1C2 Reverse (5′-TTTCAGTGACCTTTCCAAGGCTG-3′)
ATP8B2 Forward (5′-CGGCTATTCCTGCAAGATGCTG- 3′)
ATP8B2 Reverse (5′-GTCCTGATAGGTGAAGCCGTTG-3′)
CCN4 Forward (5′-AAGAGAGCCGCCTCTGCAACTT-3′)
CCN4 Reverse (5′-TCATGGATGCCTCTGGCTGGTA-3′)
CTHRC1 Forward (5′-CAGGACCTCTTCCCATTGAAGC-3′)
CTHRC1 Reverse (5′-GCAACATCCACTAATCCAGCACC-3′)
GREM1 Forward (5′-TCATCAACCGCTTCTGTTACGGC- 3′)
GREM1 Reverse (5′-CAGAAGGAGCAGGACTGAAAGG-3′)
P3H3 Forward (5′-CTGAGTGTCCTGCTCTTCTACC-3′)
P3H3 Reverse (5′-ATCGGAGGATGAAGCGCTGGAT-3′)
PAPPA Forward (5′-GGAACTGAAGAGAGTGAGCCATC-3′)
PAPPA Reverse (5′-CGTCGCATTGTTCACCTTGGTC-3′)
POSTN Forward (5′-CAGCAAACCACCTTCACGGATC- 3′)
POSTN Reverse (5′-TTAAGGAGGCGCTGAACCATGC-3′)
TAFA2 Forward (5′-GATCGGAAAGGATGGAGCTGTTC-3′)
TAFA2 Reverse (5′-GCGCATGTTCAATGTCATCAGCC-3′)
GAPDH Forward (5′-GGAGCGAGATCCCTCCAAAAT- 3′)
GAPDH Reverse (5′-GGCTGTTGTCATACTTCTCATGG-3′)
Analysis of tumor microenvironment

Single sample gene set enrichment analysis (ssGSEA) was

performed using R package “GSVA” to calculate the infiltration

level of 28 immune cells. The immune gene sets were sourced from

Charoentong’s study (11). Finally, we compared the expression

levels of immune checkpoint molecules (CD274 and CTLA4)

between the two groups of patients. TIDE was used to

predict immunotherapy.
Drug sensitivity

In this study, we explored the predictive value of risk score for

immunotherapy and chemotherapy efficacy. Tumor immune

dysfunction and rejection (TIDE) score (http://tide.dfci.harvard.edu/)

is a kind of used to evaluate tumor immune escape mechanism in

the immune microenvironment of tools. TIDE scores predict a

patient’s response to immunotherapy, such as immune checkpoint

inhibitors, by taking into account the ability of tumor cells to escape

immune and the role of tumor-related immunosuppression. The

drug was estimated using the “oncopredict” package in R to predict

chemotherapy drug sensitivity in each patient.
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Statistical analysis

All statistical analysis and graphical visualizations were

performed in R (version 4.3.2). Continuous variables were

compared between groups using student t test or Wilcoxon rank

sum test. P<0.05 was considered statistically significant (bilateral).
Result

Screening and functional analysis of genes
related to RT resistance

To identify genes that play a key role in RT resistance, we selected

two datasets, GSE179351 and GSE225767, as study objects. In these

two datasets, we obtained differential genes (DEGs) in cancer tissues

after RT compared with those before RT through GEO2R online

analysis (Figures 1A, B). In the GSE179351 data set, there were 594

up-regulated genes and 480 down-regulated genes in the cancer

tissues after RT compared with those before RT (Supplementary

Table S1). In GSE225767 data, 1033 up-regulated genes and 637

down-regulated genes were found in cancer tissues after RT

compared with those before RT (Supplementary Table S2). In

DEGs analysis, the cutoff value was set as |log2FC| ≥1, and p-value

<0.05. We screened 148 genes with identical expression changes in

both datasets as candidate genes (Figures 1C, D, Table 1). To clarify

the function of these genes, we used the Metascape tool website to

conduct a republic KEGG enrichment analysis of this group of genes,

which are mainly involved in the regulation of cell behavior, the

development and regeneration of tissues and organs. These changes

may affect cancer cell survival, invasion, and response to treatment,

providing important clues to understanding the mechanism of action

of RT in PAAD (Figure 1E).
Effect of radiation resistance gene on
prognosis of patients with PAAD

In order to investigate the effect of radiation-resistant genes on

the prognosis of pancreatic cancer patients, we selected PAAD

patients from the TCGA database and established univariate and

multivariate Cox proportional risk regression models. Among the

148 candidate genes mentioned above, a total of 37 genes were

considered to be related to patients’ overall survival (OS) by single-

factor Cox regression model analysis. Of these, 26 genes are

considered risk factors and 11 genes are considered protective

factors. Therefore, we further included these 37 genes in

multivariate Cox analysis to construct the genome associated with

radiation resistance. According to the analysis results, 10 genes were

screened out (p<0.05). Then, multivariate Cox regression coefficient

and mRNA expression levels of key genes were used to establish a

risk scoring formula: risk score = (-ADAMTS12*0.05286 +

AKR1C2* 0.0163542-ATP8B2 *0.04237 + CCN4*0.032409

-CTHRC1*0.00454 + GREM1* 0.008157-P3H3 *0.03781 +

PAPPA* 0.129872-POSTN * 0.00178-TAFA2 *1.80003). A hazard

ratio greater than 1 indicates that patients with high gene expression
Frontiers in Immunology 04
are more likely to develop tumor progression after RT, while a

hazard ratio less than 1 indicates that the gene is a protective

factor (Figure 2A).

According to the risk score formula, 178 patients with PAAD

were divided into high-risk and low-risk groups using the optimal

cutoff value determined by the “surv_cutpoint” function

(Figure 2B). The heat map identified the expression levels of 10

genes in a single patient, 100 in the high-risk group and 78 in the

low-risk group (Figure 2C, Table 2). As shown in Figure 2D,

patients with higher risk scores after RT are more likely to

develop tumor progression and have a relatively shorter median

survival. Specifically, when we constructed survival curves based on

the expression of a single key gene, only ATP8B2, GREM1, and

TAFA2 genes could obtain statistically significant results (p< 0.05,

Supplementary Figure S1). However, when patients were grouped

according to risk scores, the high-risk group had significantly lower

survival rates at 3 and 5 years, and even beyond, compared to the

low-risk group (p = 0.001) (Figure 2D). This suggests that the

prognosis model is effective in distinguishing between high-risk and

low-risk patients, and that high-risk patients have poorer survival

outcomes. To further verify the reliability, we established a

multivariate logistic regression analysis to evaluate its effectiveness

in predicting tumor progression. The validated AUC value of 0.7664

indicates that the model performs well in differentiating between

samples with different risk of tumor progression (Figure 2E). In

addition, we applied machine learning methods for patient risk

prediction, but on our dataset, the machine learning model had a

low AUC value (Supplementary Figure S2). Using the random

forest model, we further analyzed the contribution of the above 10

genes to the risk scoring model. The results showed that among the

148 gene candidates, TAFA2 contributed the most to the prediction

model, followed by ATP8B2 (Figure 2F).

Next, we verified the 10 genes selected above to verify their

relationship with radiation resistance in pancreatic cancer. The

results showed that TAFA2 and POSTN were significantly elevated

in IR-resistant pancreatic cancer cells (Supplementary Figure S3),

suggesting that TAFA2 may play an important role in radiotherapy

resistance of pancreatic cancer.
Cross-dataset validation and clinical
association analysis of PAAD score models

To more fully validate the predictive power of the scoring

model, we downloaded and analyzed three publicly available

pancreatic cancer GEO datasets (GSE28735, GSE62452, and

GSE57495). In each dataset, we calculated the AUC value via the

ROC curve to assess the accuracy of the model’s prediction of

patient risk. The results showed that all datasets had AUC values

higher than 0.77, with the GSE28735 dataset having the highest

AUC value of 0.8886, indicating that the scoring model has stable

and high predictive performance across multiple datasets

(Figure 3A), supporting its potential to be widely used in diverse

pancreatic cancer patient populations.

Further, we explored the association between the risk score of the

scoring model and the clinical characteristics of patients, aiming to
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analyze the clinical significance of the score. The study found that the

risk score was not significantly associated with gender or pathological

stage, suggesting consistent applicability of the score to patients of

different genders and stages (Supplementary Figure S4). However,

there was a significant correlation between risk scores and patients’

survival status and age. Specifically, patients whose survival status was

death had a significantly higher risk score than those who survived,
Frontiers in Immunology 05
suggesting that this score may be a powerful indicator of prognosis.

In addition, patients older than 60 years had significantly higher

risk scores than those younger than 60 years, a finding that may

reflect a more aggressive or progressive course of disease in older

patients (Figure 3B).

