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Extracellular vesicles (EVs), as cell-derived small vesicles, facilitate intercellular

communication within the tumor microenvironment (TME) by transporting

biomolecules. EVs from different sources have varied contents, demonstrating

differentiated functions that can either promote or inhibit cancer progression.

Thus, regulating the formation, secretion, and intake of EVs becomes a new

strategy for cancer intervention. Advancements in EV isolation techniques have

spurred interest in EV-based therapies, particularly for tumor immunotherapy.

This review explores the multifaceted functions of EVs from various sources in

tumor immunotherapy, highlighting their potential in cancer vaccines and

adoptive cell therapy. Furthermore, we explore the potential of EVs as

nanoparticle delivery systems in tumor immunotherapy. Finally, we discuss the

current state of EVs in clinical settings and future directions, aiming to provide

crucial information to advance the development and clinical application of EVs

for cancer treatment.
KEYWORDS

extracellular vesicles, nanotechnology, tumor immunotherapy, drug delivery and
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1 Introduction

Traditional cancer therapies, such as chemotherapy, radiotherapy, and surgery, aim to

eliminate or directly remove cancer cells. However, these treatments often come with

multiple adverse effects (1). Chemotherapy and radiotherapy, for instance, can impact

normal cells, leading to immunocompromising effects and side effects like alopecia, nausea,

and cytopenia. Surgery, while effective, may inadvertently damage normal tissue,

potentially causing long-term complications. Moreover, surgical interventions have

limited efficacy in treating metastatic cancer and may even accelerate the recurrence of

tumors (2). In contrast, immunotherapies, including immune checkpoint inhibitor (ICI)
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treatments, adoptive cell immunotherapy (ACT), and tumor

vaccines, have emerged as promising alternatives. These

approaches aim to enhance antitumor immune responses,

leveraging the host’s innate defense mechanisms to specifically

target and eliminate malignant cells while minimizing off-target

effects. Several ICIs, such as the CTLA-4 monoclonal antibody

ipilimumab, programmed death-1 (PD-1) monoclonal antibodies

nivolumab and pembrolizumab, and PD-L1 monoclonal antibodies

atezolizumab and avelumab, have been approved for clinical use (3–

7). However, ICIs may impair normal tissues such as

gastrointestinal tract, thyroid, and lung (8, 9). Adoptive cell

immunotherapy involves therapies like tumor-infiltrating

lymphocytes (TILs), chimeric antigen receptor T cells (CAR-T),

and TCR-modified T cells (TCR-T). While ACT can outperform

traditional therapies in certain cases, its widespread use is hindered

by complex and costly production processes (10). Tumor vaccines

utilize tumor-specific antigens (TSAs) or neoantigens to induce

acquired immunity against tumors. While their long-lasting

antitumor effects make them suitable for patients with smaller

tumors, the time-consuming production of tumor vaccines may

pose challenges in keeping up with the progression of tumors (11).

Despite these advancements, addressing the immune evasion tactics

employed by cancer cells continues to be a significant challenge in

the realm of tumor immunotherapy (12).

Given the intricate mechanisms by which cancers evade the

immune system, employing combination therapies that address

different phases of the cancer-immunity cycle may yield more

successful outcomes. Recently, innovative drug delivery systems

utilizing nanoparticles (NPs) and extracellular vesicles (EVs) have

surfaced as comprehensive platforms for the concurrent delivery of

multiple therapeutics. These systems aim to counteract

immunosuppression and foster a tumor microenvironment (TME)

that is supportive of immune responses (13). Various nanomaterials,

including liposomes, nanostructured lipid carrier systems (NLCs),

solid lipid nanoparticles (SLNs), hydrogels, nanoemulsions, polymer

micelles, and inorganic NPs, have demonstrated potential as

nanoplatforms for drug delivery. These materials offer significant

advantages such as high bioavailability, controllable drug release, and

remarkable kinetic stability (14, 15). EVs exhibit superior

biocompatibility, transferability, and targeting ability compared to

synthetic NPs (16). As small vesicles released by cells, they can be

found in various bodily fluids, including blood, saliva, urine,

cerebrospinal fluid (CSF), pleural fluid, and breast milk (17, 18).

