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Background: Esophageal cancer (EC) is the seventh-most prevalent cancer

worldwide and is a significant contributor to cancer-related mortality.

Metabolic reprogramming in tumors frequently coincides with aberrant

immune function alterations, and extensive research has demonstrated that

perturbations in energy metabolism within the tumor microenvironment

influence the occurrence and progression of esophageal cancer. Current

treatment modalities for esophageal cancer primarily include encompass

chemotherapy and a limited array of targeted therapies, which are hampered

by toxicity and drug resistance issues. Immunotherapy, particularly immune

checkpoint inhibitors (ICIs) targeting the PD-1/PD-L1 pathway, has exhibited

promising results; however, a substantial proportion of patients remain

unresponsive. The optimization of these immunotherapies requires further

investigation. Mounting evidence underscores the importance of modulating

metabolic traits within the tumor microenvironment (TME) to augment anti-

tumor immunotherapy.

Methods: We selected relevant studies on the metabolism of the esophageal

cancer tumor microenvironment and immune cells based on our searches of

MEDLINE and PubMed, focusing on screening experimental articles and reviews

related to glucose metabolism, amino acid metabolism, and lipid metabolism, as

well their interactions with tumor cells and immune cells, published within the

last five years. We analyzed and discussed these studies, while also expressing our

own insights and opinions.

Results: A total of 137 articles were included in the review: 21 articles focused on

the tumor microenvironment of esophageal cancer, 33 delved into research

related to glucose metabolism and tumor immunology, 30 introduced amino

acid metabolism and immune responses, and 17 focused on the relationship

between lipid metabolism in the tumor microenvironment and both tumor cells

and immune cells.
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Conclusion: This article delves into metabolic reprogramming and immune

alterations within the TME of EC, systematically synthesizes the metabolic

characteristics of the TME, dissects the interactions between tumor and

immune cells, and consolidates and harnesses pertinent immunotherapy

targets, with the goal of enhancing anti-tumor immunotherapy for esophageal

cancer and thereby offering insights into the development of novel

therapeutic strategies.
KEYWORDS
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1 Introduction

Esophageal cancer (EC) is the seventh-most common cancer

and sixth leading cause of cancer-related mortality worldwide. It is a

complex multifactorial disease with varying distribution worldwide

(1). Among 456,000 annual cases of esophageal cancer, esophageal

squamous cell carcinoma (ESCC) comprises approximately 90% of

all cases. High-incidence regions include East Asia to Central Asia,

the East African Rift Valley, and South Africa, with East Asia having

the highest incidence (2). Statistics indicate that China bears over

50% of the global burden of EC cases, with ESCC serving as the

primary histological subtype (3).

The emergence, progression, and dissemination of EC are

closely related to its cellular microenvironment, also known as the

tumor microenvironment (TME). A refractory TME is a key issues

that clinically impede effective cancer treatment. Increasing

evidence highlights the significance of TME in driving cancer

heterogeneity and treatment resistance (4–7). Tumor cells,

immune cells, stromal cells, and various cytokines collectively

constitute the TME (8), forming a precisely structured ecological

environment that favors the expansion, proliferation and

dissemination of cancer cells. Immunocompetent cells and

supporting stromal elements acting as essential components of

the TME, exhibit high specialization and heterogeneity in the

phenotype and function, participating throughout the entire

process of tumor development and treatment response (9, 10).

Metabolic reprogramming plays a crucial role in cancer

progression, and the TME is a significant factor influencing this

process (11) (Table 1).

Tumors activate immune and stromal cells through immune

metabolic reprogramming, such as tumor-associated macrophages

(TAMs) (18), tumor-associated neutrophils (TANs) (19), regulatory

T cells (Tregs) (20), myeloid-derived suppressor cells (MDSCs)

(21), endothelial cells (ECs) (22), and cancer-associated fibroblasts

(CAFs) (23). Tumors promote their occurrence and development

by increasing aerobic glycolysis (24), affecting protein

palmitoylation of oncogenes and tumor suppressor genes (25),

and altering microenvironmental cellular metabolism such as
02
abnormal fatty acid synthesis and oxidation, as well as competing

for oxygen and glucose (26), and essential or non-essential amino

acids (27, 28). Investigating the impact of TME metabolism on

stromal and immune cells can significantly enhance our

understanding of EC progression and facilitate the development

of more effective EC treatment methods.

Chemotherapy remains the primary treatment method for most

patients with EC, although it is associated with dose-limiting

toxicity (29). Significant advancements in targeted therapy have

led to better treatment strategies. However, the National

Comprehensive Cancer Network (NCCN) advocates only for the

administration of trastuzumab, which specifically targets human

epidermal growth factor receptor 2 (HER2), and ramucirumab, an

inhibitor of vascular endothelial growth factor receptor 2 (VEGFR-

2), as therapeutic options for patients diagnosed with EC (30). In

recent years, findings concerning the efficacy of immunotherapy for

the treatment of diverse types of cancer have been exciting. For

instance, immune checkpoint inhibitors (ICIs), immune-

modulating compounds, monospecific antibodies and other

immunotherapies represent new methods for treating EC (31, 32).

This approach harnesses the patient’s own immune system to fight

malignant cells by blocking the immune checkpoint pathways.

Inhibiting programmed death 1 (PD-1) and programmed death

ligand 1 (PD-L1), classic ICIs, have demonstrated compelling

clinical benefits in various malignancies, including ESCC (33, 34).

However, despite the availability of numerous treatment options for

EC, there is a dearth of effective treatments.

Given the above, we attempted to augment anti-tumor

immunotherapy for EC through a comprehensive summation of

the metabolic characteristics within the TME, and identify and

utilize relevant immunotherapy targets.
2 Microenvironment of EC

Within the TME, anti-tumor cells and tumor cells counteract

each other. Various molecules released by stromal cells facilitate

tumor growth by directly activating cancer cell growth signals or by
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TABLE 1 Details, key insights, and shortcomings concerning metabolic reprogramming of esophageal cancer and immune cells.

Key point Mechanism Involved factor Challenge Article

TME HIF-1a↓
TAM

Hypoxia-inducible factor
(HIF-1a stimulates
glycolytic metabolism
predominantly in M1-type
macrophages, thereby
facilitating the
inflammatory response.

HIF-1a enhances the NF-kB
and PI3K/AKT/mTOR
pathways to meet
inflammatory energy
demands. The expression of
glycolytic enzymes (e.g.,
lactate dehydrogenase,
pyruvate dehydrogenase
kinase) ↑.