We also mapped the relationship between gender, high-low risk

groups, and cancer stage to visualize the interaction patterns
FIGURE 1

Identification and functional analysis of DEGs related to RT resistance in PAAD. (A) Volcano plots showing gene expression changes in PAAD tissues
after RT compared to before RT in the GSE179351 datasets, with |log2FC| ≥1 and p < 0.05 set as cutoff values. In the DEGs analysis, red dots
represent upregulated genes, and blue dots represent downregulated genes. (B) Volcano plots showing gene expression changes in PAAD tissues
after RT compared to before RT in the GSE225767 datasets, with |log2FC| ≥1 and p < 0.05 set as cutoff values. In the DEGs analysis, red dots
represent upregulated genes, and blue dots represent downregulated genes. (C) Venn diagram of upregulated genes in GSE179351 and GSE225767.
(D) Venn diagram of downregulated genes in GSE179351 and GSE225767. (E) Enrichment analysis of 121 co-upregulated genes and 27 co-
downregulated genes performed using the Metascape website.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1524798
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Dai et al. 10.3389/fimmu.2025.1524798
TABLE 1 Candidate genes with consistent expression changes across
both datasets.
Symbol Change

CLMP up

MMP2 up

KCNMA1 up

ADAM12 up

LAMA2 up

NLRP3 up

NFATC4 up

GLT8D2 up

TENM4 up

COL1A1 up

UAP1L1 up

CCN4 up

PRR16 up

GFPT2 up

ATP8B2 up

TAFA2 up

P3H1 up

HIF3A up

ROR2 up

ISM1 up

GREB1 up

LRRC17 up

PDZRN3 up

EDNRA up

TMEM200A up

TBX2 up

PCDH18 up

SGIP1 up

SCD5 up

MERTK up

CIITA up

PAPPA up

ADAMTS2 up

ALDH1L2 up

PRRX1 up

LEF1 up

PDGFRB up

TSPYL2 up

(Continued)
F
rontiers in Immunology
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TABLE 1 Continued

Symbol Change

COL6A2 up

NTM up

TCF21 up

BMP8A up

CD248 up

FKBP10 up

COL5A2 up

HLA-DOA up

HLA-DMB up

LZTS1 up

SLAMF8 up

NPR3 up

MAP1A up

IL21R up

MRC2 up

NOX4 up

NCKAP5L up

CTSK up

MSR1 up

CDH11 up

GLI3 up

SCARF2 up

GREM1 up

NR4A3 up

MEIS3 up

PDE1A up

ADAMTS12 up

LAMP5 up

ITGA10 up

PLPP4 up

CCDC102B up

PDPN up

COL3A1 up

CD163 up

F13A1 up

FAP up

ISLR up

POSTN up

PLXDC2 up

(Continued)
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between these variables (Figure 3C). In Figure 3C, the distribution

of patients of different genders in high and low risk groups and

cancer stages is shown in the form of Sankey charts. Although there

was no significant association between gender and risk score, we

could observe differences in disease stage among patients in

different risk groups. Such visualization not only helps to

understand the relationship between variables, but also provides a

reference for the development of further individualized

treatment strategies.
TABLE 1 Continued

Symbol Change

SH3PXD2B up

SCG2 up

MMP14 up

MS4A4A up

LRCH2 up

PPFIA2 up

CPXM1 up

DZIP1 up

CTLA4 up

TNFSF8 up

CXCL9 up

RAB3IL1 up

IRAG1 up

MFAP2 up

LOXL3 up

COL16A1 up

SPON2 up

OLFML2B up

VCAN up

DNAJB5 up

ITGA11 up

SULF1 up

ANGPTL2 up

NPTX1 up

COL6A3 up

BOC up

KCND2 up

COL6A1 up

COL24A1 up

DDR2 up

SPARC up

COL5A1 up

COL11A1 up

MLLT11 up

CTHRC1 up

MMP19 up

STMN2 up

CHPF up

SULT1C4 up

(Continued)
TABLE 1 Continued

Symbol Change

COL1A2 up

P3H3 up

KCNE4 up

LOC107984360 up

DACT1 up

STRADB down

RAC2 down

ANXA13 down

DMTN down

GJB1 down

FOXA2 down

AKR1C2 down

VSIG1 down

UGT2A3 down

TNFRSF10C down

EPHA1 down

NECTIN1 down

MAP3K21 down

ANXA10 down

ERBB3 down

HNF4A down

GLRX5 down

SSTR1 down

CMBL down

OSBP2 down

AKR1C3 down

GMDS down

SULT1B1 down

TFF3 down

HBA2 down

CDHR2 down

HBA1 down
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In summary, this study confirmed the strong predictive

ability of the scoring model in pancreatic cancer patients through

external validation of multiple GEO datasets, and supported the

clinical application potential of the model through correlation
Frontiers in Immunology 08
analysis with clinical characteristics. This validation method

based on multiple data sets not only enhances the robustness of

the model, but also lays a foundation for its popularization in

clinical practice.
FIGURE 2

Prognostic model for PAAD Patients based on radiation-resistant genes. (A) Multivariate Cox regression analysis identified 10 genes associated with OS in
patients with PAAD. (B) Optimal cutoff value of risk score determined by the “surv_cutpoint” function. 178 PAAD patients were divided into high-risk and
low-risk groups. (C) Heat map displaying the expression levels of the 10 key genes in individual patients. (D) The Kaplan-Meier OS curve shows the
survival differences among patients in different risk groups. (E) The AUC values corresponding to these gene combinations were calculated by multiple
logistic regression model. The AUC value is 0.7664. (F) Bar plot showing the variable significance of 10 filtered genes in random forest model.
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TABLE 2 Expression levels of ten key genes and risk classification in pancreatic cancer patients.

PPA POSTN TAFA2 Riskscore Risk

1.3117 115.5277 0.5221 -2.90281 high

0.9604 46.0725 0.3656 -2.80492 high

4.0155 759.0189 0.0924 -3.93331 high

6.425 772.4045 0.3016 -7.5007 low

1.9408 240.261 0.3644 -2.95101 high

3.5387 242.1356 1.1756 -5.22387 low

3.8785 372.0462 0.2477 -4.85827 low

1.9804 209.8569 0.44 -3.23468 high

0.7416 210.9798 0.1846 -2.19884 high

1.9408 474.888 0.213 -2.92925 high

0.6726 50.2993 0.4103 -1.76787 high

2.5579 536.0311 0.4429 -5.86988 low

0.9563 557.0461 0.2023 -5.53058 low

2.6448 316.1096 0.7288 -3.47409 high

2.3355 349.8649 1.6028 -3.59388 high

2.2003 393.9212 0.1886 -2.71621 high

0.2294 10.5221 0.1049 -0.53163 high

5.6855 260.0627 0.2065 -2.26894 high

2.2352 261.4931 0.5216 -3.6004 high

0.6233 130.339 0.2163 -2.30845 high

1.6406 226.0001 0.1555 -1.9337 high

0.6227 175.4138 0.2965 -3.47698 high

0.439 43.9492 0.3297 -6.27488 low

0.7352 247.2102 0.291 -2.78951 high

2.7625 427.8344 0.8073 -5.81231 low

1.1367 90.7125 0.2314 -2.17149 high

2.4495 644.1293 0.2846 -5.856 low
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ID Time State ADAMTS12 AKR1C2 ATP8B2 CCN4 CTHRC1 GREM1 P3H3 PA

