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Introduction: Globally, cat allergens are a common cause of allergic rhinitis and

asthma. Fel d 1 is the primary allergen among cat allergens and can induce a

broad range of allergies through airborne transmission.

Methods: In our study, we constructed layered double hydroxide (LDH) nanoparticles

loadedwith PADRE-rFel d 1, aiming to address allergies triggered by Fel d 1.We utilized

a mouse model sensitized with purified rFel d 1 and then immunized them

subcutaneously with LDH nanoparticles loaded with PADRE-rFel d 1.

Results: Our results indicated that this nanoparticle vaccine effectively restored

the balance of Th1/Th2 and Th17/ Treg cells, which led to a reduction in

inflammatory cell infiltration, mitigated local and systemic stress responses

induced by rFel d 1, decreased airway hyperresponsiveness, and lowered

serum IgE levels.

Discussion: Consequently, the LDH loaded with PADRE-rFel d 1 vaccine shows

promise as an effective treatment for cat allergies.
KEYWORDS

rFel d 1 antigen, asthma, vaccine, layered double hydroxides, T cell
Introduction

The domestic cats (Felis domesticus), as one of the most popular pets, are a rich source of

allergens in the environment. Cat allergy is IgE-mediated type I hypersensitivity reaction that

impact approximately 20% of individuals worldwide (1–3). The clinically symptoms of cat

allergy range from mild rhinitis to life-threatening asthmatic responses (4–6). In the WHO/

IUIS allergen nomenclature, a total of eight cat allergens have been identified and named Fel d

1 through Fel d 8. The Felis domesticus allergen 1 (Fel d 1), which is the major allergen of
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domestic cats predominantly found in the saliva, sebaceous glands,

skin, and hair of cats (7), can elicit IgE responses of approximately

90% of individuals who are allergic to cats (8).

Allergic asthma is a chronic inflammatory airway disease

characterized by infiltration of inflammatory cells, airway

hyperresponsiveness (AHR), and impaired lung function (9–11).

Currently, common treatments for allergic asthma include avoiding

contact with allergens, pharmacotherapy, and allergen-specific

immunotherapy (AIT). However, each method has its drawbacks.

Fel d 1 is widely disseminated in the environment by binding to small

particles in the air, making it extremely difficult to avoid the allergen

(12). Pharmacological interventions, such as intravenous

corticosteroids and anticholinergic agents, can only temporarily

relieve allergic symptoms, but fail to address the root cause of the

disease. Allergen-specific immunotherapy (AIT) is currently the only

treatment modality that can modify the natural course of allergic

diseases through immune regulatory mechanisms (13). Its therapeutic

mechanism mainly involves the long-term administration of minute

amounts of allergens through sublingual or subcutaneous routes. The

objective is to shift the immune response from the disease-promoting

Th2 cells to the non-pathogenic Th1 cells and/or to induce the

formation of regulatory T cells (Tregs), which help in modulating

the immune system towards a more balanced state, causing a deviation

from the pathogenic Th2 towards the non-pathogenic Th1 and/or

regulatory T cell (Treg) responses and increasing the production of

blocking antibody IgG (14, 15). However, AIT encounters some

challenges, including the long duration of treatment, loew patient

adherence, and the serious side effects (16).

Therefore, there is a need for a safer, more effective, and cost-

effective allergen-specific immunotherapy. Layered double

hydroxides (LDHs) are an emerging class of inorganic

nanomaterials, belonging to the family of hydrotalcites, which

consist of positively charged hexagonal layers and an interlayer

structure that can exchange anions (17). Research has indicated that

LDHs can activate dendritic cells (18), enhancing immune

responses (19). They have been shown to effectively encapsulate

antigens and provide a sustained release at the injection site,

achieving continuous immune stimulation and reducing the

frequency of administration. Additionally, due to their high

biocompatibility, stability, biodegradability, and non-toxicity,

LDHs hold great promise in the field of drug delivery (20).

In our study, we constructed a murine model sensitized to rFel d

1, aiming to evaluate the efficacy of rFel d 1-loaded LDH

nanoparticle-based vaccine in treating allergic mice induced by

rFel d 1 and to explore its potential mechanisms of action.

Methods

Mice

Adult female BALB/c mice (6–8 weeks) were purchased from

SPF (Beijing) Biotechnology Co.,Ltd and maintained in pathogen-

free environment with food and water ad libitum. All animal

experiments were reviewed and approved by Experimental

Animal Committee of Hainan University.
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Cloning, expression and purification of
PADRE-rFel d 1

Sequences encoding Fel d 1 chain 1 (GenBank, AAC37318) and

chain 2 (GenBank, AAC41616) were retrieved from the NCBI

GenBank database and subsequently codon-optimized. The

cysteine (Cys) residue at the C-terminus of chain 1 is covalently

linked to the valine (Val) residue at the N-terminus of chain 2,

resulting in the formation of Fel d 1 (1 + 2) and named rFel d 1. Pan

DR T cell epitope (PADRE), a universal T cell epitope, was

conjugated to the N-terminus of rFel d 1 via the linker AAY, and

this construct was cloned into the expression vector pQE80L. The

resultant expression vector was named as pQE80L-PADRE-rFel d 1.