Oxygen concentration,
prolyl hydroxylase (PHD)
activity, reactive oxygen
species (ROS) levels, the
NF-kB and AKT/mTOR
signaling pathways.;
glycolytic enzymes,
angiogenic factors like
vascular endothelial
growth factor receptor
(VEGF), and
erythropoietin (EPO).

Excessive HIF-1a
activation can cause
uncontrolled
inflammation and
tissue injury, linked
to macrophage
polarization and
metabolic
dysregulation,
making it a
promising
therapeutic target.

(12)

Metabolites
↓
TAM

Metabolites produced by
tumors, such as lactic acid,
adenosine, and
prostaglandins promote the
polarization of tumor-
associated macrophages
(TAMs) towards the M2
phenotype via paracrine or
autocrine mechanisms.

Under hypoxic conditions,
HIF1a is stabilized and
activated, resulting in M2-
type TAM marker genes (e.g.,
ARG-1, VEGF) ↑

VEGF facilitates
angiogenesis; Arginase-1
(ARG-1) engages in
polyamine synthesis and
nitrogen metabolism;
Lactate transporters
(MCTs) facilitate the
influx of lactate
into TAMs,

Tumor metabolism
represents one of
numerous signals that
govern TAM
polarization,
highlighting the
necessity for
personalized
treatment strategies
to tackle the intrinsic
heterogeneity
of tumors.

(13)

Arginine
↓
TME

Arginine plays a crucial
role in TME metabolic
reprogramming by serving
as a precursor for the
synthesis of proteins, nitric
oxide, polyamines,
agmatine, creatine,
and urea.

tumor cells are unable to
synthesize arginine due to
argininosuccinate synthetase
1 (ASS1) deficiency, and
instead upregulate insulin-like
growth factor 1 (IGF-1R) and
enhance ASS1 transcription
via c-MYC for arginine
metabolic reprogramming.

ARG-1 degrades arginine,
limit its availability and
suppress T cell function;
inducible nitric oxide
synthase (INOS)
cooperates with ARG-1 to
produce nitric oxide and
citrulline, modulating the
immune
microenvironment.

Supplementing
arginine or inhibiting
the activity of ARG-1
and INOS could
represent promising
strategies to augment
anti-tumor immune
responses but their
clinical
implementation
remains a
significant challenge.

(14)

Glutamine
↓
TME

Glutaminolysis plays a
pivotal role as both an
energy source and nitrogen
supplier for the activation
and sustained functionality
of immune cells.

Glutamine is first converted
into glutamate by glutaminase
(GLS), then enters the
tricarboxylic acid cycle (TCA)
to generate energy or is
transformed into various
biosynthetic precursors for
proliferation, differentiation,
and cytokine production of
immune cells.

Glutaminase (GLS),
Glutamine transporters
(such as SLC1A5);
Activation of the mTOR
signaling pathway,
Expression of immune
checkpoint molecules
(such as PD-L1).

Balancing competitive
glutamine
consumption in the
TME to inhibit
tumor growth while
mitigating impacts on
immune cells poses a
significant
research challenge.

(15)

Immune
Cells

Metabolites
↓
T Cell

Lactate is not only an
energy source generated
through glycolysis, but also
plays a crucial role in T
cell function by acting as a
signaling molecule and
regulating
signaling pathways.

glucose transporters↑ and
glycolytic enzymes↑ fuels T-
cell proliferation and
activation.; MCTs transport
lactate into T cells, altering
the NAD+/NADH ratio,
regulating silent information
regulator 1 (SIRT1) activity,
impacting T-bet stability, and
modulating gene expression
and signaling via lactylation.

Hexokinase 2 (HK2),
lactate dehydrogenase A
(LDHA), etc.; glucose
transporter 1 (GLUT1);
monocarboxylate
transporter 1 (MCT1),
etc.; HIF-1a, Myc, T-bet,
SIRT1, etc.; adenylate
kinase 2 (AK2), pyruvate
kinase isozyme typeM2
(PKM2), etc.

Lactate has dual
effects:
immunosuppressive
at low
concentrations.;
potentially pro-
antitumor for CD8+
T cells at high
concentrations.
Lactylation still
warrant further
research into its
regulatory
mechanisms.

(16)

lipid metabolism
↓
T cell

Distinct lipid molecules in
lipid metabolism are
crucial for T cell signaling
and function, serving as

Lipid metabolism generates
fatty acids, cholesterol, and
phospholipids, which
modulate transcription factor

Fatty acid synthase
(FASN), acetyl-CoA
carboxylase (ACC), fand
sterol regulatory element-

Challenges persist in
identifying specific
lipid biomarkers for
effective monitoring

(17)

(Continued)
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remodeling the microenvironment (35). Upon activation, immune

cells, such as dendritic cells (DCs) (36), effector T cells (T effs) (37),

memory T cells (T mems) (38), and natural killer cells (NKs) (39),

mount an immune response against tumor cells in the TME,

thereby controlling tumor progression and preventing evasion of

immune surveillance.

In EC, vascular endothelial growth factor receptor (VEGF)

plays a crucial role in tumor progression. Shimada et al. identified

a positive correlation between serum VEGF levels and the tumor

stage and prognosis by comparing the serum VEGF content in

patients diagnosed with ESCC (40). Cancer-associated fibroblasts

(CAFs) also constitute a vital component of the EC TME, playing

significant roles in the disease progression and prognosis. During

disease progression, inhibition of the transcription factor KLF4 in

epithelial cells results in a marked reduction in the expression of

ANXA1, which serves as a ligand for formyl peptide receptor type 2

(FPR2). This decrease subsequently triggers the unregulated

conversion of normal fibroblasts into CAFs, ultimately facilitating

crosstalk (41). Cancer-derived S100A8 engages with CD147

receptors on CAFs, triggering their polarization and subsequently

fostering chemoresistance via the activation of the intracellular

RhoA-ROCK-MLC2-MRTF-A signaling pathway (42). Chen et al.

discovered that precancerous esophageal epithelial cells could

reprogram normal resident fibroblasts into CAFs by

downregulating the ANXA1-FRP2 signaling pathway (43). Qiu

et al. emphasized the future prospects and clinical trends of

targeting CAFs for the ESCC treatment. A deeper understanding

of the molecular biology of CAFs could potentially contribute to the

development of novel anti-ESCC strategies (44). Concurrently,

prolonged exposure of the esophagus to a gastric acid

environment fosters a chronic inflammatory microenvironment.