TCGA-2J-AAB1 0.180822 1 11.0312 9.8524 12.7946 17.1228 134.8815 6.7831 25.4237

TCGA-2J-AAB4 1.99726 0 10.9335 21.1079 18.0629 10.23 100.4886 10.479 30.4678

TCGA-2J-AAB6 0.80274 1 23.5755 4.7648 9.0951 47.3707 262.571 42.8729 54.9337

TCGA-2J-AAB8 0.219178 0 53.1327 3.0481 20.1468 57.6662 721.681 85.843 55.4548

TCGA-2J-AAB9 1.717808 1 16.7079 10.7444 16.9622 32.1665 223.3102 33.5915 26.3332

TCGA-2J-AABA 1.663014 1 14.6958 2.9019 24.8587 49.3591 401.2207 60.7556 43.0187

TCGA-2J-AABE 1.852055 0 27.562 2.3276 14.6413 32.5273 433.2155 33.8659 41.7227

TCGA-2J-AABF 1.893151 1 20.1666 20.0636 20.5365 27.1432 172.8979 12.6559 24.2278

TCGA-2J-AABH 3.526027 0 11.9 9.588 12.7571 11.6262 83.1506 11.5035 17.661

TCGA-2J-AABI 2.654795 0 19.2703 1.8966 10.7512 36.0325 211.711 19.8967 23.2342

TCGA-2J-AABK 1.326027 0 1.7662 6.32 8.1208 4.1619 30.5502 2.4251 18.7506

TCGA-2J-AABO 1.205479 0 37.9854 4.0607 21.7695 43.0593 339.0973 62.1444 51.5613

TCGA-2J-AABP 1.268493 0 50.9232 0.7125 30.8512 96.8881 382.1493 24.7142 50.731

TCGA-2J-AABR 1.2 0 18.3477 54.686 29.45 33.6771 189.2273 26.239 28.1937

TCGA-2J-AABT 0.873973 0 16.3477 2.527 29.9161 26.3713 127.3014 306.4978 28.4557

TCGA-2J-AABU 0.758904 1 26.9933 71.0155 15.3289 34.9186 307.9644 110.4553 44.4454

TCGA-2J-AABV 1.786301 1 0.5746 0.8622 1.2512 1.0831 9.8109 1.9081 7.6879

TCGA-2L-AAQA 0.391781 1 21.4017 7.2762 10.431 24.2776 222.3518 35.2158 20.7029

TCGA-2L-AAQE 1.873973 1 14.3402 2.3209 14.5102 16.2363 155.2664 18.2227 29.6567

TCGA-2L-AAQI 0.282192 1 9.6469 4.4706 11.8486 6.0062 65.3503 2.713 19.8169

TCGA-2L-AAQJ 1.079452 1 11.8789 13.4556 9.3206 14.4751 135.2028 23.3718 18.7169

TCGA-2L-AAQL 0.8 1 9.5673 11.7594 7.8955 12.4335 217.6106 13.9749 42.1188

TCGA-2L-AAQM 3.789041 0 1.4751 0.5735 18.0476 4.2559 8.411 0.0197 130.2967

TCGA-3A-A9I5 4.915068 0 7.6166 27.3215 13.9704 23.5913 165.6522 13.1269 39.4826

TCGA-3A-A9I7 3.624658 0 33.2403 3.9609 22.7439 24.235 337.6093 178.5606 53.1392

TCGA-3A-A9I9 1.736986 1 7.4349 5.2364 9.4845 9.283 116.6047 8.5128 23.077

TCGA-3A-A9IB 0.613699 1 24.6137 4.8461 24.3424 28.1571 354.948 46.1839 51.3034
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TABLE 2 Continued

PPA POSTN TAFA2 Riskscore Risk

3.048 823.683 0.258 -9.69435 low

1.0466 220.6734 0.4166 -3.00924 high

0.6893 8.9549 0.5212 -3.13239 high

3.0835 15.3929 1.577 -7.51035 low

1.2672 86.2278 0.9531 -6.12899 low

0.275 306.4355 0.6956 -5.6859 low

1.5142 1.1717 44.4741 -82.1767 low

0.1959 75.591 0.7118 -6.31773 low

1.8802 415.049 0.3412 -3.6431 high

0.7112 94.844 0.8408 -6.64275 low

3.8615 316.7367 0.6507 -4.00388 high

8.182 604.8928 0.1295 -3.03156 high

1.6721 481.8008 0.4721 -4.93027 low

0.7329 215.6603 0.3431 -3.53186 high

2.7309 287.6524 1.248 -5.05885 low

13.6582 105.3756 0.2147 -3.0308 high

0.1452 1.2883 0.1005 -0.4393 high

2.9316 286.4209 0.8773 -5.26041 low

6.2466 432.7714 0.7198 -3.48896 high

3.0236 592.1273 0.3161 -4.04144 high

2.4143 429.8214 0.2108 -4.15199 low

4.965 200.3504 0.3752 -2.10584 high

4.3855 311.6534 0.1924 -3.28411 high

1.7313 107.378 0.9077 -3.50482 high

4.4075 128.939 1.1438 -4.42981 low

4.301 682.6535 0.3263 -5.10335 low

0.639 255.6439 0.2981 -3.86335 high

(Continued)
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ID Time State ADAMTS12 AKR1C2 ATP8B2 CCN4 CTHRC1 GREM1 P3H3 PA

TCGA-3A-A9IC 2.021918 1 62.2107 4.5805 25.1449 49.5772 606.8547 157.0598 106.1305

TCGA-3A-A9IH 2.79726 0 11.4773 9.9969 10.9512 13.5432 149.5948 17.54 26.3944

TCGA-3A-A9IJ 5.079452 0 0.0949 0.2571 16.0417 0.9397 2.8255 0.1015 42.4661

TCGA-3A-A9IL 7.509589 0 1.6445 1.7948 38.3715 4.3018 27.804 3.1105 89.9137

TCGA-3A-A9IN 5.709589 0 1.8175 3.4466 37.7076 2.7336 21.4218 19.8523 77.7631

TCGA-3A-A9IO 5.320548 0 0.5349 1.8721 31.346 1.1778 61.0787 0.2639 62.456

TCGA-3A-A9IR 4.224658 0 0.6866 0.109 30.1114 0.8018 3.2287 0.013 26.9177

TCGA-3A-A9IS 2.734247 0 0.4267 0.2379 37.5938 1.6923 3.4814 1.1634 88.9775

TCGA-3A-A9IU 1.254795 1 19.1015 2.5235 12.283 27.1929 256.8873 57.2467 32.4599

TCGA-3A-A9IV 3.021918 0 8.4827 0.8974 42.3166 15.1989 92.508 11.5124 79.141

TCGA-3A-A9IX 2.841096 0 18.6749 4.7269 30.5045 37.6484 190.917 29.3938 30.7065

TCGA-3A-A9IZ 0.843836 1 31.2778 10.5905 11.9092 27.661 191.1159 51.1466 32.9543

TCGA-3A-A9J0 2.035616 0 20.6604 6.6838 15.481 23.8394 301.4756 36.0914 39.657

TCGA-3E-AAAY 6.260274 0 9.106 8.1308 20.9175 19.7518 229.6831 29.627 32.5198

TCGA-3E-AAAZ 5.978082 1 24.829 3.4631 27.2713 15.3312 227.6388 236.5587 43.2802

TCGA-F2-6879 0.915068 1 47.2011 3.3169 19.3857 23.3572 335.1571 84.0165 23.4923

TCGA-F2-6880 0.808219 0 0.1844 0.7949 2.8846 0.2474 1.573 0.533 4.2636

TCGA-F2-7273 1.621918 1 29.1286 11.8308 45.5275 46.1608 249.1918 89.647 36.2994

TCGA-F2-7276 0.591781 1 28.3946 19.4579 44.6835 62.631 293.4637 156.2156 29.8797

TCGA-F2-A44G 0.638356 1 25.0011 1.1626 12.448 38.4685 399.4277 89.5259 30.27

TCGA-F2-A44H 1.605479 0 24.221 3.4732 14.598 25.9635 368.4619 65.621 31.2733

TCGA-F2-A7TX 0.260274 1 16.9084 8.0002 15.0135 20.2092 154.1891 32.1137 14.1849

TCGA-F2-A8YN 1.416438 0 25.4637 39.1263 12.3567 22.2432 362.1705 30.6647 27.7456

TCGA-FB-A4P5 0.490411 1 12.5405 7.8017 31.8069 68.3299 250.5291 41.3549 37.9648

TCGA-FB-A4P6 2.10137 0 18.762 37.9152 32.2948 24.812 165.2921 30.3179 33.707

TCGA-FB-A545 2.005479 1 32.8683 6.2514 13.8796 30.2082 292.6111 42.053 43.1095

TCGA-FB-A5VM 1.364384 1 12.5201 6.2181 8.9821 24.7526 252.8665 23.3875 49.1545
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TABLE 2 Continued

PPA POSTN TAFA2 Riskscore Risk

0.5481 88.8765 0.386 -1.73553 high

4.02 729.9682 1.6057 -4.27357 low

0.3755 5.3917 0.2884 -0.66851 high

1.3132 222.6537 0.2548 -1.91179 high

3.0216 1367.899 0.3069 -12.5392 low

0.322 22.0813 0.122 -1.05032 high

0.7991 75.3038 0.1914 -1.82977 high

1.8051 425.2593 0.3013 -2.83405 high

1.9679 45.2428 0.3004 -1.5977 high

0.2381 134.2333 0.4017 -2.19085 high

0.455 139.3491 0.2039 -1.76865 high

0.7657 201.8797 0.1932 -2.98412 high

0.7851 123.5482 0.1938 -1.86476 high

6.4665 667.9111 0.4336 -6.17509 low

1.1217 262.1196 0.9911 -5.63468 low

1.833 143.9373 1.9326 -6.05648 low

1.0159 208.8253 0.2422 -2.49144 high

1.7384 151.2125 0.3122 -4.03667 high

0.8629 256.0975 0.3654 -3.61517 high

5.5179 286.7868 0.4194 -4.90437 low

1.0983 125.8866 0.1784 -2.30173 high

0.0575 0.4203 0.1121 -0.69428 high

2.9489 673.0732 0.2016 -7.5107 low

0.8808 112.0269 0.4686 -2.59389 high

2.3827 67.8018 0.1784 -1.87714 high

1.2895 142.4029 2.1759 -6.69343 low

3.3733 419.2458 0.44 -4.30301 low

(Continued)
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ID Time State ADAMTS12 AKR1C2 ATP8B2 CCN4 CTHRC1 GREM1 P3H3 PA