The plasmid pQE80L-PADRE-rFel d 1 was transformed into

Escherichia coli strain BL21 (DE3). Expression of pQE80L-

PADRE-rFel d 1 was induced at 37°C with 1 mM IPTG. After 6

h, the bacterial cells were collected after centrifugation (12,000 rpm,

4°C, 30 min), and then resuspended in native lysis buffer (50 mM

NaH2PO4, 300 mM NaCl and 10 mM imidazol, pH=8.0). The cells

were sonicated on ice using a program with 45% power, 30%

temperature, 3 s of operation, and 3 s of rest, for a total duration

of 10 min. Collecting the protein precipitate after centrifugation

(12,000 rpm, 4°C, 15 min). The precipitate was washed sequentially

by resuspension in Wash Buffer I (50 mM Tris-HCl, 1 mM EDTA,

100 mM NaCl, 1% Triton X-100, pH=8.5), Inclusion Body Wash

Buffer II (50 mM Tris-HCl, 1 mM EDTA, 100 mMNaCl, 1% Triton

X-100, 2 M urea, pH=8.5), and Inclusion Body Wash Buffer III (50

mM Tris-HCl, 1 mM EDTA, 100 mM NaCl, 1% Triton X-100, 2 M

guanidine hydrochloride, pH=8.5), with each step incubating for 10

min at each step and centrifugation at 4°C, 12,000 rpm for 15 min.

The inclusion bodies were solubilized in Inclusion Body

Solubilization Buffer I (50 mM Tris-HCl, 1 mM EDTA, 100 mM

NaCl, 10 mMDTT, 2 mM sodium deoxycholate, 8 M urea, pH=8.5)

at a ratio of 100 µL per gram of wet cells mass, followed by gentle

shaking for 1 h. Nine volumes of Inclusion Body Solubilization

Buffer II (50 mM KH2PO4, 1 mM EDTA, 50 mM NaCl, pH=10.7)

were added, and the mixture was gently shaken for at least 30 min.

After centrifugation (4°C, 12,000-13,000 rpm, 15 min), the

supernatant was collected. Adjust the protein concentration to

0.1-1.0 mg/mL and perform gradient dialysis refolding using

refolding buffer I/II/III (50 mM Tris-HCI, 100 mM NaCl, 6 M/4

M/2 M Urea, 1% glycine, 5% glycerol, 0.2% PEG 4000, 1 mM

oxidized glutathione, 1 mM reduced glutathione, pH=8.5), the

refolded protein was dialyzed in PBS for 12 h to remove urea.

The protein was further purified through Ni-NTA column affinity

chromatography and dialyzed in PBS for 12 h to remove salt.
Preparation of LDH+PADRE-rFel d 1
vaccine

LDH was synthesized by co-precipitation method. Specifically,

Solution B (40 mL 0.15 M NaOH, Xilong Scientific, China) was

placed on a magnetic stirrer and stirred while Solution A (3.3 mL

ddH2O, 5 mL 0.6 M MgCl2•6H2O and 1.7 mL 0.6 M AlCl3•6H2O,
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SCRC, China) was added dropwise. After the addition was

completed, the mixture was continuously stirred for 30 min to

ensure thorough mixing. Subsequently, the precipitate was collected

after centrifugation (RT, 5000 × g, 5 min) and washed twice with

pure water, then resuspended in 40 mL of sterile water and

subjected to hydrothermal treatment in a 100°C water bath for 16

h. The final product is a transparent LDH suspension. The prepared

LDH nanocarriers were characterized by malvern laser particle size

analyzer, x-ray diffractometry (XRD), fourier transform infrared

spectroscopy (FTIR) and field emission transmission electron

microscope (FE-TEM). Mixing the prepared LDH and PADRE-

rFel d 1 in various mass ratios (MLDH: MPADRE-rFel d 1 = 1:1, 2:1, 3:1,

4:1, 5:1, 6:1, 7:1, 8:1, 9:1, 10:1,11:1, 12:1), then shaked at 1000 rpm

for 30 min at RT. Following centrifugation (RT, 5000 × g, 5 min),

aspirated the supernatant and assessed the adsorption of LDH and

PADRE-rFel d 1 using SDS-PAGE electrophoresis.
Sensitization and vaccination

The construction of the therapeutic model for allergic asthma

in mice is shown in Figure 1A. Specifically, female BALB/c mice,

after one week of acclimatization, were randomly divided into five
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groups (n=6 per group): Naïve group, Allergic group, LDH

+PADRE-rFel d 1 group, LDH group and PADRE-rFel d 1

group. Except for the Naïve group, all mice in the other four

groups were administered intraperitoneal injections of 100 m L of

allergen rFel d 1 at a concentration of 1 mg/mL (containing 5 mg

of aluminum hydroxide adjuvant)on day 0 and day 7.

Subsequently, intra-tracheal challenges were performed with 50

mL of rFel d 1 at a concentration of 1 mg/mL on days 21, 23 and 25.

Vaccines were administered via multi-point injections at the

cervical subcutaneous region and bilateral hind limb muscles on

days 32, 46, and 60. Mice in the Sensitized group received 60 mL
PBS subcutaneously at the neck and 20 mL PBS intramuscularly in

each hind limb. Mice in the LDH+PADRE-rFel d 1 treatment

group were immunized with 60 mL subcutaneously at the neck and

20 mL intramuscularly per hind limb of LDH+PADRE-rFel d 1

formulation (800 mg LDH+100 mg protein). Other vaccine groups
received an equivalent mass and volume of their respective

vaccines via the same routes. A final 50 mL intratracheal

challenge of rFel d 1 (1 mg/mL) was administered on day 60.