They possess intrinsic capabilities to penetrate barriers and induce

functional alterations in targeted cells (19, 20). Notably, EVs can cross

the blood–brain barrier (BBB), overcoming limitations for small-

molecule drug passage (21). At the cellular level, EVs efficiently

engage with the plasma membrane through various ligand/receptor

interactions, leading to enhanced internalization compared to

synthetic nanocarriers (22–24). Internalization primarily occurs

through endocytosis, with distinct pathways identified for different

cell types. This efficient cargo delivery to recipient cells suggests a

promising role for EVs in delivering antigens or drugs for cancer

therapy (25, 26).
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Beyond drug delivery, EVs play an essential role in tumor

therapy by virtue of their high immunostimulatory factors,

regulating inflammatory reactions and adjusting immune function

(27). Bioactive molecules within EVs, including proteins, RNAs,

DNAs, lipids, amino acids, and metabolites, modulate intercellular

communication and influence the TME (28). Tumor EVs, dendritic

cells (DCs), and antigen-presenting cell (APC)-derived EVs work

together, consisting of a vaccination platform supporting DC

maturation and antigen presentation. EVs imitate the function of

their donor cells, making them a potential alternative for adoptive

cell therapy (ACT). Engineered EV surfaces make the delivery more

targeted, since EVs can cross the BBB and blood–tumor barrier

(BTB). Moreover, the artificially loaded cargoes further promoted

the intrinsic antitumor capacity of EVs (29). However, despite

advantages in the field of EVs, there are still some problems that

need to be solved in the future, which may hinder the application

and effectiveness of EVs in cancer treatment.

A comprehensive understanding of EVs and their interactions

with cells is crucial for their application in anticancer treatment. We

begin with a brief overview of the biogenesis and current

modification strategies of EVs, emphasizing their functions in the

TME. The subsequent section reviews the current application

strategies of EVs in cancer therapy. Additionally, we discuss the

challenges and potential solutions regarding the clinical use of EVs.

Ultimately, our aim is to provide essential information to promote

the development and cl inica l appl icat ion of EVs in

cancer treatment.
2 Biogenesis and modification of EVs

2.1 Biogenesis of EVs

EVs are NPs derived from different cell activities with

heterogeneity. According to Minimal Information for Studies of

Extracellular Vesicles (MISEV) 2023, the EVs generated from

multivesicular bodies (MVBs) are classified as exosomes and

those derived from cell membranes are named ectosomes, e.g.,

microvesicles (MVs) and microparticles. Some EVs are related to a

specific type of cellular process including apoptotic bodies from

programmed cell death, migrasomes from cell migration, and

oncosomes from tumor progression (30). Figure 1 illustrates the

biogenesis of different types of EVs.

Furthermore, drugs and genetic intervention may contribute to the

stimulation or suppression of EV release (31, 32). However, most

isolation techniques are unable to enrich EVs of different biogenesis.

The lack of universal biomarkers discourages definitive

characterization of biogenesis-based subtypes. Therefore, the

biogenesis-related terms such as exosomes and ectosomes are not

encouraged to be applied unless they are specifically and carefully

separated. However, the majority of the existing literature on

“exosomes” and “ectosomes/microvesicles” refers to a broad

population of EVs, rather than EVs originating from specific

biogenesis pathways (30). In the article, the terms “EVs”,
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1525052
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xia et al. 10.3389/fimmu.2025.1525052
“exosomal”, and “exosome (EXO)” all refer to “extracellular vesicles”

referred in MISEV2023 with no indication of their biogenesis.
2.2 Modification of EVs

Apart from the naïve EVs that possess an intrinsic ability to target

different cell types, such as tumor cells, immune cells, and stem cells, a

number of synthetically modified EVs have been developed to

improve their biodistribution and targeting capabilities, boosting

EV-based tumor immunotherapy (19, 33). Surface modifications

through cellular machinery techniques facilitate tumor targeting

and intercellular transformation (34). Cargo-loaded EVs are now a

new trend in tumor immunotherapy, which can prevent the clearance

of drugs in blood, limit the dose, and reduce side effects (35, 36). Pre-

loading is performed before EV secretion or isolation. It enables the

membrane integrity of EVs and allows for continuous and easy
Frontiers in Immunology 03
production of EVs since donor cells are preserved (37). Post-loading

directly loads cargo into EVs, exhibiting a higher loading efficiency

but potentially altering membrane integrity (38). Table 1 lists the

common techniques for EV modification. Figure 2 illustrates the

modification and isolation techniques of EVs.
3 The interplay of various cell-derived
EVs in the TME

In the intricate landscape of the TME, the presence of not only

tumor cells but also resident stromal cells and infiltrating immune

cells significantly influences tumor malignant properties and

progression (39). Serving as messengers in intercellular

communication, EVs emerge as crucial modulators shaping

tumor growth, immunity, and drug resistance (40). This section

delves into the functions of EVs derived from major cell types
FIGURE 1

Biogenesis of heterogeneous EVs. EVs can be categorized via their biogenesis, which distinguishes their size, surface markers, and cargoes. EXOs
derived from small bulbs emerged in early sorting endosomes. After selection in the last sorting endosomes, EXOs are released from MVBs. Different
from EXOs, MVs are directly released from cells. LOs are large vesicles secreted by cancer cells, containing various tumor-specific factors. ABs are
bubbles separated from dying cells; inside are broken organelles and apoptosis-related components. EVs, extracellular vesicles; EXOs, exosomes;
MVBs, multivesicular bodies; MVs, microvesicles; LOs, large oncosomes; ABs, apoptosis bodies. BioRender was used to create the figure.
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TABLE 1 Biogenesis and modification of EVs.