Evidence supports the crucial role of CAFs in the progression of

Barrett’s esophagus (BE) and esophageal adenocarcinoma (EAC)

(45, 46). In EAC, the distal esophageal epithelium undergoes

metaplasia as a consequence of reflux disease, and inflammatory

cytokines are significantly upregulated, affecting the cancer

prognosis. The infiltration of M2-macrophages, especially the

predominance of M2-like cells over M1-like cells, correlates with an

unfavorable prognosis (47, 48). In EAC and ESCC, tumor-infiltrating

macrophages appear to play a crucial role in the aggressive progression

of malignancy and resistance to therapy (49). Some studies have

indicated that MDSCs play a role in fostering the growth of

esophageal tumors in experimental settings, and elevated infiltration

levels of these cells in patients with EC correlate with adverse

prognostic indicators (50, 51). This suggests that MDSCs may serve

as a potential oncogenic factor within the TME of EC.
Frontiers in Immunology 04
Some bacteria also influence the TME in EC. Certain bacterial

infections in the TME activate immune responses that directly

eliminate tumor cells, while other bacteria induce immune evasion

of tumor cells by inhibiting inflammatory pathways (52, 53).

Examples of bacteria that influence the TME in EC include

Helicobacter pylori (54) and Streptococcus (55).

The interaction between neoplastic cells and tumor-suppressing

immune cells in the local microenvironment of esophageal tumors

reveals meaningful therapeutic strategies. By selectively

upregulating or downregulating anti-tumor substances,

specifically inhibiting tumor cells, and activating or restoring

immune cell functions, an anti-TME is created. Therefore, we

have summarized the characteristics of metabolic reprogramming

in the esophageal cancer EC TME, providing strategies for the

treatment of EC (Figure 1).

In this section, we have summarized 21 articles, while 10

discussed immune cells in the TME of EC, 7 explored the roles of

VEGF and CAFs in the progression of EC, and 4 investigated the

impact of microflora on the esophageal TME.
3 Glucose metabolism

In 1956, Otto Warburg noted that, unlike normal cells, cells

predominantly utilize glycolysis for energy production, even under

aerobic conditions, rather than oxidative phosphorylation

(OXPHOS). This metabolic phenomenon is referred to as aerobic

glycolysis, also known as the “Warburg effect (56, 57). The increase

in aerobic glycolysis results in glucose deprivation and lactate

accumulation of lactate within tumor cells. Meanwhile, numerous

dysfunctional tumor blood vessels and rapidly proliferating tumor

cells create a hypoxic TME, forcing cells to upregulate the

expression of glucose transporter 1 (GLUT-1) to counteract

glucose consumption by tumor cells and further resulting in an

acidic and hypoxic TME (58–60). High glycolytic activity and poor

blood exchange reduce glucose availability (61), exacerbating a

vicious cycle. This indicates that the improvement of hypoxia and

excessive glucose levels can be used as a target to inhibit

tumor progression.

Hypoxia-inducible factor (HIF-1a) is expressed in the hypoxic

TME and acts as a transcription factor involved in the transcription

of glycolytic or glucose transporter genes (59, 62, 63). The

transcription of HIF-1a significantly enhances the two major

pathways of NF-kB and PI3K/AKT/mTOR, allowing cells to

increase glucose metabolism under oxygen-independent

conditions (12). Pyruvate kinase isozyme typeM2 (PKM2) is
TABLE 1 Continued

Key point Mechanism Involved factor Challenge Article

energy sources, membrane
components, and
signaling molecules.

activity, epigenetic
modifications, and post-
translational protein
modifications, ultimately
impacting T cell function
and differentiation.

binding proteins
(SREBPs), etc.;
phosphatidylinositol,
diacylglycerol,
sphingomyelin, and
cholesterol, etc.

and prediction of
immune cell function
and
treatment response.
fron
↑ means an increase in the expression; ↓ means the impact of metabolism on TME and immune cells.
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highly expressed in both tumor cells and tumor-associated

fibroblasts (64) and is upregulated in patients as well (65). Some

studies have revealed that the interplay between PKM2, heat shock

protein 90 (HSP90), and HIF-1a leads to the stabilization of PKM2,

which in turn facilitates aerobic glycolysis and inhibits the process

of cell apoptosis (66). The observed correlation between an elevated

PKM2 expression and an adverse prognosis further supports the

crucial role of glycolysis in the progression of ESCC.

Lactate dehydrogenase (LDH), pyruvate dehydrogenase (PDH),

and pyruvate dehydrogenase kinase (PDK) are key enzymes in

pyruvate metabolism. HIF-1a upregulates the expression of LDH

and PDK, catalyzing the conversion of pyruvate to lactate and

leading to further lactate accumulation (12, 59, 67, 68). Lactate

further mediates the expression of VEGF and M2 polarization of

TAMs through HIF-1a (69), creating immunosuppressive

interactions within TAMs. The accumulation of lactate caused by

a hypoxic microenvironment is a crucial factor in reducing anti-

tumor immunity.

In some case of tumor progression, the TME can promote the

transformation of macrophages into TAMs (70). In a TME

characterized by low glucose levels, TAMs modulate their
Frontiers in Immunology 05
functions through glycolysis activation, while lactate promotes the

polarization of M2-type TAMs, leading to elevated expression of

VEGF and arginase-1 (ARG-1) and thereby stimulating cancer cell

proliferation (71). TAMs indirectly increase the bioavailability of

targeted nutrients in the TME, providing nutrition for malignant

cells, and their immunosuppressive effects also promote tumor

progression (72). The nutritional support mechanism involves the

recruitment of TAM-secreted bioactive molecules or activation of

the ECs, leading to the generation of TAM-derived adrenomedullin

(AMD), chemokine (C-X-C motif) ligand 12 (CXCL12), and other

factors, which promote new blood vessel formation (73, 74).

Therefore, the role of TAMs in oncogenesis promotion and

immunodepress ion makes them potent ia l targets for

cancer therapies.

Glucose is a crucial energy source for activating T-cells, and a

low-glucose TME environment can inhibit the T-cell function and

reduce their persistence during the initiation of adaptive immune

responses (75). As glycolysis increases in tumor cells and TAMs, the

abundance of glucose in the TME decreases, eliciting impairment of

t h e T - c e l l f un c t i on and fu r t h e r e x a c e r ba t i n g th e

immunosuppressive capacity of the TME. Lactate produced by
FIGURE 1

Metabolic reprogramming in the tumor microenvironment of esophageal cancer.
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cancer cells stabilizes extracellular signal-regulated kinases 1/2

(ERK1/2), signal transducer and activator of transcription (STAT)

3, and HIF-1a to induce ARG-1, thereby inhibiting the T-cell

function and promoting tumor growth (69, 76). In addition,

enhanced glycolysis in tumor cells increases the secretion of

colony-stimulating factor (CSF) and macrophage colony-

stimulating factor (M-CSF), further inhibiting the function of T

cells (77). At this point, low glucose induces increased expression of

FoxP3, promoting the transition from T eff cells to T reg cells (78),

while also reprogramming T-lymphocyte metabolic processes to

adapt to the glucose-deprived environment, characterized by the

suppression of glycolysis and the augmentation of OXPHOS (58).