Airway hyperresponsiveness (AHR) was assessed 72 h post-

challenge. On day 67, blood was collected from the eye socket to

measure total IgE levels in serum. Pathological evaluations were

conducted 48 h after blood sampling.
FIGURE 1

Vaccination with nanoprotein vaccine reduce the allergic symptoms induces by rFel d 1. (A) Experimental protocol. (B) Airway responsiveness to
increasing doses of acetylcholine chloride were determined using whole-body plethysmography and expressed as (C) Area under the curve (AUC).
(D) Levels total IgE in serum. (E) Representative pictures of skin active cutaneous anaphylaxis. (F) The area of dye leakage analysis by imagej.
(G) Analysis of Evans Blue absorbance by spectrophotometry (620 nm). (H) Change in body temperature after i.v. with rFel d 1. (I) The area under the
body temperature variation curve. Results are expressed as mean ± SEM of 6 mice per group. One-way ANOVA: *P < 0.05, **P < 0.01, ***P < 0.001
different from allergic group; ns, not significantly different from allergic group.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1524929
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Mai et al. 10.3389/fimmu.2025.1524929
Airway responsiveness

The airway hyperresponsiveness (AHR) of mice in different

treatment groups was measured using whole-body plethysmograph

(FinePointe WBP). Specifically, before administering different

concentrations of acetylcholine chloride (PBS, 3.125 mg/mL, 6.25

mg/mL, 25 mg/mL, 50 mg/mL), the mice were first placed in the

chamber to adapt for 30 min. The nebulization time for each

concentration was 1 min, the recorded reaction time was 4 min,

and the recovery time was 2 min. The AHR was assessed by

measuring the Penh values in mice exposed to different

concentrations of acetylcholinechloride (ACh) and calculating the

percentage of peak expiratory flow/inspiratory flow ratio (Penh)

values relative to those measured during nebulized PBS exposure, as

well as the area under the curve.
Histology and inflammation score

Blind scoring of pulmonary inflammation using H&E, PAS, and

Masson staining, with inflammation scores ranging from 0 to 3. Grade

“0” indicates no inflammatory cell infiltration around the bronchi, no

goblet cells in the lumen, and normal collagen content. Grade “1”

indicates occasional inflammatory cells around the bronchi, with 1–5

goblet cells and mild collagen deposition in the lumen. Grade “2”

indicates the presence of 1–5 layers of inflammatory cells around the

bronchi, with an increase in the number of goblet cells to 6–20 layers,

moderate collagen deposition, and persistent fibrosis of the alveolar

septa. Grade “3” indicates the presence of more than 5 layers of

inflammatory cell infiltration around the bronchi, with over 20 goblet

cells within the bronchial lumen, excessive collagen deposition can lead

to alveolar wall damage, alveolar compression, and worsening of

pulmonary fibrosis.
ELISA for serum total IgE and allergen-
specific IgG, IgG1, IgG2a levels

The total IgE level in mouse serum was quantified by IgE Elisa

Assay Kit Instruction (Nanjing Jiancheng Technology Co., Ltd.,

China), while the levels of rFel d 1-specific IgG, IgG1, IgG2a were

detected by indirect ELISA. In brief, 2 mg of rFel d 1 was coated in a

high-adsorption 96-well plate and incubated overnight at 4°C. After

protein was adsorbed at the bottom of the wells, the plate was washed

5–10 times with 100 mL/well of PBST, followed by blocking the

unbound sites with a blocking solution. After sealing at 37°C for 1 h,

the plates were washed another 5–10 times with PBST. Serumwas used

as the primary antibody (diluted 1:250), HRP-conjugated Rabbit anti-

mouse IgG (Sangon, China), HRP-conjugated Rabbit anti-mouse IgG1

(Thermo Fisher, USA), HRP-conjugated Rabbit anti-mouse IgG2a

(Thermo Fisher, USA) as the secondary antibody (diluted 1:2000)

respectively. Upon completion of the antibody incubation, the EL-

TMB colorimetric kit (Sangon, China) was used for color development

for 30 min, followed by measuring the absorbance at 450 nm.
Frontiers in Immunology 04
Cytokine gene expressions in mouse lungs

IL-5, IL-13, GATA3, RORgt, IFN-g, T-bet, TGF-b mRNAs in

the mice lungs were determined by quantitative real-time PCR and

house-keeping-b-actin gene mRNA for RNA normalization, the

PCR primers as shown in Supplementary Table S1.
Acute systemic anaphylaxis

For the induction of anaphylaxis, mice were challenged i.v. with

30 mg of rFel d 1/100 mL PBS. Temperature was measured

immediately after i.v. antigen challenge and recorded the body-

temperature changes of mice from 0 to 90 min after i.v. allergen.
Ear prick tests

After i.v. injection 200 mL of 0.5% Evans Blue dye for 30 min,

23G puncture needles were used to puncture the center of the left

and right ears of mice, and 20 mL of allergen (500 mg/mL) was

dropped at the puncture site. After one hour of reaction, the mice

were euthanized and the leakage of dye from the ears was observed.