Principle Advantages Disadvantages Application Reference

Membrane modification

Genetic engineer

1. Design target molecules
2. Insert the corresponding gene to donor cells
(transduction/transformation)
3. Extraction of EVs with specific molecules on membrane

1. Capacity to
add complex
and fragile
ligands on
surface
2. Genes can be
easily designed

1. Some donor cells like
red blood cells/stem cells
can hardly to be
transduced
2. Change of genes may
induce unexcepted errors

1. Add fragile
ligands
2. Add ligands
from a
selected gene

(350–352)

Chemical
modification

1. Click chemistry combining target molecules with target
cells with EDC/NHS coupling
2. Metabolic labeling involves incorporating reactive
groups into EV membrane proteins or glycoproteins by
culturing donor cells in a medium containing azide-bearing
amino acids or azide-modified saccharides. This approach
enables subsequent modifications with targeting moieties via
click chemistry
3. Affinity binding applies affinity molecules on EV
surface to link target moieties

1. Click
chemistry is a
robust binding
technique
2. Metabolic
labeling is stable
and efficient
3. Affinity
binding is easy
to operate.
Avoiding
perturbation on
EV surface

1. Click chemistry: The
non-specific reaction may
alter the properties of
EVs
2. Metabolic labeling:
Application of azide-
bearing supplements for
large-scale media and
substrate synthesis in
click chemistry is
expensive
3. Affinity binding: Less
robust compared with the
other two techniques

1. Insertion of
peptides,
proteins,
aptamers,
and lipids

(353–356)

Cargo-loading techniques

Pre-loading

Co-incubation
1. Mix the donor cells with drugs
2. Yield EVs containing drugs

1. Easy to
operate
2. Avoiding
damages on
EV surface

1. Limited efficiency,
especially to
hydrophilic drugs

1. Lipophilic
drugs like
doxorubicin
(DOX) and
paclitaxel (PTX)
2.
Small molecules

(357–359)

Transfection
1. Transfection of the donor cells regulates expression of a
given gene, inducing an alteration in EV content

1. Convenience
in loading
nucleic acids
2. Stability

1. Vector may get into
the EVs, causing
unwanted results
2. Alterations in gene
expression and the
toxicity of transfection
agents can lead to
changes in parental cells

1. Nucleic acids
2. Proteins
and peptides

(360–362)

Regulation
of
microenvironment

1. Alteration of microenvironment (e.g., drug stimulation,
changes in temperature, and oxygen concentration) induces
secretion of EVs with different content

1. Easy
to operate

1. Risk of cell death

1. Drug
induction
2.
Stress induction

(363, 364)

Post-loading

Co-incubation 1. Directly co-incubate drugs with EVs
1. Easy
to operate

1. Low efficiency
2. Limited scope
of cargoes

1. Lipophilic
drugs
2. Hydrophilic
drugs
encapsuled with
lipid coat
3. Proteins
and peptides

(365)

Sonication
1. Sonication deforms the vesicle membrane, facilitating
cargo penetration

1. Efficient
and simple

1. Damage to membrane
integrity
2. Risk of vesicle
aggregation
3. Degradation of
nuclear acid

1. Drugs
2. Proteins
3.
Nanomaterials

(366, 367)

(Continued)
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TABLE 1 Continued

Principle Advantages Disadvantages Application Reference

Post-loading

Extrusion

1. In the technique, EVs and cargoes are mixed and
compressed via a lipid extruder with 100- to 140-nm pores.
During this process, the EVs membrane is disrupted,
allowing cargoes to be encapsulated as the
membrane reassembles

1. Efficient
2. Identical EV
size
after extrusion

1. Greatly alter
membrane structure
2. Altered zeta potential
and are cytotoxic

1. Drugs
2. Proteins
3.
Nanomaterials
4. Nucleic acid

(368, 369)

Electroporation
1. Electroporation applies an electrical pulse to form pores
in the EV bilayer membrane, allowing loading molecules to
enter the vesicles

1. Optimized
processes ensure
high
loading
efficiency

1. Risk of vesicles/
cargoes aggregation

1. Drugs
2. Proteins
3.
Nanomaterials
4. Nucleic acid

(19, 370, 371)

Freeze/thaw
1. Repeated freeze–thaw cycles damage the vesicle
membrane, enabling cargo diffusion

1.
Simple
procedures

1. Low efficiency
2. Risk of vesicle
aggregation and vesicle
protein damage

1. Proteins
and peptides

(372)