EC cells secrete transforming growth factor-beta (TGF-b),
thereby enhancing the immune tolerance of tumors. Clinical

studies have established a significant correlation between TGF-b
expression levels and the prognosis of patients with EC (79). The

TGF-b signaling pathway is abnormally high in patients (80). TGF-

b activates regulatory T cells (Tregs) directly, while simultaneously

inhibiting the cytotoxicity of T cells and natural killer cells (NKs),

impairing DCs antigen-presenting function, and blocking the

differentiation of naïve T cells towards effector T cells (81). A

study found that TGF-b is highly expressed in patients treated with

conventional chemotherapy regimens, suggesting that

chemotherapy may upregulate TGF-b levels, leading to the

development of immune resistance (80). Furthermore, IL-6

upregulation is evident in both ESCC and EAC (82), originating

from the TME and expressed or implicated in related pathways

across diverse EC phenotypes (83). This upregulation promotes

epithelial-to-mesenchymal transition (EMT), clonogenicity, and

chemoresistance in EC (83).

In this section, we have reviewed 33 articles on glucose

metabolism in the TME of EC, 11 of which were related to the

mechanisms of glucose metabolism, 11 discussed the roles of factors

such as HIF-1a and TGF-b in EC, and 13 explored the impact of

changes in TME glucose metabolism on immune cells.
4 Amino acid metabolism

Amino acids, as essential resources and metabolites for the

sustenance of cellular life, participate in the TME, and their

increased demand supports the rapid proliferation of cancer cells

(84). Among amino acids, arginine is a precursor for the synthesis

of proteins, polyamines, nitric oxide, creatine, agmatine, and urea

(85), and is also a source of NO, an important substance in tumor

regulation (86). Nutritional arginine in the TME activates the

MAPK pathway by inhibiting dephosphorylation and subsequent

inactivation of TPL-2, a tumor-promoting locus of MAPK kinase

(87). This finding highlights the important role of arginine

metabolism in cancer progression. In the hypoxic TME of ESCC,

the receptor tyrosine kinase insulin-like growth factor 1 (IGF-1R) is

upregulated and increases the transcription of argininosuccinate

synthetase 1 (ASS1) regulated by c-MYC, achieving reprogramming

of arginine metabolism (14). In the rate-controlling steps of

arginine metabolism, the differences in the levels of ASS1 and

argininosuccinate lyase (ASL) between ESCC tissues and their
Frontiers in Immunology 06
metastatic derivatives suggest that blocking ASS1 or ASL may

hinder the proliferation of ESCC at the original site and

potentiate distant metastatic dissemination (88).

Glutamine is the predominantly consumed amino acid in

tumors, and glutamine addiction is a typical characteristic of

cancer (89). Research has shown that tumor cells have a stronger

dependence on glutamine (90), which is widely present in EC cells,

as well as other tumor cells. Glutamine serves as a precursor for the

biosynthesis of arginine or other non-essential amino acids,

purines, pyridines, and glucose, and provides nutrition for rapidly

proliferating malignant cells. Its redox reaction removes reactive

oxygen species, making it indispensable for the survival of cancer

cell. Indeed cancer cells that lack glutamine undergo rapid cell

death, making glutamine a crucial target for cancer therapy (91–93).

The metabolic reprogramming of glutamine is orchestrated by

various oncogenic genes (94). Specifically, Myc can directly bind to

the promoters of glutamine metabolism genes to enhance glutamine

metabolism (95), or indirectly stimulate it by inhibiting the

expression of miR-23a/b (96). In contrast, p53 promotes

OXPHOS and glutamine hydrolysis, thereby inhibiting tumor

growth by upregulating the expression of glutaminase isoenzyme

Gls2 (97). Other genes, such as glutamate dehydrogenase (GDH)

(98) , IDH1/2 (99) , pyruvate carboxylase (PC) (98) ,

phosphatidylinositol 3-kinase (PI3K) (100), signal transducer and

activator of transcription 1 (STAT1) (101, 102), extracellular signal-

regulated kinases (ERKs) (103), and KRAS (104), are associated

with metabolic reprogramming of glutamine. In experiments with

porcine intestinal ECs, the mTOR and MAPK/ERK signaling

pathways were inactivated in a low-glutamine environment and

reactivated after glutamine supplementation (105). Glutamine is

also essential for T-cell function. Indeed, recent studies have shown

that glutamine is a key in-vivo fuel for CD8 T-cells (106). Glutamine

depletion inhibits T-cell proliferation and cytokines production,

and this inhibitory effect on T-cells is irreversible (107).

The competition for glutamine between cancer cells and T cells

results in a relative deficiency of glutamine in T cells (108, 109).

Therefore, we can combat tumor proliferation by specifically

modulating glutamine levels in the TME of EC. For example, the

glutaminase (GLS) inhibitor CB839 not only delay tumor

proliferation (110), but also enhances the therapeutic effect of

chimeric antigen receptor T-cells (CAR-T) (111). The glutamine

transporter inhibitor V-9302 has been demonstrated in animal

experiments to reduce the uptake of glutamine by malignant cells

in mice (112). Edwards et al. further showed that V-9302 not only

diminishes the uptake by malignant cells but also augments the

infiltration of CD8+ T cells, elevates the count of Th1 cells secreting

the anti-tumor effector molecule IFNg within the TME, and

mitigates tumor-induced glutamine deprivation in lymphocytes,

ultimately attenuating the impairment of anti-tumor immunity

(109). Therefore, we anticipate that new targeted glutaminase

drugs will contribute to the management of EC.

In summary, the amino acids in the TME are indispensable for

cell metabolism. The proliferative activity and expansion of cancer

cells, along with the activation and differentiation of immune cells,

demand a high-energy microenvironment. Amino acids, which

serve as secondary major energy providers, exert a profound
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influence on cellular metabolism. In this section, 30 articles were

included, while 6 focused on arginine metabolic reprogramming, 19

focused on glutamine metabolic reprogramming, and 5 discussed

therapeutic strategies based on amino acid metabolic

reprogramming. A deeper understanding of amino acid

metabolism in the TME can aid in identifying novel anti-tumor

targets and offer new perspectives for targeted therapies.
5 Lipid metabolism

Alterations in lipid metabolism represent a significant aspect of

cellular reprogramming in cancer and serve as a crucial mode of

interaction between tumor cells and the TME. Their synthetic and

catabolic processes can be effective targets for lipid metabolism.