For quantification, the ears were cut and weighed, then immerse

them in 400 mL of formamide and place them in a 63°C water bath

to extract the dye for 32 h. The ears were withdrawn and 100 mL of

the extracted contents present in each test tube was pipetted into a

96-well plate. Set two replicates for each sample and measure the

absorbance at 620 nm.
Flow cytometry

After extracting and purifying a single-cell suspension from the

spleen, we took three samples from each specimen, each containing

1×106 cells, to analysis of the number of Tregs, Th17, Th1, and Th2

cells. The quantification of Treg cells was achieved through

immunostaining with anti-CD4-FITC (Biolegend, USA), anti-

CD25-APC (Biolegend, USA), and anti-Foxp3-PE (Biolegend,

USA) mAbs. Th17 cells detection were completed by

immunostaining with anti-CD4-FITC and anti-IL17A-APC

mAbs. For the determination of Th1 and Th2 cells numbers, we

also employed immunostaining, utilizing anti-CD4-FITC, anti-

IL4-APC, and anti- IFN-g-PE mAbs.
Statistical analyses

Statistical analyses were performed using GraphpadPrism. All

data were analyzed using one-way ANOVA, followed by post-hoc

comparisons using the Least Significant Difference (LSD) test and

independent t-tests. Values are expressed as mean ± SEM. Statistical

significance was defined at a p-value < 0.05 (*P < 0.05; **P < 0.01;

***P < 0.001).
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Results

Vaccine preparation

Characterization of LDH
LDHwas synthesized by co-precipitationmethod and characterized

through laser particle size analyzer, X-ray diffractometer (XRD), Fourier

transform infrared spectroscopy (FTIR) and field emission transmission

electron microscope (FE-TEM). The particle size of LDH measured by

the laser particle size analyzer was 109.4 nm (Figure 2A), the potential

was 44.2mV (Figure 2B), the polymer dispersion index (PDI) was 0.181,

indicating a relatively uniform dispersion. The X-ray diffraction results

showed five distinct peaks corresponding to the standard LDH

structure: (003), (006), (009), (110), and (113) (Figure 2C). Fourier

transform infrared spectroscopy was used to analyze the prepared LDH

nanoparticles, and the stretching vibration of functional groups was

observed at 3469.69 cm-1, 1633.59 cm-1, 1363.57 cm-1, 781.11 cm-1,

682.75 cm-1 and 553.53 cm-1 (Figure 2D). The morphology of the LDH

prepared in this experiment was observed by FE-TEM, and a clear

regular hexagon was observed at a resolution of 50 nm (Figure 2E). The

above results showed that we have successfully synthesized LDH

nanoparticles, which can be used in subsequent experiments.

Expression and purification of PADRE-rFel d 1
The prokaryotic expression vector pQE-80L-PADRE-rFel d 1

was transformed into Escherichia coli BL21 (DE3) and induced at

37°C for 6 h with 1 mM IPTG. SDS-PAGE electrophoresis and
Frontiers in Immunology 05
Western Blot analysis showed that compared with the strain

without induction (lane 2, Figure 2F), the target protein was

highly expressed in the host strain (lane 3, Figure 2F). Notably,

the protein was found in the form of inclusion bodies (lane 4,

Figure 2F). After purification, a relatively single target protein was

obtained (lane 5, Figure 2F).
Preparation of nanoprotein vaccine
Mixing LDH and PADRE-rFel d 1 at various mass ratios and

shaked for 30 min, centrifuged and collected the supernatant for

SDS-PAGE electrophoresis (Figure 2G). When the mass ratio of

LDH to PADRE-rFel d 1 is 8:1, the protein is completely adsorbed

by LDH (lane 11, Figure 2G), so the mass ratio was selected as the

optimal adsorption ratio for the preparation of the vaccine in

subsequent studies.
Nanoprotein vaccine can alleviate rFel d 1-
induced allergic symptoms

In order to evaluate whether the PADRE-rFel d 1-loaded LDH

nanoparticle-based vaccine could alleviate allergic airway inflammation

in rFel d 1-sensitized mice, the sensitized mice were randomly divided

into four groups. Seven days after the final allergen challenge, the mice

were immunized three times at two-week intervals respectively with

LDH+PADRE-rFel d 1, LDH, and PADRE-rFel d 1. The mice in the

Naïve group were that without sensitized or vaccinated (Figure 1A).
FIGURE 2

Preparation and determination of nanoprotein vaccine. (A) LDH hydrodynamic detection. (B) Detection of surface charge on LDH. (C) FTIR spectra
of LDH. (D) XRD patterns of LDH. (E) TEM images of LDH. (F) SDS-PAGE and immunoblot analysed the prokaryotic expression and purification of
PADRE-rFel d 1, lane 1: multicolor prestained protein ladderk (cat. No. WJ106, epizyme, China), lane 2: uninduced E. coli, lane3: IPTG-induced
E. coli, lane4: precipitate after ultrasonic disruption of the cell body post-induction, lane 5: rFel d 1 after purification. (G) Adsorption test of LDH with
PADRE-rFel d 1. lane 1: multicolor prestained protein ladderk (cat. No. WJ106, epizyme, China), lane 2: LDH, lane 3: PADRE-rFel d 1, lane 4 to lane
15: LDH was loaded with PADRE-rFel d 1 in mass ratios of 1:1, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1, 9:1, 10:1,11:1, 12:1, respectively.
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Treatment with nanoprotein vaccine reduces
AHR