Purification techniques

Differential
ultracentrifugation
(dUC)

1. Utilizing a succession of centrifugal forces and durations
to sequentially separate particles through sedimentation
based on their size

1. Applicability
for isolating EVs
in large volume
of biological
liquids
2. Limited
impact on EVs
as no chemicals
are used for EV
isolation
3. High purity
4. Ease of
operation
5.
Good
reproducibility

1. Requirement of
expensive equipment
2. Presence of
contaminants (partials of
similar size)
3. Possible structure
damage
4. Time-consuming

1. Large volume
isolation
2. Purification
of small EVs

(245,
373, 374)

Ultrafiltration
(UF)

1. Isolating particles within a predetermined size range
using membranes with defined pore sizes

1. Relatively less
time
2. Absence of
expensive
equipment

1. Lower purity and yield
compared with dUC
2. Poor RNA and
mRNA preservation

1. EVs
concentration
2. Size-oriented
EVs separation

(373,
375–377)

Polyethylene glycol
(PEG)-
based precipitation

1. Wrapping EVs in an aqueous PEG solution to help
exosome aggregates develop that enable them to be
precipitated using low-speed centrifugation at 1,500 g

1. Production of
pure exosomal
fraction based
on
immunological
markers
2. Application in
clinical
research settings

1. Contamination of co-
aggregated substance

1. Large
volume
isolation

(373, 378)

Immunoaffinity
capture

1. A technique separating EVs with specific surface proteins,
especially tetraspanins like CD9, CD63, and CD81

1. High
specificity
and purity

1. High-cost antibodies
2. Elution could harm the
natural EV structure.
3. Specificity limits its
clinical use

1. Isolation of
EVs with
specific proteins
on surface

(379–382)

Microfluidic
1. A high-throughput technique that use microfluidic tools
to separate EVs including a number of criteria, such as
immunoaffinity, size, and density

1. Fast
processing speed
2. High level
of purity

1.Complex and costly
equipment
2. Shared disadvantages
in immunoaffinity
capture section

1. Integration of
purification
and
examination

(383–385)

(Continued)
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within the TME (Figure 3), elucidating their roles as regulators of

tumors and inducers of immune responses.

3.1 Tumor cell-derived EVs

EVs originating from tumor cells play an essential role in influencing

their own growth through autocrine mechanisms and shaping the

behavior of adjacent cancer cells through intercellular communication

(Figure 4). For instance, EVs derived from chronic myeloid leukemia

cells contain TGFb1, which promotes the growth of the producer cell

through the activation of ERK, AKT, and anti-apoptotic pathways (41).

Furthermore, impaired exosomal maturation and secretion due to the

deficiency of vacuolar protein sorting protein 33b (VPS33B) significantly

suppresses leukemogenesis (42). Tumor-derived EVs also act as

promoting factors for adjacent cancer cells, exemplified by the

transmission of oncogenic activity and increased proliferative capacity

in glioma cells through the sharing of anti-epidermal growth factor

receptor vII (EGFRvIII) via EVs (43). Additionally, these EVs are

implicated in angiogenesis, a critical stage in tumor growth. They

transport vascular endothelial growth factors (VEGFs) to endothelial
Frontiers in Immunology 06
cells, promoting the development of microvessels (44). CircRNA and

mRNA in EVs also contribute to tumor progression in the TME (45–47).

Exosomal circCMTM3 facilitates angiogenesis and tumorigenesis in

hepatocellular carcinoma by regulating the miR-3619-5p/SOX9

pathway (45). let-7 g-5p derived from gastric cancer EVs drives M2

polarization inmacrophages and contributes to the progression of gastric

cancer (48). Moreover, the role of exosomal circRNAs in cancer

chemotherapy resistance has been recognized (49). These circRNAs

derived from drug-resistant cells are delivered to drug-sensitive cells and

result in the resistance of one specific type of drug. For instance, the

activation of the ciRS-122/miR-122/PKM2 axis promotes glycolysis and

oxaliplatin resistance in colorectal cancer (50). The delivery of Circ-

DNER induces the PTX resistance and cancer progression via the Circ-

DNER/miR-139-5p/ITGB8 pathway in lung cancer (51).
3.2 Stromal cell-originated EVs

Stromal cells, including those aiding lymphocyte formation and

maturation, play essential roles in shaping the TME. Exosomes
TABLE 1 Continued

Principle Advantages Disadvantages Application Reference

Purification techniques

Size-exclusion
chromatography
(SEC)

1. Starting biofluid is applied as the mobile phase in this
method, and a porous gel filtration polymer is used as the
stationary phase. Because of the characteristics of the
stationary phase, differential elution is possible: larger
particles elute first, followed by smaller vesicles, followed by
proteins that are not membrane-bound.