TCGA-FB-A78T 1.027397 1 4.5984 4.4579 8.7693 12.1153 76.8433 7.1026 13.583

TCGA-FB-A7DR 0.967123 1 36.7244 4.8861 35.0036 29.1807 309.8342 627.5736 50.7762

TCGA-FB-AAPP 1.328767 1 0.6381 2.5859 1.8479 2.6667 10.0276 0.3477 4.2983

TCGA-FB-AAPQ 3.09589 1 9.7365 16.245 8.1653 13.7246 114.3495 29.7461 21.1764

TCGA-FB-AAPS 0.624658 0 43.0375 2.2551 37.8876 88.8121 1105.684 104.7963 127.2959

TCGA-FB-AAPU 1.043836 1 4.814 0.5546 5.7634 4.4924 36.7087 3.7452 9.3369

TCGA-FB-AAPY 2.90137 1 9.6267 39.8023 10.9375 15.8999 161.3878 13.4364 27.1201

TCGA-FB-AAPZ 1.961644 0 13.8672 21.7937 18.916 24.4653 176.1353 23.2271 20.4693

TCGA-FB-AAQ0 1.29589 1 8.8327 2.7049 7.1312 15.0608 124.8225 28.1822 17.407

TCGA-FB-AAQ1 0.336986 1 5.5119 13.1402 6.5031 6.7812 111.4955 4.8626 17.4787

TCGA-FB-AAQ2 0.419178 1 7.4793 7.2716 8.3856 9.0524 62.7969 16.2855 19.0971

TCGA-FB-AAQ3 0.084932 1 5.9849 5.6512 3.1769 18.2834 439.8759 15.0648 19.4475

TCGA-FB-AAQ6 0.668493 1 8.3486 5.4125 6.8457 10.5883 117.232 8.0753 16.7082

TCGA-H6-8124 1.073973 0 40.4416 22.8628 26.6452 39.0433 341.1871 47.3483 59.648

TCGA-H6-A45N 1.087671 1 12.9986 7.1577 28.4078 32.9421 271.2982 26.7225 47.8578

TCGA-H8-A6C1 1.838356 0 14.8314 7.1408 13.4688 19.2526 233.2824 13.8423 26.4208

TCGA-HV-A5A3 0.350685 1 10.1174 7.0432 15.403 13.9296 136.7497 22.1379 19.9559

TCGA-HV-A5A4 0.635616 0 19.4813 5.2346 18.5456 25.7713 244.1671 21.6005 42.4143

TCGA-HV-A5A5 0.791781 0 18.4592 29.3611 21.1914 24.778 234.0923 30.2081 31.91

TCGA-HV-A5A6 5.578082 1 16.9237 1.2485 9.7969 34.9568 615.9194 84.6205 55.3224

TCGA-HV-A7OL 0.690411 0 7.1964 1.8948 3.8838 8.0837 117.6904 22.6514 34.314

TCGA-HV-A7OP 2.679452 0 0.2159 3.2218 0.468 0.4567 8.83 0.6364 13.2375

TCGA-HV-AA8V 2.520548 0 36.78 6.6916 27.7773 46.4364 504.3325 84.0109 85.19

TCGA-HV-AA8X 1.457534 1 7.7818 21.696 13.8682 10.8258 133.4712 8.9943 22.1966

TCGA-HZ-7289 1.810959 1 2.8002 0.2739 16.3741 4.0231 43.8397 2.0786 22.6313

TCGA-HZ-7918 2.654795 0 22.4698 2.1343 24.9443 27.2871 222.3368 30.5849 16.0002

TCGA-HZ-7919 1.624658 1 32.3262 8.0942 18.3663 29.3757 266.3669 42.2455 24.7411
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TABLE 2 Continued

PPA POSTN TAFA2 Riskscore Risk

9.1679 124.6572 0.7478 -3.00437 high

6.0605 1198.95 0.8763 -9.98762 low

5.9376 146.7968 1.2781 -4.58856 low

5.6253 62.8967 1.7888 -2.45391 high

8.8121 1336.135 1.0669 -11.1049 low

3.3298 402.0882 0.6102 -2.95819 high

1.4778 305.1112 1.3627 -6.79299 low

6.1559 265.1803 1.0284 -5.88447 low

1.2244 81.1134 0.3004 -2.11547 high

9.531 900.0228 0.4123 -6.99037 low

4.2502 309.5412 0.5582 -4.56939 low

4.6935 166.9456 0.348 -1.85023 high

4.3062 235.3796 0.8177 -4.79628 low

5.8293 585.1021 0.4541 -5.55993 low

3.4129 414.2128 0.8019 -3.57743 high

2.0033 118.4319 0.6133 -0.8469 high

0.8927 211.6409 0.5545 -3.88606 high

3.0629 56.0704 0.5863 -2.62298 high

0.5796 178.1554 0.7067 -3.58545 high

3.0668 373.7977 0.6753 -5.45453 low

2.938 148.757 1.053 -4.28759 low

1.5869 213.3201 0.1122 -1.82947 high

3.8436 199.9313 1.5421 -3.92558 high

11.2772 822.3692 1.0055 -6.62938 low

1.7786 209.7163 0.115 -2.19336 high

0.5451 55.4274 0.7846 -2.60333 high

0.4685 87.5852 0.5026 -2.36062 high

(Continued)
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ID Time State ADAMTS12 AKR1C2 ATP8B2 CCN4 CTHRC1 GREM1 P3H3 PA

TCGA-HZ-7920 0.646575 1 13.4111 13.2684 48.7664 34.2506 114.694 107.403 40.5727

TCGA-HZ-7922 0.010959 0 96.7473 16.3525 39.5474 84.1633 647.939 152.7126 41.5942

TCGA-HZ-7923 0.860274 0 13.4723 12.8466 48.3133 49.2985 235.7622 67.5021 35.0725

TCGA-HZ-7924 2.30137 0 3.9912 8.6522 19.7241 5.2435 14.7744 187.4463 15.3212

TCGA-HZ-7925 1.682192 1 91.8433 0.3842 48.7587 159.0038 1013.261 156.4314 75.752

TCGA-HZ-7926 1.419178 1 17.4351 9.5743 17.1901 24.6696 150.5928 46.1852 15.2316

TCGA-HZ-8001 1.934247 0 13.3652 22.5934 26.6183 32.2109 295.8941 28.9864 65.0777

TCGA-HZ-8002 1.00274 1 29.1395 36.8501 52.2118 44.1202 359.9541 42.0246 35.6701

TCGA-HZ-8003 1.632877 1 13.7531 1.3036 17.9824 19.5126 103.8525 29.4089 13.8154

TCGA-HZ-8005 0.328767 1 75.9184 1.6856 26.4212 90.4299 669.3878 213.7471 63.837

TCGA-HZ-8315 0.819178 1 28.0794 14.85 21.9766 44.9571 462.7653 57.0178 32.0889

TCGA-HZ-8317 1.035616 1 11.8475 2.7531 17.6685 16.8775 99.5955 58.2314 20.5263

TCGA-HZ-8519 1.243836 0 11.275 4.1335 41.3584 24.8514 154.2475 41.1835 42.9727

TCGA-HZ-8636 1.493151 1 33.9841 4.3147 36.6327 59.0732 445.4136 49.1065 38.9478

TCGA-HZ-8637 1.416438 1 12.2635 0.8359 25.4797 42.913 241.561 23.3167 16.133

TCGA-HZ-8638 0.413699 1 4.8064 11.1343 16.8412 6.4809 38.1415 193.6723 16.4889

TCGA-HZ-A49G 1.808219 0 10.5865 2.0039 23.5374 17.4169 158.0284 27.1431 30.9779

TCGA-HZ-A49H 1.345205 0 4.2339 6.5583 18.4504 21.5682 99.6466 19.4322 36.2898

TCGA-HZ-A49I 0.843836 1 7.6905 19.4236 16.6224 17.4589 136.138 13.5145 35.3391

TCGA-HZ-A4BH 0.531507 0 25.9998 12.1507 34.4609 38.8633 327.3347 68.6559 44.1457

TCGA-HZ-A4BK 1.8 0 15.6738 16.2206 17.9594 9.7251 141.9134 7.5512 24.2532

TCGA-HZ-A77O 0.438356 1 11.4967 1.9379 7.9511 14.6983 98.8072 9.8489 17.1678

TCGA-HZ-A77P 0.90411 0 7.8811 12.4937 32.7556 18.7651 96.9014 203.3005 40.1846

TCGA-HZ-A77Q 0.090411 0 33.1942 3.6425 35.6663 90.432 635.3601 93.8356 64.1365

TCGA-HZ-A8P0 0 0 14.5997 11.1768 12.2755 21.07 154.3333 18.5045 22.9555

TCGA-HZ-A8P1 0.019178 0 4.7909 1.4293 5.9429 5.8703 91.5047 3.7372 12.8691

TCGA-HZ-A9TJ 1.652055 0 4.2046 2.3345 8.9435 5.7851 80.942 8.0759 18.0799
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PPA POSTN TAFA2 Riskscore Risk