Airway hyperreactivity(AHR)is an important pathological

indicator of allergic asthma. Assessment of AHR showe that,

compared with the sensitized group of mice, the AHR of the

Naïve group and the LDH+PADRE-rFel d 1 protein vaccine

group mice significantly decreased at MCh nebulization

concentrations of 12.5 mg/mL and 25 mg/mL, and the AHR was

extremely significantly reduced at 50 mg/mL. There was no

significant difference when the LDH alone immunization group

and the PADRE-rFel d 1 protein vaccine alone immunization group

were nebulized with different doses of MCh (Figure 1B). The area

under the curve of the Penh percentage of the Naïve group and the

LDH+PADRE-rFel d 1 group mice was significantly lower than that

of the allergic group, and the area under the curve of the Penh

percentage of the LDH group and the PADRE-rFel d 1 group mice

showed no statistical difference compared with the sensitized group

of mice (Figure 1C), which indicated LDH+rPADRE-rFel d 1

nanoprotein vaccine can alleviate airway hyperresponsiveness

induced by rFel d 1.

Nanoprotein vaccine decreases the total IgE
levels in serum

ELISA method is used to detect the total IgE levels in serum. We

found that the total IgE levels in serum of mice in the sensitized

group was significantly higher than that of the mice in the Naïve

group and LDH+PADRE-rFel d 1 group. There were no statistically

significant differences in IgE levels in the serum among the

sensitized group, LDH group, and PADRE-rFel d 1 group of

mice (Figure 1D).

Nanoprotein vaccine inhibits rFel d 1-specific
actived local or systemic allergic reactions

To inquire into the effects of vaccination on local or systemic

allergic reactions, ear skin prick tests with rFel d 1were performed.

we observed that following exposure to the allergen rFel d 1, there

was a very obvious dye leakage in the allergy group, LDH group and

PADRE-rFel d 1 group, while the dye leakage area was significantly

reduced in the naïve group and LDH+PADRE-rFel d 1 group

(Figure 1E). Statistical analysis of Evans blue leakage area also

showed that naïve group and LDH+PADRE-rFel d 1 group was

significantly smaller than allergy groups (Figure 1F).

The ears, after being harvested and soaked in 400 mL of

formamide, were subjected to water bath at 64°C for 24–48 h to

extract the dye. The absorbance of evans blue at 620 nm revealed a

significant reduction in the naïve and LDH+PADRE-rFel d 1

groups relative to the sensitized group (Figure 1G). Similar

outcomes were noted in systemic allergic reactions, after i.v. with

rFel d 1, the naïve and LDH+PADRE-rFel d 1 groups exhibited

minimal temperature fluctuations, whereas the sensitized group,

LDH group, and PADRE-rFel d 1 group experienced a precipitous

drop in temperature, resulting in a significantly larger area under

the curve (Figures 1H, I).
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Nanoprotein vaccine regulates
inflammatory cells infiltration

Lung inflammatory features of mouse stained by H&E, PAS and

Masson are shown in Figures 1A, 3A, 4A, respectively. The grade of

mouse lung inflammatory cells infiltration of naïve group and the

LDH+PADRE-rFel d 1 group was significantly lower than that in the

sensitized group and other vaccine groups (Figure 3A). PAS staining

results indicated that the number of goblet cells in the sensitized

group, LDH group, and PADRE-rFel d 1 groupmice was significantly

higher than that in the naïve group and the LDH+PADRE-rFel d 1

group (Figure 3B). Similarly, compared with the sensitized group,

LDH group, and Protein groupmice, the deposition of collagen in the

lungs of naïve group and LDH+PADRE-rFel d 1 group mice was

significantly downregulated (Figure 3C).
Nanoprotein vaccine modulates the
expression of cytokines in lung

As shown in Figure 4, compared with the sensitized group of

mice, the expression of IL-5 in the lungs of mice treated with LDH

+PADRE-rFel d 1 vaccine and PADRE-rFel d 1 vaccine was

significantly reduced (Figure 4A), and there was a downward

trend in the expression of IL-13, GATA3, RORgt, and IL-17A,

but only the expression of IL-13 and RORgt in the lungs of mice in

the LDH+PADRE-rFel d 1 group was significantly decreased

(Figures 4B–D, G). The expression of T-bet, IFN-g, and TGF-b in

the lungs of mice treated with LDH+PADRE-rFel d 1 vaccine and

PADRE-rFel d 1 vaccine showed a downward trend compared with

the sensitized group of mice, among which the expression of T-bet,

IFN-g, and TGF-b in the lungs of mice in the LDH+PADRE-rFel d

1 group was significantly lower than that in the sensitized group of

mice (Figures 4E–H).
Nanoprotein vaccine adjusts the balance of
Th1/Th2 and Treg/Th17