1. Better purity
2. Processing
samples
efficiently
3. Keep the
integrity of EVs

1. Unable to differentiate
between contaminates of
the same size
2. Low yield

1. Isolation of
fragile EVs

(305,
386–388)
FIGURE 2

Modification technique of EVs and recommended procedure analyzing EV samples. (A) The figure illustrates techniques for processing EVs from
extraction to modification and cargo loading. The first step is to extract EVs from the complex fluid (tissue fluid or culture medium), while dUC is the
most common method. The surface membrane modification can be achieved by click chemistry and hydrophobic insertion, which enhances its
targeting capacity. Finally, versatile techniques have been applied in the cargo loading of EVs according to the character of the cargo. In some cases,
the donor cells are loaded with mRNAs or cocultured with drugs initially to generate EVs with special features. (B) According to MISEV2018, at least
two methods are required to characterize the EVs. Microscopies can be applied in visualizing EVs. TEM, DLS, TRPS, and NTA measure the size and
quantity of various EVs. WB, qPCR, and flow chemistry can analyze protein and nucleic acid in EVs. It is noted that there is no existing equipment
that can easily characterize all the EVs in a sample (16). EVs, extracellular vesicles; dUC, differential ultracentrifugation; MISE2018, minimal
information for studies of extracellular vesicles 2018; TEM, transmission electron microscope; DLS, dynamic light scattering; TRPS, tunable resistive
pulse sensing; NTA, nanoparticle tracking analysis; WB, Western blot; qPCR, quantity polymerase chain reaction. BioRender was used to create
the figure.
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FIGURE 3

Immune regulatory role of EVs in the TME. The figure shows the regulatory network of EVs in the TME. In the left panel, the activation of CD8+ T
cells, DCs, CD4+ T cells, NK cells, and M1 macrophages facilitates tumor cell death. DCs present tumor antigens and secrete IL-12 and IL-15,
promoting the activation of CD8+ and CD4+ T cells. CD8+ T cells, when activated, release IFN-g and other cytotoxic molecules, contributing to
tumor apoptosis. CD4+ T cells secrete IL-2, further supporting CD8+ T-cell and NK cell activation. NK cells produce IL-15, IL-18, and 4-1BBL,
enhancing their cytotoxic function. M1 macrophages release ROS, TNF-a, and IFN-g, promoting an antitumor response. Tumor cells express
molecules like CD40L and Fas, which enhance immune cell-mediated killing. Various microRNAs (e.g., miR-25-3p, miR-155-5p, and miR-1249-3p)
are involved in modulating the immune response. In contrast, immune dysfunction promotes tumor progression. In the right panel, CD8+ T cells
become exhausted, expressing inhibitory receptors (e.g., PD-1 and uPAR), and are unable to mount an effective antitumor response. Tregs are
activated, suppressing immune activity through the expression of CD25, CTLA-4, and other immunosuppressive molecules. NK cells exhibit reduced
cytotoxicity due to the influence of TGF-b and NKG2DL. Monocytes differentiate into M2 macrophages or TAMs, which secrete immunosuppressive
cytokines (e.g., TGF-b) and promote tumor growth. Tumor cells themselves express PD-L1, further inhibiting immune responses. MicroRNAs (e.g.,
miR-222-3p and miR-146a) and circular RNAs (e.g., circCCAR1 and circTRPS1) modulate the immune environment, contributing to immune evasion
and tumor survival. PD-1: programmed cell death protein 1; uPAR: urokinase plasminogen activator receptor; ROS: reactive oxygen species; CTLA-4:
cytotoxic T-lymphocyte-associated antigen 4. BioRender was used to create the figure.
FIGURE 4

Dual role of cancer cell-derived EVs in the TME. Cancer cell-derived EVs not only interact with themselves but also shift the TME. (A) Exosomes from
drug-resistance tumor cells induce anti-drug effects in drug-sensitive cells. The pro-growing factors in the exosomes directly stimulate tumor
proliferation and metastasis. Moreover, the regulation of immune cells contributes to the immune escape of tumor cells. In addition, reprogramming
of stromal cells facilitates tumor cell invasion. However, the EVs are also recognized as breakthroughs in tumor treatment. (B) Tumor-specific
proteins and mRNAs can be detected in body fluid (plasma, serum, and urine), which can serve as cancer predictors. Taking advantage of the tumor-
homing capacity of tumor-derived EVs, functional drugs can be loaded inside for precise delivery. DOX, doxorubicin; MITO, mitoxantrone; PTX,
paclitaxel; NY-ESO-1, New York esophageal squamous cell carcinoma 1; PLAP, placental alkaline phosphatase; EpCAM, epithelial cell adhesion
molecule; G3BP, GTPase activating protein (SH3 domain) binding protein; PIGR, polymeric immunoglobulin receptor; SMAD3, recombinant SMAD
family member 3; GPC-1, glypican-1; MIF, macrophage migration inhibitory factor; HER-2, human epidermal growth factor receptor 2; HSP70, heat
shock protein 70. BioRender was used to create the figure.
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derived from normal bone marrow-derived mesenchymal stem cells

(BM-MSCs) inhibit the growth of multiple myeloma (MM) cells

through increased levels of the tumor suppressor miR-15a (52).