2.7197 195.6459 0.4722 -4.87576 low

6.0917 696.4699 1.5647 -6.43082 low

6.4842 1444.005 0.5305 -8.14608 low

2.4947 523.0479 0.5843 -6.49807 low

1.8214 112.5899 0.3785 -3.3859 high

4.921 117.8024 0.3219 -3.5101 high

1.4795 332.0199 0.3781 -3.6257 high

3.3243 320.642 0.5819 -6.13165 low

4.9276 861.5765 0.2799 -6.39146 low

8.4053 929.0218 0.3894 -4.97574 low

6.3855 189.7601 0.2931 -2.67044 high

5.6778 105.154 1.0976 -4.54333 low

0.7134 135.6862 0.2899 -2.57902 high

6.6537 1502.137 0.2967 -10.5704 low

2.1449 345.7105 0.3273 -4.14436 low

5.6852 2686.869 0.3106 -12.9505 low

9.5212 212.4967 1.6388 -5.90685 low

1.2308 68.5594 0.5904 -1.72957 high

4.474 445.5046 0.4486 -5.2932 low

1.997 191.1492 0.6823 -5.15222 low

0.2593 27.6288 0.1657 -1.38868 high

3.4312 819.7536 0.5553 -8.04646 low

5.9846 1271.82 0.1851 -8.12527 low

1.9948 528.5901 0.8412 -6.26278 low

0.7177 148.2833 0.3787 -2.2593 high

0.8852 94.8983 0.1448 -1.45322 high

2.0161 80.3198 0.357 -1.49587 high

(Continued)
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ID Time State ADAMTS12 AKR1C2 ATP8B2 CCN4 CTHRC1 GREM1 P3H3 PA

TCGA-IB-7644 1.079452 1 39.3141 2.3882 19.0044 17.1005 288.1264 66.7542 25.8267

TCGA-IB-7645 4.115068 1 29.9633 7.1397 42.0396 71.5272 397.7436 84.7767 29.6545

TCGA-IB-7646 0.39726 1 69.6896 4.2302 22.0489 58.1324 655.5303 152.3739 28.178

TCGA-IB-7647 1.824658 1 50.696 1.5945 32.6614 45.2403 234.3012 31.1394 38.5684

TCGA-IB-7649 1.279452 1 23.7405 17.285 18.1476 14.0775 166.3787 8.6372 20.3797

TCGA-IB-7651 1.652055 1 39.3937 2.7033 22.7651 45.5891 316.2014 61.635 23.8375

TCGA-IB-7652 3.057534 0 18.8641 5.6279 21.4016 23.8687 166.1441 6.1054 21.2495

TCGA-IB-7654 1.30411 1 54.6684 1.4219 26.6631 33.9977 326.3521 56.0969 27.1429

TCGA-IB-7885 3.443836 0 42.0599 7.8717 21.4937 49.2182 544.8345 82.3146 47.1169

TCGA-IB-7886 0.336986 1 45.9995 1.4159 28.4996 47.8598 463.2576 160.9685 22.6902

TCGA-IB-7887 0.30137 1 44.3987 130.5727 15.1158 53.1813 560.3072 56.303 37.5568

TCGA-IB-7888 3.649315 1 16.9224 8.7919 55.2823 68.6547 215.0607 16.0162 37.1199

TCGA-IB-7889 1.317808 1 8.867 2.143 14.5237 13.7111 174.4669 15.8448 16.9396

TCGA-IB-7890 1.638356 1 79.9872 4.1478 35.6251 54.9389 626.5741 123.8991 66.2262

TCGA-IB-7891 2.50137 1 30.204 3.6029 26.263 36.8652 259.6315 46.4514 25.461

TCGA-IB-7893 0.320548 1 128.3399 14.8155 42.0405 106.1429 1117.708 535.7758 73.0246

TCGA-IB-7897 1.331507 1 18.9629 21.6283 71.6983 50.144 155.697 37.2164 35.7137

TCGA-IB-8126 1.265753 0 3.7512 3.1716 12.8515 13.3582 67.9622 28.9425 9.893

TCGA-IB-8127 1.430137 0 40.0627 8.286 21.86 39.9471 467.0047 68.8855 29.1193

TCGA-IB-A5SO 1 1 20.507 2.5952 28.3161 43.1559 329.1426 53.1743 51.2865

TCGA-IB-A5SP 1.320548 0 2.6816 4.7878 5.418 2.9802 43.2195 2.4815 18.5766

TCGA-IB-A5SQ 0.6 1 46.7278 1.5673 32.0113 76.1978 650.0031 73.7161 62.1988

TCGA-IB-A5SS 1.260274 1 69.7132 7.8747 25.5743 77.3972 582.6837 125.5602 67.524

TCGA-IB-A5ST 1.739726 0 18.4889 4.8009 36.0072 40.8723 358.7042 11.5314 37.8803

TCGA-IB-A6UF 1.824658 0 6.6175 6.8173 8.8551 7.5997 112.2675 16.1237 17.4925

TCGA-IB-A6UG 0.112329 1 6.6366 6.6646 9.8941 6.8933 89.5887 13.8496 10.7669

TCGA-IB-A7LX 0.684932 1 12.9427 63.2522 8.6976 12.4945 166.9181 18.2675 19.8261
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TABLE 2 Continued

PPA POSTN TAFA2 Riskscore Risk

0.897 168.1421 0.2091 -1.84831 high

1.5618 75.9446 0.4775 -1.87677 high

4.2012 174.436 0.3266 -2.78466 high

1.5647 134.224 0.3299 -1.73695 high

2.6896 377.1014 1.3695 -6.64786 low

1.118 138.2383 0.2688 -3.72128 high

5.1608 213.9105 0.8407 -5.25245 low

5.7987 623.3245 0.7061 -6.14946 low

1.1417 107.1861 0.4438 -3.76104 high

1.0014 164.4403 2.1844 -5.83416 low

3.1397 767.7111 3.1641 -12.1731 low

3.0837 57.5629 0.6422 -2.4603 high

3.6174 435.9294 0.3299 -1.85466 high

1.515 28.2326 0.2552 -0.53801 high

0.3386 111.8639 0.2641 -2.91927 high

0.4926 175.3017 0.2979 -1.9506 high

3.3447 789.3646 0.4691 -4.4686 low

1.8494 121.7226 0.2062 -3.65336 high

2.5306 106.4778 0.1699 -3.14284 high

1.4466 189.7652 0.7769 -3.85366 high

0.7872 134.6995 0.2138 -2.11293 high

5.4679 267.9989 0.2242 -4.10975 high

2.0677 181.912 0.5511 -4.26135 low

0.9161 204.8091 0.4197 -4.22397 low

1.0874 58.6572 0.3548 -1.74072 high

0.7643 186.0594 0.1479 -4.13565 low

3.112 294.5077 0.4265 -4.33499 low

(Continued)
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ID Time State ADAMTS12 AKR1C2 ATP8B2 CCN4 CTHRC1 GREM1 P3H3 PA