In order to explore the mechanisms underlying the PADRE-

rFel d 1-loaded LDH nanoparticle-based vaccine’s therapeutic effect

on rFel d 1-induced allergic responses, vaccinations were given on

day 0 and day 14, followed by an assessment of Th1, Th2, Treg, and

Th17 cell levels in splenic lymphocytes two weeks post-final

immunization (Figure 5A). As shown in Figure 5, compared to

the naïve group, LDH+PADRE-rFel d 1 induced a significant

increase in the levels of CD4+CD25-FOXP3+ regulatory T cells

and CD4+CD25+FOXP3+ regulatory T cells (Figures 5D-F), while

significantly downregulating the levels of CD4+IL-17A+ of T cells

(Figures 5C, G). PADRE-rFel d 1 significantly suppressed the levels

of CD4+IL-17A+ of T cells (Figures 5C, G), but its ability to induce

CD4+CD25-FOXP3+ regulatory T cells and CD4+CD25+FOXP3+

regulatory T cells showed no statistical difference compared to the
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Naïve group (Figures 5D-F). Similarly, the same results were

observed when examining the levels of CD4+IFN-g+ and CD4+IL-

4+ cells. Compared to the naïve group, the levels of CD4+IFN-g+

cells in splenic lymphocytes significantly increased, and the levels of
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CD4+IL-4+ cells significantly decreased after immunization with

LDH+PADRE-rFel d 1. There were no statistical differences in the

levels of CD4+IFN-g+ and CD4+IL-4+ cells in mice from the LDH

group and the PADRE-rFel d 1 group (Figures 5B, H, I).
FIGURE 3

Nanoprotein vaccine immunotherapy prevents rFel d 1-induced lung inflammation. (A) Histopathological appearance of mouse lung sections stained
with hematoxylin and eosin (H&E) dyes and the peribronchial inflammation score. (B) Histopathological appearance of mouse lung sections stained by
periodic acid–Schiff (PAS) dye to reveal goblet cells and average goblet cell grades. (C) Histopathological appearance of mouse lung sections revealed by
Masson’s trichrome staining and average grades of the collagen deposition and fibrotic change. Results are expressed as mean ± SEM of 6 mice per
group. One-way ANOVA: *P < 0.05, **P < 0.01, ***P < 0.001 different from allergic group; ns, not significantly different from allergic group.
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Nanoprotein vaccine increases the levels of
IgG, IgG1 and IgG2a

Two weeks after the second vaccination, the levels of rFel d 1-

specific IgG, IgG1 and IgG2a in the mouse serum were measured.
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As shown in Figure 6, compared to the IgG, IgG1 and IgG2a levels

in the serum of naive mice, there was no statistically significant

difference in the I IgG, IgG1 and IgG2a levels of the LDH group

mice, while the levels of IgG, IgG1 and IgG2a in the serum of mice

in both the LDH+PADRE-rFel d 1 group and the PADRE-rFel d 1
FIGURE 4

Expression of cytokine genes in the lungs. (A) IL-5. (B) IL-13. (C) GATA3. (D) RORgt. (E) T-bet. (F) IFN-g. (G) IL-17A. (H) TGF-b. Results are expressed
as mean ± SEM of 4–6 mice per group and are representative of 3 experiments. One-way ANOVA: *P < 0.05, **P < 0.01, ***P < 0.001 different from
allergic group; ns, not significantly different from allergic group.
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group were significantly increased (Figures 6A-C). Although

vaccinated mice showed elevated levels of IgG, IgG1 and IgG2a,

further research is needed to determine whether these antibodies

exhibit allergen neutralizing or blocking activity, given the complex

and potential dual role of IgG subclasses in allergic reactions.
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Discussion

Cat allergy is a global health concern, ranking second in

prevalence after dust mites (21, 22). Fel d 1 is the primary

allergenic molecule responsible for cat allergies, with more than
FIGURE 5

Levels of differential T cells in splenocytes after immunization with rFel d 1-loaded LDH nanoparticle-based nanoprotein vaccine. (A) Percentages of CD4+IL-
4+ Th2 cells and CD4+ IFN-g+ Th1 cells. (B) Percentages of CD4+CD25+Foxp3+ nTreg cells and CD4+CD25-Foxp3+ iTreg cells. (C) Percentages of CD4+IL-
17A+ Th17 cells. (D) Statistical analysis of percentages of Th2 cells, Th1 cells, nTreg cells, iTreg cells and Th17 cells. Results are expressed as mean ± SEM of 6
mice per group. One-way ANOVA: *P < 0.05, **P < 0.01 different from naive group; ns, not significantly different from naive group.
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90% of cat allergy patients exhibiting Fel d 1-specific IgE in their

serum (23, 24). Consequently, immunotherapy targeting Fel d 1 has

become a focal point in cat allergy research. In this study, we

demonstrated that the developed nano-protein vaccine effectively

treats Fel d 1-induced allergic reactions.