Similarly, the high content of exosomal miR-16 downregulated the

expression of VEGF in breast cancer cells, which suppresses its

growth (44). Conversely, stimulation of cancer cells tends to shift

stromal cell-derived EVs toward pro-tumor phenotypes. For

instance, fibroblasts stimulated by hepatoma cells exhibit a

significant upregulation of SPOCK1/testican-1 pathways,

promoting the progression of hepatoma cells (53).

Stromal cell-derived EVs contribute to tumor progression

through various mechanisms, including cell proliferation,

angiogenesis, and metastasis. They transfer certain RNAs and

proteins to stimulate cancer cell proliferation. For example, BMSC-

derived non-coding RNA triggered by DNA damage (NORAD)

enhances osteosarcoma growth and invasion. Human umbilical

cord mesenchymal stem cells (hucMSCs) transmit miR-100-5p,

promoting malignancy development. These EVs also participate in

tumor angiogenesis, promoting vascular density and tumor growth

(54–56). EVs participate in tumor angiogenesis via transporting

VEGFs and MMPs. It has been noted that hBMSC-produced EVs

contain high levels of VEGF and CRCX4 mRNA, which encourage

tumor angiogenesis and development in vivo (57). In addition, high

levels of matrix metalloproteinase 1 (MMP1) in oral leukoplakia EVs

(OLK-EVs) and oral squamous cell carcinoma EVs (OSCC-EVs)

have been reported to be relevant to angiogenesis (58). Additionally,

MSC-derived EVs facilitate tumor migration, influencing factors such

as integrin expression and mesenchymal–epithelial transition (MET).

For example, miR-374a-5p-loaded EVs of gastric cancer-derived

MSCs target HAPLN1 to increase the expression of integrins in

gastric tumors and promote gastric cancer cell migration (59). Given

that EVs are natural nanocarriers with remarkable biocompatibility,

their potential as drug delivery platforms has been extensively

investigated by numerous researchers (60). Dormancy-inducing

EVs from hBMSCs contribute to the acquisition of chemoresistance

in metastatic breast cancer cells (61).
3.3 Pro-tumor immune cells

Immune cells play crucial roles in the TME, influencing tumor

proliferation dynamics in various ways. During the initial stages, tumor

cells recruit and activate immune cells, fostering an inflammatory

environment that inhibits tumor growth. However, as the tumors

advance, some immune cells may experience exhaustion or

remodeling, leading to dysfunction and immunosuppression in the

TME (62–64). The progress is regulated by the comprehensive

intercellular communication network, in which EVs are largely

involved by transferring significant signal molecules.

Though T cell-derived EVs are always recognized as antitumor

NPs exhibiting a tumor suppression effect, it has been reported that

EVs from exhausted CD8+ T cells assist tumor progression

indirectly by impairing the proliferation of normal CD8+ T cells.

Incubation of exhausted CD8+ T cell-derived EVs with normal

CD8+ T cells results in reduced proliferation and activity, leading to

an increased percentage of exhausted CD8+ T cells (65). Microarray
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technology reveals differential lncRNA expression between

exhausted and non-exhausted CD8+ T-cell exosomes, highlighting

the upregulation of tumor-promoting genes like SUMF2 and

CHCHD1, and the downregulation of tumor-suppressing genes

like UBXN10 in lncRNA of exhausted CD8+ T cell-derived EVs,

indicating their potential in promoting tumor growth (65–69).

Tumor-associated lymphatic endothelial cells (LECs) secrete EVs

rich in miR-142-5p, which upregulates expression of 2,3-

dioxygenase (IDO), leading to the exhaustion of CD8+ T cells via

ARID2–DNMT1–IFN-g signaling (70). In some instances, even

activated CD8+ T cells may induce tumor metastasis via

activation-induced cell death (AICD), which is mainly modulated

by factor-related apoptosis ligand (FasL) (71, 72). FasL in EVs may

indirectly participate in the process. It is reported that activated

CD8+ T cells may secrete EVs containing high levels of FasL,

increasing the quantity of cellular FADD-like IL-1b-converting
enzyme (FLICE) inhibitory proteins, activating the ERK and NF-

kB pathways, subsequently upregulating the expression of MMP9 in

B16 murine melanoma cells (73). Natural killer (NK) cell

exhaustion and B-cell exhaustion are primarily induced by

consistent exposure to antigen stimulation, virus infection, and

chronic inflammation, among others. During the exhaustion

process, the inhibitor receptors like TIGIT, LAG-3, TIM-3, and

PD-1 increase on the surface of the cells accompanied by the

reduced expression of antitumor molecules like INF-g, TNF-a,
PFP, and granzyme. (74, 75) These findings confirm the

reprogramming of exhausted NK cells and B cells, yet alteration

of their EV content and function is rarely explored. These exhausted

immune cell-derived EVs, however, may play a role in tumor

immune escape, which deserves further research (76, 77).