ESCC progression requires the enhanced synthesis and uptake

of lipids (113). Lipid synthesis metabolism is associated with several

enzymes, including ATP citrate lyase (ACLY), acetyl-CoA

carboxylase (ACC), fatty acid synthase (FASN), and sterol

regulatory element binding protein 1 (SREBP1). ATP citrate lyase

(ACLY) catalyzes a key rate-limiting step in the biosynthesis of fatty

acids, cholesterol, and other lipids during de novo fat synthesis.

Research has demonstrated that overexpression of ACLY stimulates

the proliferation of tumor cells, whereas suppression of ACLY

expression hinders their growth (114–116). FASN serves as the

catalyst for the final step of fatty acid production, forming palmitate,

which involves the conversion of intermediates into saturated fatty

acids in the presence of NADPH. FASN exhibits low expression in

quiescent normal cells (117), but is overexpressed in many types of

cancer. Elevated expression and activity of FASN contributes to the

survival of cancer cells (118) and has implicated in the progression

of ESCC. For example, the competitive endogenous RNA

circHIPK3 upregulates FASN expression in ESCC cells by

sponging miR-637, increasing fatty acid biosynthesis, and

promoting tumor progression (118). In hypoxic tumor cells, the

upregulation of the hypoxia-inducible factor HIF-1a leads to a

subsequent increase in FABP3/7 expression (119). Concurrently,

there is a significant elevation in the gene and protein levels of CD36

and FATP in these cells (26). This coordinated upregulation

facilitates the influx and accumulation of fatty acids (FAs),

ultimately improving the survival of hypoxic tumor cells.

Preclinical investigations have revealed that the internalization of

exogenous fatty acids by CD36 is contingent on CD36 expression,

and notably, the combined application of CD36 inhibitors with

FASN inhibitors and anti-PD-1 therapy exhibits marked synergistic

efficacy (120).

SREBP1 is an important transcriptional regulator of lipid

synthesis that regulates the fat generation process by activating

ACLY, ACC1, and FASN (121). It can also synergize with TP63/

kruppel-like factor 5 (KLF5) in the regulation of fatty acid

biosynthesis (122). SREBP1 overexpression correlates with an

unfavorable prognosis in ESCC patients and facilitates ESCC

progression through the stimulation of fatty acid biosynthesis. In

ESCC, pre-mRNA processing factor 19 (PRP19) enhances the

stability of SREBP1 mRNA in an n6-methyladenosine-dependent

manner, mediating SREBP-dependent fatty acid synthesis and
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ESCC progression (122). Therefore, we may be able to reduce

fatty acid synthesis in TME and disrupt the energy intake of

ESCC by targeting these key enzymes, ultimately achieving the

goal of delaying tumor progression.

Fatty acid oxidation (FAO) is a process in which fatty acids are

shortened to produce acetyl-CoA, NADH, and FADH2 (123).

Carnitine palmitoyl transferase I (CPT1A) is a key rate-limiting

enzyme in FAO, facilitating the transport of long-chain fatty acids

into the mitochondria for oxidation. Its upregulation in ESCC is

associated with low survival rates in patients (124). The

concentrations of medium- and long-chain acylcarnitines, which

serve as the primary substrates for energy generation through FAO

in the mitochondria, are markedly reduced in the peripheral blood of

patients with ESCC compared to healthy controls. This reduction

suggests alterations in b-oxidation activity and the tricarboxylic acid

(TCA) cycle in the ESCC cells (125). In ESCC, CPT1A maintains

redox homeostasis by providing GSH and NADPH, thereby

inhibiting apoptosis. Inhibiting CPT1A, which leads to a decrease

in NADPH supply, can thus inhibit anchorage-independent growth

of ESCC cells both in vitro and in vivo (124). Overexpression of

CPT1A activates FAO and is closely correlated with grading,

metastasis, clinical staging, and a poor prognosis in EC patients.

At the same time, FAO is also one of the sources of OXPHOS

for some immune cells. For example, compared to T eff cells, the

sustained upregulation of CPT1A expression in T cells and studies

using CPT1A inhibitors indicate that FAO is an important

metabolic pathway in T cells (126). The differentiation and

activation of TAM are related to FAO (127). By inhibiting

mitochondrial OXPHOS, particularly FAO, the tendency for M2

polarization of TAMs is diminished, resulting in reduced tumor

proliferation, angiogenesis, and immunosuppression. These

observations underscore the potential of CPT1A as a promising

target for clinical intervention in ESCC treatment strategies.

The high energy demands of malignant cells necessitate increased

intake, resynthesis, and oxidative breakdown of exogenous lipids

through additional fat metabolism to obtain energy. This process of

energy alteration also exerts an influence on immune cells. In the

TME, lipid metabolism synergizes with glucose and amino acid

metabolism to alter the normal functions of immune cells, leading

to immunosuppression (Figure 2). This provides tumors with an

opportunity to evade immune defense mechanisms, thereby

promoting the development of escape mechanisms and cancer

progression. We have selected 17 articles that reference research on

the relationship between lipid metabolism in the tumor

microenvironment and the interaction between tumor cells and

immune cells, 12 of which focused on the anabolic metabolism of

lipids, and 5 focused on the oxidative catabolism of lipids, hoping to

better integrate the relevant targets of lipid metabolism and provide

new directions for the development of new drugs.
6 Conclusion and outlook

EC is a complex and malignant disease that involves tumor cells,

creating a nutritious environment conducive to tumor growth by

activating various pathways. Tumor metabolites and metabolic
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regulation affect the function of immune cells, thereby resulting in

local immunosuppression that enables tumors to evade the host’s

immune surveillance mechanisms. Therefore, addressing metabolic

abnormalities in the TME is crucial for the initiation and

progression of esophageal cancer.

Currently, effective treatment options for EC are limited, and

the treatment response and overall survival rates of patients

undergoing tumor immunotherapy remain suboptimal. The

essential roles of glucose, glutamine, and other nutrients in cell
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proliferation and immune defense make it challenging to avoid the

toxic and side effects associated with targeted modulation of their

levels within the TME. However, targeted therapies continue to face

the challenge of drug resistance. For instance, an elevated GLS

expression in tumor cells enables glutamine synthesis from

glutamate, thereby permitting malignant cells to sustain

proliferation even during glutamine deprivation (128).