PADRE is a non-natural helper T-cell epitope capable of binding

to multiple class II MHC molecules, thereby activating CD4+ T cells

and enhancing the immune response (25, 26). One study indicated

that DNA vaccines encoding Ii-PADRE could generate a robust

PADRE-specific CD4+ T-cell immune response, thereby increasing

vaccine efficacy (27). Furthermore, PADRE can form conjugates with

specific B-cell epitopes, inducing high-titer IgG antibody responses

(28). Research by Parvin Zamani et al. showed that vaccination with a

Lip-P5-integrated PADRE-MPL formulation significantly induced

IFN-g production, increased CD8+ T-cell numbers, and improved

survival rates (29). In our experiment, we optimized the Fel d 1

sequence and linked a universal T-cell epitope (PADRE) to its N-

terminus via the AAY linker to enhance the immunogenicity of the

protein vaccine. The AAY linker helps maintain the natural

conformation and independence of the epitopes, thereby improving

the vaccine’s immunogenicity, which is a commonly used linking

strategy in multi-epitope vaccine construction (30–32). Hossein

Tarrahimofrad and colleagues also found that using the AAY linker

enhanced immune responses in the design of a multi-epitope vaccine

against influenza A H7N9 (33). Layered double hydroxides (LDHs)

are inorganic materials with a layered structure that exhibit

significant potential in the biomedical field, particularly as

immunoadjuvants due to their unique physicochemical properties

and biocompatibility (34, 35). Studies have shown that well-dispersed

LDHs can induce stronger cytotoxic T lymphocyte (CTL) responses

and significantly inhibit tumor growth (36). Li et al. found that LDH

activates dendritic cells through pathways that upregulate CCR7

expression, enhancing dendritic cell migration toward CCL21.

Moreover, LDH increases NF-kB expression in the nucleus and

promotes IkBa degradation (18). The pH sensitivity of LDH allows

for the targeted release of drugs in acidic microenvironments (37),

and its biodegradability facilitates the slow release of drugs or
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antigens in vivo, thereby prolonging immune stimulation duration

and effectiveness (38). This study employed LDH nanoparticles as an

immunoadjuvant, incorporating rFel d 1 into the interlayer of LDH

through ion exchange, resulting in the creation of the nano-protein

vaccine LDH+PADRE-rFel d 1.

Patients with cat allergies secrete large amounts of allergen-

specific IgE, which subsequently binds to high-affinity IgE receptors

on the surface of mast cells and basophils, sensitizing these cells.

Upon re-exposure to the same allergen, the allergen can bind to IgE

on mast cells or basophils, triggering degranulation (39, 40). Pei

et al. demonstrated that co-immunization with DNA and protein

vaccines significantly reduced serum Fel d 1-specific IgE levels in

mice compared to sensitized controls, with stress response assays

indicating remarkable therapeutic efficacy (41). A study

investigating the potential of TLR9 agonists adsorbed to alum

adjuvants in preventing asthma-like reactions induced by tropical

mite extracts showed that CpG could inhibit locally or systemically

activated allergic responses (42). As highlighted by Khodoun

regarding the methodological challenge of IgG/IgE cross-

reactivity, positive skin prick test outcomes may result from

either IgE antibodies or high-titer IgG antibodies (43). In this

study, we specifically addressed this technical ambiguity by

employing IgG/Fcg receptor-pre-adsorbed anti-IgE monoclonal

antibodies in our ELISA protocol to biochemically discriminate

between IgE-mediated type I hypersensitivity and IgG-mediated

type III hypersensitivity. This method has been validated by

Khodoun et al. to eliminate cross reactivity. The results showed

that, mice treated with LDH+PADRE-rFel d 1 also exhibited a

significant reduction in serum total IgE levels and demonstrated

notable therapeutic effects in both local and systemic allergic

responses. However, it is noteworthy that serum total IgE levels

in mice treated with the LDH+PADRE-rFel d 1 significantly still

significantly higher than those in the Naïve group mice. This

phenomenon may be attributed to the preparation of PADRE-

rFel d1 protein vaccine and rFel d 1 allergen, both of which were

expressed in Escherichia coli BL21. Since the same preparation was

used for sensitisation/desensitisation protocols, potential
FIGURE 6

Immunizing mice with nanoprotein vaccine can increase the level of rFel d 1-specific (A) IgG, (B) IgG1 and (C) IgG2a in serum. Results are expressed
as mean ± SEM of 6 mice per group and are representative of 3 experiments. One-way ANOVA: *P < 0.05, ***P < 0.001 different from allergic
group; ns, not significantly different from allergic group.
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contaminants present in the protein formulations may have

participated in both immunological processes, resulting in

research results that may not only reflect the host immune

response to the target antigen but also unintended reactivity

toward residual contaminants. Degranulation of granule cells

leads to inflammatory cell infiltration in lung tissues and a series of

pathological changes, including epithelial cell damage, increased

mucus secretion, smooth muscle cell hyperplasia and hypertrophy,

and extracellular matrix remodeling (44–46). These alterations

collectively contribute to airway inflammation and hyperreactivity.

Certain biological agents, such as omalizumab, target IgE molecules

to reduce mast cell and basophil activation, thereby alleviating airway

inflammation and hyperreactivity (47). In contrast, Tezepelumab

monoclonal antibodies reduce airway inflammation by inhibiting IL-

4 and IL-13 signaling (48). In our experiment, we found that LDH

+PADRE-rFel d 1 treatment significantly reduced lung inflammatory

cell infiltration, goblet cell numbers, and collagen fibrosis compared

to sensitized control mice, with airway hyperreactivity assays further

confirming the efficacy of the LDH+PADRE-rFel d 1 nano-

protein vaccine.