TCGA-IB-A7M4 1.323288 0 7.1707 39.7781 9.8773 13.6296 190.2009 29.0187 25.3024

TCGA-IB-AAUM 0.021918 0 4.3035 2.3579 10.0127 8.6756 70.765 5.5145 12.6028

TCGA-IB-AAUN 0.394521 1 24.3762 2.8189 11.0892 25.5204 198.929 28.214 23.0989

TCGA-IB-AAUO 0.654795 1 7.7276 12.6988 6.2623 15.5268 109.9648 23.0765 22.0396

TCGA-IB-AAUP 1.180822 0 23.2653 31.3986 43.6136 37.9431 347.6323 51.2086 36.1077

TCGA-IB-AAUQ 0.50137 1 17.7355 60.8696 18.607 24.493 218.5418 34.5212 65.823

TCGA-IB-AAUR 0.926027 0 16.4571 5.4403 53.7154 37.1109 217.5444 35.2199 38.9775

TCGA-IB-AAUS 0.616438 0 32.8268 4.6006 29.377 102.6023 681.3167 94.3207 69.2312

TCGA-IB-AAUT 0.786301 0 15.3271 24.3241 24.4176 16.2564 230.7331 51.6565 36.3078

TCGA-IB-AAUU 0.671233 0 10.7432 17.9239 12.9665 14.3005 179.3833 21.0768 19.4678

TCGA-IB-AAUV 1.106849 0 26.2004 6.2881 62.0636 107.6792 609.8911 160.1793 96.1066

TCGA-IB-AAUW 0.630137 1 2.9007 19.1176 28.1984 12.0011 38.3903 11.1943 23.0832

TCGA-L1-A7W4 0.761644 1 16.6721 0.9772 9.5713 44.4105 185.6045 63.5494 21.1316

TCGA-LB-A7SX 1.076712 1 2.9115 24.9726 5.7865 6.6086 49.6459 13.4806 8.8098

TCGA-LB-A8F3 1.038356 0 6.0186 1.7771 7.7964 7.3818 172.3833 13.803 32.746

TCGA-LB-A9Q5 0.857534 1 6.8361 2.3322 8.1619 7.7835 79.7018 7.2605 11.8207

TCGA-M8-A5N4 1.6 0 23.8785 0.7714 16.7828 46.0965 375.8754 80.9991 30.1812

TCGA-OE-A75W 0.731507 1 13.2425 8.7665 6.7587 21.3996 272.7934 27.7136 56.6804

TCGA-PZ-A5RE 1.287671 1 16.8636 3.4684 10.6457 29.7048 347.4718 113.3712 52.8789

TCGA-Q3-A5QY 1.139726 0 8.9032 13.8426 31.9545 26.7706 151.7169 16.0264 26.8841

TCGA-Q3-AA2A 0.260274 0 6.5386 2.5832 7.2023 10.41 125.0782 6.372 21.246

TCGA-RB-A7B8 1.276712 1 34.7373 18.4647 18.2725 36.3413 347.8167 33.9842 39.8325

TCGA-RB-AA9M 0.783562 0 18.182 13.0244 23.9235 16.0949 170.7542 15.8164 35.109

TCGA-RL-AAAS 0.024658 0 10.3344 26.2175 22.4158 19.7806 205.7121 37.5074 57.3474

TCGA-S4-A8RM 2.019178 0 4.9254 6.3576 10.7697 13.944 133.1727 5.9059 11.1438

TCGA-S4-A8RO 1.438356 0 10.8106 5.8928 52.6167 14.0359 133.0328 12.1905 23.3605

TCGA-S4-A8RP 1.923288 1 20.2103 1.6156 20.6681 29.3239 267.7289 23.668 38.5388
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TABLE 2 Continued

2 CCN4 CTHRC1 GREM1 P3H3 PAPPA POSTN TAFA2 Riskscore Risk

6 47.8875 382.1325 52.9042 38.1996 5.8888 450.109 0.574 -5.11033 low

8 2.1456 15.561 4.8979 72.3381 0.1902 7.607 0.2316 -3.29956 high

4 1.6164 29.6404 1.7068 13.6565 0.1939 19.9476 0.314 -1.40544 high

2 43.3647 494.994 93.397 55.0583 2.5352 438.1139 0.1957 -4.97425 low

7 3.312 23.1204 1.8594 6.8251 0.2146 19.0575 0.2609 -0.9109 high

9 32.4058 169.4924 28.2459 47.006 1.932 88.7726 0.7082 -3.87023 high

5 92.4952 604.0959 125.7172 89.8697 2.2895 251.5683 2.5195 -10.8486 low

6 23.7009 119.0274 27.8667 43.5933 3.103 128.9576 0.9865 -5.09816 low

6 24.4304 181.8525 22.8924 31.4864 1.4673 246.8304 0.3387 -3.24906 high

1 48.2837 496.3852 73.4731 48.7542 2.7784 596.9153 0.4717 -5.77748 low

9 27.2931 320.056 13.9124 37.5754 2.0779 609.6431 0.4512 -5.74629 low

7 29.4411 191.2754 75.4539 47.0946 6.3156 101.7147 0.9982 -4.81173 low

1 51.1657 486.856 68.4849 69.4271 2.913 467.9056 0.2213 -6.48324 low

4 84.7246 788.753 182.5825 96.9103 4.3286 784.5356 0.0498 -7.47708 low

5 2.8325 40.9966 2.117 13.5343 0.4854 31.641 0.9003 -2.2607 high

1 23.1342 58.8741 33.555 13.2255 4.1332 114.6118 1.0135 -3.19431 high
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ID Time State ADAMTS12 AKR1C2 ATP8B

TCGA-US-A774 1.90411 1 37.3532 9.7553 24.300

TCGA-US-A776 3.331507 0 0.6262 3.2995 5.149

TCGA-US-A779 1.4 1 2.6203 4.8973 4.408

TCGA-US-A77E 1.178082 1 26.9139 9.4119 17.465

TCGA-US-A77G 0.032877 1 1.3829 5.9146 5.151

TCGA-US-A77J 1.556164 1 11.3683 10.739 23.516

TCGA-XD-AAUG 1.150685 0 43.2121 9.8194 45.323

TCGA-XD-AAUH 1.082192 0 10.9565 7.2167 43.456

TCGA-XD-AAUI 1.00274 1 12.9832 9.1868 19.27

TCGA-XD-AAUL 1.364384 0 32.0187 23.4568 23.234

TCGA-XN-A8T3 2.605479 0 28.1143 8.5288 21.156

TCGA-XN-A8T5 1.972603 0 12.3593 4.5326 47.084

TCGA-YB-A89D 0.958904 0 37.0532 7.3276 27.666

TCGA-YH-A8SY 1.063014 0 50.1298 12.4444 25.857

TCGA-YY-A8LH 5.523288 0 1.5164 10.8523 3.66

TCGA-Z5-AAPL 1.279452 0 5.8782 4.7564 40.734
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Enrichment analysis of DEGs in high and
low-risk group

Based on the matched tumor RNA-seq data from PAAD

patients, we identified 933 DEGs (p.adj < 0.05 and |log2FC| ≥ 1)

between the high-risk and low-risk groups, including 348 up-

regulated genes and 585 down-regulated genes (Figure 4A). Next,

we performed GO and KEGG enrichment analysis for these

differential genes.

The results of GO enrichment analysis showed that the up-

regulated genes were mainly enriched in GO terms associated with

immune response, cell differentiation, and digestion, processes that

may be involved in tumor development and changes in the immune

microenvironment of PAAD (Figure 4B). GO enrichment results of

down-regulated genes showed that these genes were mainly related

to the tissue and structural components of the extracellular matrix,

basic enzyme activity, and molecular binding activity, suggesting

that tumor progression may be slower in low-risk patients, and

tissue remodeling and signaling activities may be less

active (Figure 4D).

The results of KEGG enrichment analysis showed that up-

regulated genes were mainly enriched in pancreatic secretion,

neuroactive ligand-receptor interactions, and protein digestion

and absorption pathways (Figure 4C). The enrichment of these

pathways suggests that patients at high risk of PAAD exhibit active

biological characteristics in digestion, metabolism and nerve

signaling, providing support for the growth, metabolic needs and

microenvironment regulation of PAAD cells, thereby promoting

the invasion and metastasis of cancer cells.
Frontiers in Immunology 16
In contrast, KEGG enrichment of down-regulated genes

showed that these genes were mainly concentrated in pathways

such as neuroactive ligand-receptor interactions, cytoskeleton of

muscle cells, protein digestion and absorption, and insulin secretion

(Figure 4E). These pathways show lower activity in low-risk PAAD

patients, particularly in pathways related to nerve signaling,

cy toske le ton , metabo l i sm, and extrace l lu lar matr ix .