Major function macrophages can be categorized into three

phenotypes, namely, M1 macrophages, M2 macrophages, and

tumor-associated macrophages (TAMs), of which M2 macrophages

and TAMs promote tumor growth (78). Research on M2-EVs and

TAM-EVs focuses on their pro-tumor capacity induced by regulatory

molecules. For instance, miR-193b-3p in M2-EVs targets TRIM62,

promoting progression and glutamine uptake in pancreatic cancer

(79). By targeting GRK6, miR-3917 in M2-EVs promotes tumor

progression in a lung cancer model (80). Similar effects driven by

RNAs fromM2-EVs or TAM-EVs have been observed in colon cancer,

EOC, and prostate cancer (81–84). Exosomal RNAs adjust tumor

function in alternative ways. Renal cell carcinoma aggression can be

driven by miRNA-21-5p in M2-EVs via PTEN/Akt signaling (85). M2

macrophage polarization-associated lncRNA (lncMMPA) facilitates

hepatocellular carcinoma malignancy by polarizing M2 macrophages

and activating the glycolysis pathway (86). HIF-1a-stabilizing lncRNA
from TAM-EVs can also regulate aerobic glycolysis in breast cancer

cells (87). Drug resistance in pancreatic adenocarcinoma can also be

induced by miR-365 in TAM-EVs. MiR-4443 derived from M2-EVs

plays a role in the differentiation of naïve T cells into Treg cells in

malignant pleural effusion, facilitating lung tumor growth (88). The

same effect is also observed in EOC induced by miR-29a-3p and miR-

21-5p in TAM-EVs (89). Other than RNAs, proteins like Arginase-1

from TAM-EVs also assist in cancer proliferation (88).

EVs derived from Tregs, Bregs, M2 macrophages/TAMs, and

myeloid-derived suppressor cells (MDSCs) are not the primary
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regulators, but they also transfer significant messengers, mostly

RNAs, such as microRNAs, lncRNAs, or circRNAs. As listed in

Table 2, these EVs activate/silence different signaling axes,

regulating key factors and then directly or indirectly boosting

tumor growth or metastasis (90, 91). Treg-derived EVs contain

several functional molecules that contribute to Treg suppressive

activity. For example, exosomal CD73 converts adenosine-5-

monophosphate to adenosine, activating the adenosine receptors

on target cells’ surface, leading to immune modulation (92). The

delivery of miR-146a-5p in Treg-derived EVs inhibit CD4+ T-cell

growth (93). Moreover, miR-150-5p and miR-142-3p in Treg-

derived EVs can modulate DCs’ cytokine constitution (94). It is

reported that B-1a regulatory B cells (i27-Breg) can secrete EVs

containing IL-27, suppressing and ameliorating uveitis (95).

However, in the TME, IL-27 plays dual roles. It both supports

CD4+ T cells’ proliferation and Th cells’ differentiation but promote

tumor growth, invasion, and angiogenesis simultaneously (96). M2

macrophages and TAMs are all immune suppressive cells and their

EVs serve a similar function. It is reported that M2 macrophage-

derived EVs can foster tumor metastasis and increase vascular

permeability in HCC via the delivery of miR-23a-3p, which

targets phosphatase and tensin homolog (PTEN) and tight

junction protein 1 (TJP1), promoting the secretion of GM-CSF,

VEGF, G-CSF, MCP-1, and IL-4 from tumor cells, in turn

facilitating M2 macrophage polarization (97). The cargoes found

in MDSC-derived EVs have been shown to align with their role in

mediating immune suppression by MDSCs (98). However, further

in-depth research is necessary to assess the interactions between

MDSC-derived EVs and other tumor-infiltrating immune cells, as

well as their implications for cancer immunotherapy. Gaining a

deeper understanding of the biological functions of MDSC-derived

EVs will be crucial for their future therapeutic applications in

cancer patients (99).
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3.4 Antitumor immune cells

As EVs mimic the functions of their donor cells, immune cell-

derived EVs often exhibit antitumor potential with varying

mechanisms. In this section, we categorize EVs based on their

sources, including T cells, NK cells, DCs, and macrophages,

clustering EVs with similar functions and shared mechanisms.