Metabolic reprogramming is a distinctive feature of both tumor

cells and immune responses. The immunosuppressive
TABLE 2 Prospects and challenges of EC therapies.

Treatment Prospect Challenge

Traditional
chemotherapy

Chemotherapy continues to be a cornerstone in the treatment of
esophageal cancer, particularly as an adjuvant therapy for patients who
are ineligible for surgery or post-surgical care.

Toxic side effects and drug resistance remain difficult to address.

Immunotherapy Immune checkpoint inhibitors (ICIs), especially PD-1/PD-L1 inhibitors,
show promise in treating esophageal cancer with notable anti-tumor
activity and safety. Cell therapies like Chimeric Antigen Receptor T-Cell
Immunotherapy (CAR-T) enhance T-cell precision in cancer cell
recognition and elimination.

Patient responses to immunotherapy demonstrate considerable
heterogeneity, and resistance may arise from gene mutations or bypass
signaling. Current treatment plans for EC rely mainly on
clinicopathological characteristics, with limited consideration of
molecular features.

Targeted
Therapy

Targeting specific markers in the TME enhances nutrient availability and
immune regulation, improving treatment specificity and reducing
side effects.

Compared to other cancer types, there are relatively few targeted
therapeutic drugs approved for the treatment of esophageal cancer (e.g.,
human epidermal growth factor receptor 2 (HER2), vascular endothelial
growth factor receptor 2 (VEGFR-2)), which necessitates more extensive
clinical data for support.
FIGURE 2

Immunological changes in the tumor microenvironment of esophageal cancer.
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microenvironment in EC tumors, marked by elevated lactate levels,

reduced amino acid availability, and increased fatty acid

accumulation along with heightened energy consumption,

represents a key focus for metabolic interventions in targeted

therapies. Several microenvironment-targeted drugs, including

PD-1/PD-L1 inhibitors and anti-angiogenic agents, have

progressed to clinical trials and shown promising efficacy.

Nevertheless, the therapeutic mechanisms underlying metabolic

reprogramming in the EC microenvironment are in the

preclinical stage. Further exploration of its immunological and

biological facets is pivotal for the development of novel drugs and

the refinement of existing immunotherapies (Table 2).

Consequently, we anticipate utilizing more advanced

sequencing techniques to delve deeper into the interactions

between immune cells and tumor cells in EC metabolism. For

instance, the application of spatial tri-omic sequencing technologies

enables the delineation of spatial dynamic remodeling within EC

(129). Perturb-DBiT has the capacity to elucidate clonal dynamics

and cooperative interactions, while also identifying differential and

synergistic perturbations that promote or inhibit immune

infiltration in tumors (130). In addition, spatial CITE sequencing

can reveal spatially distinct germinal center reactions in EC (131).

Our goal was to identify suitable biomarkers that can reveal more

characteristic targets, ultimately leading to the discovery of more

effective novel therapies that can enhance nutrient availability and

improve immune regulation within the TME. We should also

consider the differences in sensitivity to targeted therapy between

EAC and ESCC, as well as the potential risks associated with novel

targeted therapies. Furthermore, it is important to consider

potential risks associated with novel targeted therapies. By

collecting and analyzing effective clinical data, we can explore

more effective combinations of different targeted therapies,

immunotherapy in conjunction with targeted therapy, and

targeted therapy combined with conventional chemotherapy

(132). These efforts will aid in the development of new anti-EC

drugs and enhance the overall efficacy of EC treatments.
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12. Viola A, Munari F, Sánchez-Rodrıǵuez R, Scolaro T, Castegna A. The metabolic
signature of macrophage responses. Front Immunol. (2019) 10:1462. doi: 10.3389/
fimmu.2019.01462

13. Zhang J, Dong Y, Di S, Xie S, Fan B, Gong T. Tumor associated macrophages in
esophageal squamous carcinoma: Promising therapeutic implications. BioMed
Pharmacother Biomed Pharmacother . (2023) 167:115610. doi: 10.1016/
j.biopha.2023.115610

14. Liu L-X, Heng J-H, Deng D-X, Zhao H, Zheng Z-Y, Liao L-D, et al. Sulconazole
induces PANoptosis by triggering oxidative stress and inhibiting glycolysis to increase
radiosensitivity in esophageal cancer. Mol Cell Proteomics MCP. (2023) 22:100551.
doi: 10.1016/j.mcpro.2023.100551

15. Ma G, Zhang Z, Li P, Zhang Z, Zeng M, Liang Z, et al. Reprogramming of
glutamine metabolism and its impact on immune response in the tumor
microenvironment. Cell Commun Signal CCS. (2022) 20:114. doi: 10.1186/s12964-
022-00909-0

16. Wu H, Huang H, Zhao Y. Interplay between metabolic reprogramming and
post-translational modifications: from glycolysis to lactylation. Front Immunol. (2023)
14:1211221. doi: 10.3389/fimmu.2023.1211221

17. Lim SA, Su W, Chapman NM, Chi H. Lipid metabolism in T cell signaling and
function. Nat Chem Biol. (2022) 18:470–81. doi: 10.1038/s41589-022-01017-3

18. Netea-Maier RT, Smit JWA, Netea MG. Metabolic changes in tumor cells and
tumor-associated macrophages: A mutual relationship. Cancer Lett. (2018) 413:102–9.
doi: 10.1016/j.canlet.2017.10.037

19. Shaul ME, Fridlender ZG. Cancer-related circulating and tumor-associated
neutrophils - subtypes, sources and function. FEBS J. (2018) 285:4316–42.
doi: 10.1111/febs.14524

20. Wolf D, Sopper S, Pircher A, Gastl G, Wolf AM. Treg(s) in cancer: friends or foe?
J Cell Physiol. (2015) 230:2598–605. doi: 10.1002/jcp.25016

21. Gabrilovich DI. Myeloid-derived suppressor cells. Cancer Immunol Res. (2017)
5:3–8. doi: 10.1158/2326-6066.CIR-16-0297

22. Hida K, Maishi N, Torii C, Hida Y. Tumor angiogenesis–characteristics of tumor
endothelial cells. Int J Clin Oncol. (2016) 21:206–12. doi: 10.1007/s10147-016-0957-1

23. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. (2006) 6:392–401.
doi: 10.1038/nrc1877