In type I hypersensitivity reactions, Th1 and Th2 cytokines play

crucial roles (49–51). IL-4, a central cytokine of Th2 cells, not only

promotes IgE production by B cells but also enhances the activation

of mast cells and basophils (52). IL-5 promotes the differentiation

and maturation of eosinophils in the bone marrow and drives their

migration to tissues (53). IL-13 has similar effects to IL-4,

facilitating IgE production by B cells (54) and promoting mucus

production by goblet cells, thereby inducing airway hyperreactivity

(55). IFN-g is a primary Th1 cytokine that promotes the

differentiation of Th0 cells into Th1 cells while inhibiting Th2 cell

activity, consequently reducing IL-4 production (56) and inducing

mast cell apoptosis (57). In our study, the cytokine profile revealed

that, compared to sensitized mice, those treated with the nano-

protein vaccine exhibited significantly decreased mRNA expression

levels of IL-4, IL-5, IL-13, GATA3, RORgt, and IL-17A in lung

tissue, while expression levels of T-bet, IFN-g, and TGF-b
significantly increased. This suggests that the LDH+PADRE-rFel

d 1 vaccine can inhibit Th2 and Th17 immune responses while

inducing a Th1 immune response. Consistent with our findings,

Natt Tasaniyananda et al. reported that a novel nasal liposome-

encapsulated vaccine derived from natural Fel d 1 effectively

suppressed Th2 immune responses while favoring Th1 immune

responses in the treatment of cat allergen-induced rhinitis (58).

Similarly, a study on peptide immunotherapy for cockroach extract-

induced allergic reactions observed that the peptide vaccine induced

Th1 cytokines while suppressing Th2 cytokines (59). Kim et al.

noted that oleanolic acid could mitigate OVA-induced airway

inflammation and Th2-mediated allergic asthma by modulating

the transcription factors T-bet, GATA-3, RORgT, and Foxp3 (60).

The imbalance between Th1/Th2 and Treg/Th17 cell

populations is considered a molecular mechanism underlying

allergic diseases (61). Research suggests that modulating the

balance of these cell subpopulations can alleviate symptoms of

allergic diseases. For instance, one study found that quercetin could
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improve the Th1/Th2 and Treg/Th17 balance, thus relieving

symptoms of allergic rhinitis (62). Liu et al. discovered that Majie

cataplasm might enhance airway hyperreactivity and inflammation

by regulating Th1/Th2/Treg/Th17 balance (63). In our study, flow

cytometry was used to investigate the mechanism of action of the

LDH+PADRE-rFel d 1 vaccine. The results indicated an increase in

CD4+CD25+FOXP3+ Treg cells and CD4+IFN-g+ Th1 cells,

alongside a decrease in CD4+IL-4+ Th2 cells and CD4+IL-17A+

Th17 cells. This suggests that the LDH+PADRE-rFel d 1 vaccine

achieves therapeutic effects by restoring the balance of Th1/Th2 and

Treg/Th17 cells. CD4+CD25- Treg cells are a type of antigen-

specific regulatory T cell, and Youmin Kang et al. found that co-

immunization with matched DNA and protein vaccines could

induce these cells and exert immunosuppressive effects (64).

Several studies indicate that iTreg can increase the secretion of

IL-10 and TGF-b, thus suppressing allergic responses (65–67).

One explanation for the therapeutic effect of “blocking”

antibodies IgG is that they compete with IgE for the binding of

allergens (48), another suggests that the process of IgE-facilitated

antigen presentation is suppressed (15, 68). Saarne et al., in their

investigation of a low-allergen Fel d1 vaccine for cat allergy, noted a

marked elevation in IgG, IgG1, and IgG2a levels in the serum of

vaccinated mice (69). Consistent with the results of Saarne et al,

following a two-week post-vaccination period, we assessed the levels

of IgG, IgG1, and IgG2a in serum. We observed that, in comparison

to the naïve group, the mice of LDH+PADRE-Fel d 1 vaccine group

displayed a pronounced increase in these immunoglobulin levels.

When interpreting these findings, careful consideration must be

given to the complex and potential dual role of IgG subclasses in

allergic reactions. Although IgG antibodies are typically associated

with allergen neutralization, there is evidence to suggest that certain

subclasses, particularly IgG1 and IgG2a, may induce allergic

reactions in mouse models through FcgRIII and FcgRIV mediated

mechanisms, respectively (70–72). In our study, an increase in IgG

titers was associated with reduced clinical symptoms, suggesting a

net protective effect. However, the exact underlying mechanisms,

whether they involve allergen neutralization, FcgR competition, or

alternative immune regulatory pathways, still need to be elucidated.

Future research should directly evaluate the functional properties of

these antibodies, including their ability to block IgE allergen

interactions or inhibit degranulation of mast cells.
Conclusion

This study demonstrates that the LDH+PADRE-rFel d 1

nanoprotein vaccine can alleviate rFel d 1-induced allergic

reactions by inducing the production of iTreg and restoring Th1/

Th2 and Treg/Th17 balance. While vaccination leads to elevated

antibody titers, additional functional validation studies are required

to characterize the potential protective efficacy of these antibodies.

In summary, Further investigation of this vaccine is warranted, as it

provides foundational data and theoretical support for the

development of therapeutic vaccines for cat allergies.
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