Downregulation of these pathways may limit tumor cell

proliferation, migration, and nutrient acquisition, thereby slowing

tumor aggressiveness and progression.
Immune and tumor microenvironment
differences in high- and low-risk
PAAD patients

After enrichment analysis of differentially expressed genes in high

and low risk groups of PAAD, we found that up-regulated genes were

significantly enriched in immune response, cell differentiation and

digestion. Among them, GO terms related to immune response stand

out, suggesting that there may be important molecular and cellular

changes in the immune microenvironment in high-risk PAAD

patients. Given that the immune system plays a key role in the

occurrence, development and prognosis of tumors, it is necessary to

further explore the clinical significance and biological characteristics of

these immune-related genes. Therefore, our next step is to focus on

screening for immune-related genes in these differential genes and

performing survival analyses on them to assess their impact on the

prognosis of patients with PAAD.
FIGURE 3

Validation of the scoring model’s predictive performance and clinical relevance. (A) ROC curves for three GEO datasets. (B) Risk scores compared by
survival status and age group. (C) Sankey diagram depicting relationships among gender, risk group, and cancer stage. *p < 0.05; **p < 0.01.
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Based on the ImmPort database, we identified 113 immune-

related DEGs among the differentially expressed genes in the high-

low risk group. Through univariate Cox regression analysis and

Kaplan-Meier survival analysis, we further screened 11 immune-

associated DEGs that were significantly associated with OS in

PAAD patients. Among them, CST4, GREM1 and SLURP1 were

favorable factors, while PENK, INSL5, KL, PRLR, SCG2, SLC22A17,

TAFA2 and VGF were risk factors (Figure 5A).

In addition, to fully understand the role of immunity in PAAD

progression, we also analyzed differences in immune function and

immune infiltration between high and low risk groups. Immune

function analysis showed that in the low-risk group, APC co-
Frontiers in Immunology 17
inhibition, APC co-stimulation, immune checkpoint, and T cell

co-inhibition were highly active (Figure 5B). The high activity of

these immune functions may indicate that the immune system of

patients in the low-risk group achieves a balance between anti-

tumor response and autoimmune protection. Enhanced APC and T

cell inhibitory signaling, as well as regulation of immune

checkpoints, help maintain the homeostasis of the immune

microenvironment, thereby inhibiting tumor progression.

Immune infiltration analysis revealed a significant increase in

CD56 dim natural killer cells and type 17 T helper cells in the high-

risk group, potentially leading to a stronger pro-inflammatory response

and an immune escape environment that accelerates malignant
FIGURE 4

DEGs and functional enrichment analysis in high- and low-risk groups. (A) Volcano plot of 933 DEGs with 348 upregulated (red) and 585
downregulated (blue) genes. (B) GO enrichment of upregulated genes. (C) KEGG enrichment of upregulated genes in pathways such as pancreatic
secretion, neuroactive ligand-receptor interaction, and protein digestion, supporting tumor growth and metabolic demands in high-risk patients.
(D) GO enrichment of downregulated genes. (E) KEGG enrichment of downregulated genes in pathways like neuroactive signaling, cytoskeletal
organization, and metabolism, indicating reduced proliferation and migration potential in low-risk patients.
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progression of tumors. In contrast, in the low-risk group, central

memory CD4/CD8 T cells, effector memory CD4/CD8 T cells,

eosinophils, gamma delta T cells, immature B cells, macrophages,

mast cells, myeloid suppressor cells (MDSC), memory B cells, natural

killer cells, natural killer T cells, plasmacytoid dendritic cells, regulatory

T cells, and T follicular helpers) cell and type 1 T helper cells were more
Frontiers in Immunology 18
infiltrated (Figure 5C). These enhanced infiltrations of memory and

effector immune cells, along with moderate immunomodulatory

mechanisms, help suppress tumor progression and maintain anti-

tumor immune surveillance.

Overall, the high and low risk groups showed significant

differences in immune function and immune cell infiltration. In
FIGURE 5

Survival analysis of immune-related DEGs, immune function, and immune infiltration differences between high-risk and low-risk PAAD patients.
(A) Kaplan-Meier survival curves for 11 immune-related DEGs significantly associated with OS in PAAD patients. (B) Comparison of immune function
scores between high-risk (purple) and low-risk (orange) groups. (C) Immune cell infiltration scores comparing high-risk and low-risk groups.
*p < 0.05; **p < 0.01; ***p < 0.001.
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the high-risk group, an increase in pro-inflammatory immune cells

may lead to a more aggressive tumor microenvironment; In the

low-risk group, moderate immune balance and diversified immune

cell infiltration may contribute to tumor suppression. These results

provide important clues for understanding the immune

microenvironment of PAAD and its impact on patient prognosis,

and may provide a basis for personalized immunotherapy for

PAAD patients.
Analysis of individualized treatment
for PAAD

Many studies have shown that patients with high expression

levels of CD274 or CTLA4 may benefit more from immunotherapy

(12, 13). Based on the above analysis of immune characteristics and

tumor microenvironment in the high and low risk group of PAAD

patients, we further investigated the differences of CD274 and

CTLA4, two important immune checkpoint molecules, between the

high and low risk groups. We observed significant differences in the

expression of CD274 and CTLA4 in the high-low risk group, and the

expression of CD274 and CTLA4 in the low-risk group was higher

than that in the high-risk group (Figures 6A, B). This suggests that the
Frontiers in Immunology 19
low-r isk group may have a re lat ive ly mild immune

microenvironment compared to the high-risk group, rather than an

overactivated pro-inflammatory environment. The high expression of

CD274 and CTLA4 can reduce the overreaction of the immune

system, thereby inhibiting the release of pro-inflammatory cytokines,

andmay help delay the malignant progression of tumors. At the same

time, we also made TIDE predictions. The results showed that TIDE

scores were higher in the low-risk group than in the high-risk group,

with higher TIDE scores generally indicating a stronger immune

escape capacity and a poorer response to immunotherapy

(Figure 6C). However, the high TIDE score in patients in the low-

risk group may be mainly caused by high expression of CD274 and

CTLA4, and the expression of this immune checkpoint is targetable.

Therefore, a high TIDE score in the low-risk group is not necessarily a

marker of a malignant prognosis, but may instead mean that these

patients are more sensitive to CD274 or CTLA4 inhibitors.

In addition, we assessed differences in sensitivity to multiple

antineoplastic drugs in high-low risk groups (Figure 6D). The

results showed that patients in the high-risk group had a high

sensitivity to Trametinib, Dabrafenib, SCH772984, ML323,

indicating that patients in the high-risk group were more

sensitive to these chemotherapy agents, suggesting that PAAD

patients in the high-risk group may benefit more from these
FIGURE 6

Immune checkpoint and drug sensitivity analysis. (A) Comparison of CD274 expression between high-risk (red) and low-risk (blue) groups.
(B) Comparison of CTLA4 expression between high-risk (red) and low-risk (blue) groups. (C) TIDE scores between low-risk (blue) and high-risk (red)
groups. (D) Drug sensitivity analysis between high-risk (red) and low-risk (blue) groups across multiple anti-cancer drugs. ***p < 0.001.
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drugs. In contrast, high-risk patients were insensitive to drugs such

as Staurosporine, NU7441, O-3306, Rapamycin, BI-2536,

GSK269962A, Fuverastine, AZ960, AZD2014, AZD1332,

Rusolitinib, Uprosertib, Alpelisib, Taselisib, WA4003, I-BET-762,

RVX-208, OTX015, Entospletinib, AZD5153, CDK9-5576, CDK9-

5038, IGF1R-3801, JAK-8517, Carmustine, AZD5363, AZD8186,

Cediranib, I-BRD9, telomerase Inhibitor IX, Uni-77, Foretinib,

Pyridostatin, AMG-319, BMS-754807, and JQ1. The difference in

sensitivity between different drugs further highlights the significant

differences in tumor microenvironment and biology between the

high and low risk groups, and also suggests potential directions in

individualized treatment options.

Overall, there were significant differences in immune

checkpoint gene expression, immune escape ability, drug

sensitivity, and immune function and infiltrating cells in the high

and low risk groups for PAAD. These differences not only deepen

our understanding of the immune microenvironment of PAAD, but

also provide a valuable basis for personalized immunotherapy.

Future studies should further explore the practical application

value of these immune features in patients with PAAD, with a

view to optimizing the treatment of patients and improving the

treatment effect and survival rate of PAAD.
Discussion

This study offers valuable insights into the mechanisms

underlying RT resistance and the immune microenvironment of

PAAD, as well as the implications of these factors for personalized

treatment strategies. By constructing a robust prognostic scoring

model, validated across multiple GEO datasets, we identified a clear

distinction in survival outcomes between high-risk and low-risk

PAAD patients. The risk model, developed based on differential

gene expression profiles in response to RT, effectively stratifies

patients and demonstrates strong predictive performance, with

higher risk scores correlating with poorer survival outcomes.

Pancreatic cancer is not the most common type of cancer, but it is

of great concern because of its high fatality rate (14, 15). To improve

prognostic survival for pancreatic cancer, there is an urgent need to

find strong biomarkers for patients. In this study, we constructed a

reliable RT prognosis scoring model based on a publicly available GEO

dataset. In the TCGA training session, we confirmed the clinical value

of this model. In addition, our RT prognosis scoring model was

demonstrated to have reliable predictive power in three separate

datasets (GEO28735, GEO62452, and GEO57495). To confirm the

association between RT and genes associated with RT prognosis, we are

conducting further functional studies. PAAD patients were grouped by

a scoring model, and this combination of genes helps predict patients’

RT outcomes and may serve as an indicator for assessing RT response.