24. Warburg O. On the origin of cancer cells. Science. (1956) 123:309–14.
doi: 10.1126/science.123.3191.309

25. Ko P-J, Dixon SJ. Protein palmitoylation and cancer. EMBO Rep. (2018) 19:
e46666. doi: 10.15252/embr.201846666

26. Li Z, Zhang H. Reprogramming of glucose, fatty acid and amino acid metabolism
for cancer progression. Cell Mol Life Sci CMLS. (2016) 73:377–92. doi: 10.1007/s00018-
015-2070-4

27. Geck RC, Toker A. Nonessential amino acid metabolism in breast cancer. Adv
Biol Regul. (2016) 62:11–7. doi: 10.1016/j.jbior.2016.01.001

28. Salisbury TB, Arthur S. The regulation and function of the L-type amino acid
transporter 1 (LAT1) in cancer. Int J Mol Sci. (2018) 19:2373. doi: 10.3390/
ijms19082373

29. Liu H, Zhao J, Fu R, Zhu C, Fan D. The ginsenoside Rk3 exerts anti-esophageal
cancer activity in vitro and in vivo by mediating apoptosis and autophagy through
regulation of the PI3K/Akt/mTOR pathway. PloS One. (2019) 14:e0216759.
doi: 10.1371/journal.pone.0216759

30. Samson P, Lockhart AC. Biologic therapy in esophageal and gastric
Malignancies: current therapies and future directions. J Gastrointest Oncol. (2017)
8:418–29. doi: 10.21037/jgo.2016.11.13

31. Tanaka T, Nakamura J, Noshiro H. Promising immunotherapies for esophageal
cancer. Expert Opin Biol Ther. (2017) 17:723–33. doi: 10.1080/14712598.2017.1315404

32. Zhang Y, Zhang Y, Zhang L. Expression of cancer-testis antigens in esophageal
cancer and their progress in immunotherapy. J Cancer Res Clin Oncol. (2019) 145:281–
91. doi: 10.1007/s00432-019-02840-3

33. Janjigian YY, Bendell J, Calvo E, Kim JW, Ascierto PA, Sharma P, et al.
CheckMate-032 study: efficacy and safety of nivolumab and nivolumab plus
Frontiers in Immunology 10
ipilimumab in patients with metastatic esophagogastric cancer. J Clin Oncol Off J Am
Soc Clin Oncol. (2018) 36:2836–44. doi: 10.1200/JCO.2017.76.6212

34. Kudo T, Hamamoto Y, Kato K, Ura T, Kojima T, Tsushima T, et al. Nivolumab
treatment for oesophageal squamous-cell carcinoma: an open-label, multicentre, phase
2 trial. Lancet Oncol. (2017) 18:631–9. doi: 10.1016/S1470-2045(17)30181-X

35. Oya Y, Hayakawa Y, Koike K. Tumor microenvironment in gastric cancers.
Cancer Sci. (2020) 111:2696–707. doi: 10.1111/cas.14521

36. Banchereau J, Steinman RM. Dendritic cells and the control of immunity.
Nature. (1998) 392:245–52. doi: 10.1038/32588

37. Crespo J, Sun H, Welling TH, Tian Z, Zou W. T cell anergy, exhaustion,
senescence, and stemness in the tumor microenvironment. Curr Opin Immunol. (2013)
25:214–21. doi: 10.1016/j.coi.2012.12.003

38. Ando M, Ito M, Srirat T, Kondo T, Yoshimura A. Memory T cell, exhaustion,
and tumor immunity . Immunol Med . (2020) 43 :1–9. doi : 10 .1080/
25785826.2019.1698261

39. O’Brien KL, Finlay DK. Immunometabolism and natural killer cell responses.
Nat Rev Immunol. (2019) 19:282–90. doi: 10.1038/s41577-019-0139-2

40. Shimada H, Takeda A, Nabeya Y, Okazumi SI, Matsubara H, Funami Y, et al.
Clinical significance of serum vascular endothelial growth factor in esophageal
squamous cell carcinoma. Cancer. (2001) 92:663–9. doi: 10.1002/1097-0142
(20010801)92:3<663::aid-cncr1368>3.0.co;2-l

41. Chen Y, Zhu S, Liu T, Zhang S, Lu J, Fan W, et al. Epithelial cells activate
fibroblasts to promote esophageal cancer development. Cancer Cell. (2023) 41:903–
918.e8. doi: 10.1016/j.ccell.2023.03.001

42. Chen X, Cheng G, Zhu L, Liu T, Yang X, Liu R, et al. Alarmin S100A8 imparts
chemoresistance of esophageal cancer by reprogramming cancer-associated fibroblasts.
Cell Rep Med. (2024) 5:101576. doi: 10.1016/j.xcrm.2024.101576

43. Lavon H, Scherz-Shouval R. Insights into the co-evolution of epithelial cells and
fibroblasts in the esophageal tumor microenvironment. Cancer Cell. (2023) 41:826–8.
doi: 10.1016/j.ccell.2023.03.020

44. Qiu L, Yue J, Ding L, Yin Z, Zhang K, Zhang H. Cancer-associated fibroblasts:
An emerging target against esophageal squamous cell carcinoma. Cancer Lett. (2022)
546:215860. doi: 10.1016/j.canlet.2022.215860

45. Wang J, Zhang G, Wang J, Wang L, Huang X, Cheng Y. The role of cancer-
associated fibroblasts in esophageal cancer. J Transl Med. (2016) 14:30. doi: 10.1186/
s12967-016-0788-x

46. Fujiya T, Asanuma K, Koike T, Okata T, Saito M, Asano N, et al. Nitric oxide
could promote development of Barrett’s esophagus by S-nitrosylation-induced
inhibition of Rho-ROCK signaling in esophageal fibroblasts. Am J Physiol
Gastrointest Liver Physiol. (2022) 322:G107–16. doi: 10.1152/ajpgi.00124.2021

47. Blank S, Nienhüser H, Dreikhausen L, Sisic L, Heger U, Ott K, et al.
Inflammatory cytokines are associated with response and prognosis in patients with
esophageal cancer. Oncotarget. (2017) 8:47518–32. doi: 10.18632/oncotarget.17671

48. Cao W, Peters JH, Nieman D, Sharma M, Watson T, Yu J. Macrophage subtype
predicts lymph node metastasis in oesophageal adenocarcinoma and promotes cancer
cell invasion in vitro. Br J Cancer. (2015) 113:738–46. doi: 10.1038/bjc.2015.292

49. Miyashita T, Tajima H, Shah FA, Oshima M, Makino I, Nakagawara H, et al.
Impact of inflammation-metaplasia-adenocarcinoma sequence and inflammatory
microenvironment in esophageal carcinogenesis using surgical rat models. Ann Surg
Oncol. (2014) 21:2012–9. doi: 10.1245/s10434-014-3537-5

50. Gabitass RF, Annels NE, Stocken DD, Pandha HA, Middleton GW. Elevated
myeloid-derived suppressor cells in pancreatic, esophageal and gastric cancer are an
independent prognostic factor and are associated with significant elevation of the Th2
cytokine interleukin-13. Cancer Immunol Immunother CII. (2011) 60:1419–30.
doi: 10.1007/s00262-011-1028-0

51. Karakasheva TA, Waldron TJ, Eruslanov E, Kim S-B, Lee J-S, O’Brien S, et al.
CD38-expressing myeloid-derived suppressor cells promote tumor growth in a murine
model of esophageal cancer. Cancer Res. (2015) 75:4074–85. doi: 10.1158/0008-
5472.CAN-14-3639

52. Ma Q, Xing C, Long W, Wang HY, Liu Q, Wang R-F. Impact of microbiota on
central nervous system and neurological diseases: the gut-brain axis. J Neuroinflamm.
(2019) 16:53. doi: 10.1186/s12974-019-1434-3

53. Yang L, Li A, Wang Y, Zhang Y. Intratumoral microbiota: roles in cancer
initiation, development and therapeutic efficacy. Signal Transduct Target Ther. (2023)
8:35. doi: 10.1038/s41392-022-01304-4

54. Matsuda H, Iwahori K, Takeoka T, Kato R, Urakawa S, Saito T, et al. Helicobacter
pylori infectionaffects the tumor immunemicroenvironmentofesophageal cancerpatients.
Anticancer Res. (2024) 44:3799–805. doi: 10.21873/anticanres.17205

55. Wu H, Leng X, Liu Q, Mao T, Jiang T, Liu Y, et al. Intratumoral microbiota
composition regulates chemoimmunotherapy response in esophageal squamous cell
carcinoma. Cancer Res. (2023) 83:3131–44. doi: 10.1158/0008-5472.CAN-22-2593

56. Vaupel P, Schmidberger H, Mayer A. The Warburg effect: essential part of
metabolic reprogramming and central contributor to cancer progression. Int J Radiat
Biol. (2019) 95:912–9. doi: 10.1080/09553002.2019.1589653

57. Hochwald JS, Zhang J. Glucose oncometabolism of esophageal cancer.
An t i c an c e r Ag en t s Med Chem . ( 2 0 17 ) 17 : 385–94 . d o i : 1 0 . 2 174 /
1871520616666160627092716
frontiersin.org

https://doi.org/10.1038/nm.3394
https://doi.org/10.1186/s12943-022-01666-x
https://doi.org/10.1186/s12943-022-01666-x
https://doi.org/10.1016/j.canlet.2015.07.039
https://doi.org/10.1038/s41556-018-0236-7
https://doi.org/10.1101/cshperspect.a026781
https://doi.org/10.1101/cshperspect.a026781
https://doi.org/10.1126/science.aaw5473
https://doi.org/10.3389/fimmu.2019.01462
https://doi.org/10.3389/fimmu.2019.01462
https://doi.org/10.1016/j.biopha.2023.115610
https://doi.org/10.1016/j.biopha.2023.115610
https://doi.org/10.1016/j.mcpro.2023.100551
https://doi.org/10.1186/s12964-022-00909-0
https://doi.org/10.1186/s12964-022-00909-0
https://doi.org/10.3389/fimmu.2023.1211221
https://doi.org/10.1038/s41589-022-01017-3
https://doi.org/10.1016/j.canlet.2017.10.037
https://doi.org/10.1111/febs.14524
https://doi.org/10.1002/jcp.25016
https://doi.org/10.1158/2326-6066.CIR-16-0297
https://doi.org/10.1007/s10147-016-0957-1
https://doi.org/10.1038/nrc1877
https://doi.org/10.1126/science.123.3191.309
https://doi.org/10.15252/embr.201846666
https://doi.org/10.1007/s00018-015-2070-4
https://doi.org/10.1007/s00018-015-2070-4
https://doi.org/10.1016/j.jbior.2016.01.001
https://doi.org/10.3390/ijms19082373
https://doi.org/10.3390/ijms19082373
https://doi.org/10.1371/journal.pone.0216759
https://doi.org/10.21037/jgo.2016.11.13
https://doi.org/10.1080/14712598.2017.1315404
https://doi.org/10.1007/s00432-019-02840-3
https://doi.org/10.1200/JCO.2017.76.6212
https://doi.org/10.1016/S1470-2045(17)30181-X
https://doi.org/10.1111/cas.14521
https://doi.org/10.1038/32588
https://doi.org/10.1016/j.coi.2012.12.003
https://doi.org/10.1080/25785826.2019.1698261
https://doi.org/10.1080/25785826.2019.1698261
https://doi.org/10.1038/s41577-019-0139-2
https://doi.org/10.1002/1097-0142(20010801)92:3%3C663::aid-cncr1368%3E3.0.co;2-l
https://doi.org/10.1002/1097-0142(20010801)92:3%3C663::aid-cncr1368%3E3.0.co;2-l
https://doi.org/10.1016/j.ccell.2023.03.001
https://doi.org/10.1016/j.xcrm.2024.101576
https://doi.org/10.1016/j.ccell.2023.03.020
https://doi.org/10.1016/j.canlet.2022.215860
https://doi.org/10.1186/s12967-016-0788-x
https://doi.org/10.1186/s12967-016-0788-x
https://doi.org/10.1152/ajpgi.00124.2021
https://doi.org/10.18632/oncotarget.17671
https://doi.org/10.1038/bjc.2015.292
https://doi.org/10.1245/s10434-014-3537-5
https://doi.org/10.1007/s00262-011-1028-0
https://doi.org/10.1158/0008-5472.CAN-14-3639
https://doi.org/10.1158/0008-5472.CAN-14-3639
https://doi.org/10.1186/s12974-019-1434-3
https://doi.org/10.1038/s41392-022-01304-4
https://doi.org/10.21873/anticanres.17205
https://doi.org/10.1158/0008-5472.CAN-22-2593
https://doi.org/10.1080/09553002.2019.1589653
https://doi.org/10.2174/1871520616666160627092716
https://doi.org/10.2174/1871520616666160627092716
https://doi.org/10.3389/fimmu.2025.1524801
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Guo et al. 10.3389/fimmu.2025.1524801
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