In clinical applications, RT is the primary treatment for PAAD,

but its efficacy is limited by the heterogeneity of patient response. By

dividing patients into those who respond well to RT and those who

do not, side effects can be reduced and the recurrence of surviving

cancer cells can be inhibited, a promising treatment strategy.

However, RT showed a heterogeneous response in different PAAD

patients, suggesting that patients’ immune microenvironment may
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influence their sensitivity to RT. Our findings highlight the significant

heterogeneity in tumor biology and immune response between high-

and low-risk PAAD groups. In high-risk patients, the up-regulation

of genes associated with immune response and cell differentiation

suggests an immune microenvironment that may facilitate tumor

progression and immune escape. This pro-inflammatory

environment, indicated by increased infiltration of CD56 dim

natural killer cells and type 17 T helper cells. The increase of NK

cells and Th17 cells in tumor tissue tends to release more pro-

inflammatory factors, further promoting the inflammatory response

(16, 17). This inflammatory state may make tumors more aggressive,

as inflammation plays an important role in cancer progression, often

associated with cancer cell proliferation, invasion, angiogenesis, and

so on (18, 19). This pro-inflammatory environment is consistent with

the aggressive nature of pancreatic cancer, which is often resistant to

conventional treatments, including radiation (20, 21). Conversely,

low-risk patients showed enriched immune functions such as APC

co-stimulation, immune checkpoint, and T-cell co-inhibition. High

score of co-stimulation and co-inhibitory in APC indicates increased

activity in antigen presentation and immune response regulation

(22). This means that the immune system of these patients is more

inclined to engage in anti-tumor activity and may be more likely to

recognize and respond to tumor antigens. High immune checkpoint

score is often part of immune escape, but in the low-risk group of

patients, this may be because the immune system is still effectively

trying to regulate and attack tumor cells, and this regulation can be

maintained with a low disease burden (23). The high score of T cell

co-inhibition may indicate that although T cells are activated, their

activity is suppressed to a certain extent due to the existence of

regulatory mechanisms (22, 24). This may be the case in the low-risk

group to balance the anti-tumor immune response and prevent an

excessive immune response that leads to tissue damage. This

suggesting a more balanced immune microenvironment capable of

anti-tumor response without excessive inflammation (21, 25).

The differences in immune cell infiltration and immune

checkpoint gene expression between high- and low-risk groups

underscore the need for tailored immunotherapy strategies. CD274,

also known as PD-L1 (Programmed Death-Ligand 1), is an important

immune checkpoint molecule in immune system regulation (26). It

plays a key role in the immune escape mechanism of tumors. CD274/

PD-L1 is expressed in many types of tumors and inhibits T cell activity

through interaction with its receptor, PD-1, thereby helping tumor

cells evade host immune surveillance (27, 28). Tumor cells often

overexpress PD-L1 to evade attack by the immune system (29). This

immune escape mechanism helps tumor cells survive and spread in

the body, making PD-L1 expression levels associated with poorer

prognosis in many tumor types (30). PD-L1 expression is generally

not limited to tumor cells, but can also be expressed in some immune

cells in the tumor microenvironment, such as macrophages and

dendritic cells (31–33). This expression plays an auxiliary role in

regulating the immunosuppressive state of the tumor

microenvironment, thereby reducing the immune attack of the

entire microenvironment on tumor cells (34). CTLA4 is another key

immune checkpointmolecule. CTLA4 is mainly expressed in activated

T cells and regulatory T cells (35–38). When T cells are activated by

antigen stimulation, CTLA4 binds to its ligands B7-1 (CD80) and B7-2
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(CD86) to transmit inhibitory signals, thereby reducing T cell

activation and proliferation (39). This process helps prevent the

immune system from overreacting and protects the body’s tissues

from excessive inflammation and autoimmune damage (40).

The higher expression of CD274 and CTLA4 in low-risk

patients suggests that they may benefit more from immune

checkpoint inhibitors, as these molecules help regulate immune

response and prevent the release of excessive pro-inflammatory

cytokines, thereby potentially limiting tumor progression.

Interestingly, the TIDE score analysis further supports this

possibility, indicating that while low-risk patients show a higher

immune escape potential, their immune profile could still be

targeted with CD274 or CTLA4 inhibitors.

Additionally, our analysis of drug sensitivity differences across

risk groups provides practical implications for chemotherapy

choices. High-risk PAAD patients demonstrated higher sensitivity

to drugs like Trametinib, Dabrafenib, SCH772984, and ML323,

suggesting that these agents could be prioritized in treatment plans

for these patients. On the other hand, the insensitivity of high-risk

patients to a range of other drugs further underscores the need for

more effective, targeted therapies that consider the unique tumor

microenvironmental features of each risk group.

This study presents a framework for personalized treatment in

PAAD, with specific emphasis on understanding immune and

biological characteristics to guide therapy. By integrating gene

expression data, immune characteristics, and drug response

profiles, this study not only provides a basis for tailored therapy

but also contributes to the broader goal of improving outcomes for

PAAD patients. Future research should aim to validate these

findings in larger, prospective cohorts and further investigate the

potential of using immune-related biomarkers to predict responses

to immunotherapy, with the ultimate objective of optimizing

treatment and improving survival rates in PAAD.
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SUPPLEMENTARY FIGURE 1

Kaplan-Meier survival curves for PAAD patients based on the expression of
key genes. (A) Survival probability for patients stratified by ATP8B2 expression.

Patients in the high-risk group (red line) showed significantly lower survival
probability compared to those in the low-risk group (green line), with a p-

value of 0.0069. (B) Survival probability for patients stratified by GREM1
expression. High-risk patients (red line) exhibited lower survival probability

than low-risk patients (green line), with a p-value of 0.0450. (C) Survival

probability for patients stratified by TAFA2 expression. The high-risk group
(red line) demonstrated a significantly reduced survival probability relative to

the low-risk group (green line), with a p-value of 0.0009.

SUPPLEMENTARY FIGURE 2

Comparison of risk scores in PAAD patients based on gender and tumor

stage. (A) Distribution of risk scores between male and female patients. There

was no significant difference in risk scores between genders (ns indicates
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non-significant). (B) Distribution of risk scores between patients with early-
stage (T1 & T2) and advanced-stage (T3 & T4) tumors. No significant

difference in risk scores was observed between these stages (ns indicates

non-significant).

SUPPLEMENTARY FIGURE 3

Expression of 10 risk genes in radiation-resistant pancreatic cancer cells.

(A) The relative expression of POSTN. (B) The relative expression of TAFA2.
(C) The relative expression of ADAMTS12. (D) The relative expression of

AKR1C2. (E) The relative expression of ATP8B2. (F) The relative expression

of CCN4. (G) The relative expression of CTHRC1. (H) The relative expression
of GREM1. (I) The relative expression of P3H3. (J) The relative expression of

PAPPA. IR: Ionizing radiation. *p < 0.05; **p < 0.01.
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SUPPLEMENTARY FIGURE 4

Comparison of risk scores in PAAD patients based on gender and tumor stage.
(A) Distribution of risk scores between male and female patients. There was no

significant difference in risk scores between genders (ns indicates non-

significant). (B) Distribution of risk scores between patients with early-stage
(T1 & T2) and advanced-stage (T3 & T4) tumors. No significant difference in risk

scores was observed between these stages (ns indicates non-significant).

SUPPLEMENTARY TABLE 1

Differential expression of GSE179351 gene before and after radiotherapy.

SUPPLEMENTARY TABLE 2

Differential expression of GSE179351 gene before and after radiotherapy.
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2. Partyka O, Pajewska M, Kwaśniewska D, Czerw A, Deptała A, Budzik M, et al.
Overview of pancreatic cancer epidemiology in europe and recommendations for
screening in high-risk populations. Cancers. (2023) 15(14):3634. doi: 10.3390/
cancers15143634

3. Health Commission Of The People’s Republic Of China N. National guidelines
for diagnosis and treatment of pancreatic cancer 2022 in China (English version). Chin
J Cancer Res = Chung-kuo yen cheng yen chiu. (2022) 34:238–55. doi: 10.21147/
j.issn.1000-9604.2022.03.05

4. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA: Cancer J
Clin. (2023) 73:17–48. doi: 10.3322/caac.21763

5. Schepis T, De Lucia SS, Pellegrino A, Del Gaudio A, Maresca R, Coppola G, et al.
State-of-the-art and upcoming innovations in pancreatic cancer care: A step forward to
precision medicine. Cancers. (2023) 15(13):3423. doi: 10.3390/cancers15133423
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