T cells

EVs produced by CD8+ T cells play a crucial role in modulating

the communication between immune and tumor cells, thereby

influencing tumor development. The interaction between PD-1

on the T-cell membrane and its ligand PD-L1 on the tumor

membrane is a well-recognized communication pathway between

T cells and tumor cells. Studies have shown that exosomal PD-1

produced by activated CD8+ T cells can reduce immunological

dysfunction caused by PD-L1 in triple-negative breast cancer

(TNBC) patients (100). Strategies involving CD8+ T cells treated

with EVs containing specific cargoes have been explored to enhance

their anti-PD-L1 capacity (101, 102). Additionally, the reduction of

exosomal PD-L1 has been associated with an improved antitumor

capacity of CD8+ T cells (103). By controlling the miR-765/

proteolipid protein 2 (PLP2) axis, exosomal miR-765 produced by

CD45RO-CD8+ T cells prevents the growth of uterine corpus

endometrial cancer (UCEC) that is induced by estrogen (104).

Similarly, CD4+ T cells regulate CD8+ T cells’ function via

secretion of functional EVs. Exosomal miR-25-3p, miR-155-5p,

miR-215-5p, and miR-375 from CD4+ T cells are responsible for

CD8+ T cells’ activation. Compared with IL-2 as antitumor

preparations in clinic, CD4+ T cell-derived EVs will not stimulate

Tregs, which may suggest a promising new avenue for cancer

immunotherapy by fostering a CD8+ T cell-mediated antitumor

response (105). Meanwhile, CD4+ T-EVs are crucial for the

activation, proliferation, and antibody generation of B cells, which
TABLE 2 EVs from immunosuppressive cells.

EV source Cargoes Signal pathway Effect Reference

Tregs CD73
CD73-adenosine-AMP-
adenosine receptors

Immune suppressive function (92)

Tregs IL-35 /
Coating bystander lymphocytes, causing non-Treg

cell exhausting
(389)

M2 macrophages miR-21-5p miR-21-5p/YOD1/YAP/b-catenin Facilitate CD8+ T-cell exhaustion (390)

M2 macrophages miR-21-5p miR-21-5p-KLF3
Promote differentiation and activity of pancreatic cancer

stem cells
(391)

M2 macrophages miR-17-92 TGF-b1/BMP-7 pathways Promoting hepatocellular carcinoma (HCC) proliferation (392)

M2 macrophages circRNA_CCDC66
circRNA_CCDC66-miR-342-

3p-metadherin
Promoting the growth and mobility of colorectal

cancer (CRC)
(393)

M2 macrophages MISP MISP/IQGAP1/PD-L1 Facilitated HCC cell immune escape (394)

M2 macrophages miR-143-3p ZC3H12A/C/EBPb axis Promote CRC progression (395)

Myeloid-derived
suppressor cells

S100A9
S100A9/circMID1/miR-506-3p/
MID1 axis

Facilitate castration-resistant prostate progression (396)
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is how humoral immunity is regulated (106). According to a recent

study, CD4+ T cells can modify macrophages for enhanced cancer

immunotherapy based on a stimulator of interferon genes (STING)

signaling pathway (107).

3.4.1 Natural killer cells
NK cells, being intrinsic tumor killers in the TME, have been

explored in various immunotherapy strategies such as adoptive NK

cell transfer, CAR-NK, and checkpoint blockade (108, 109). NK cell-

derived EVs (NK-EVs) serve as powerful messengers, mimicking the

antitumor function of NK cells. For instance, mRNA let-7b-5p in

NK-EVs targets the cell cycle regulator CDK6, suppressing pancreatic

cell proliferation (110). Cytolytic EVs enriched from primary NK

cells possessed high apoptotic activity against HCT-116 colon cancer

spheroids (111). NK-EVs also present a strong anti-hepatocellular

carcinoma effect in subcutaneous and orthotopic animal models via

inhibition of phosphorylation of serine/threonine protein kinases and

activation of specific apoptosis markers (112). The potent ability of

NK-EVs in anti-leukemia has also been verified (113). EVs from

activated primary NK cells or NK-92 cells by IL-12, IL-15, and IL-18

are reported to have a better potential to penetrate and target solid

tumors compared with those from inactive NK cell lines (114, 115).

Furthermore, EVs from NK cells exposed to neuroblastoma cells

augment the antitumor effect of EVs derived from cytokine-activated

NK cells (116). The tumor-homing ability of NK-EVs makes them

distinguished in drug delivery. NK-92 cell-derived EVs exhibit good

targeting capacity in an NB tumor-bearing mouse model. Strong

fluorescence is observed 6 h after injection, while EVs are observed in

subcutaneous tumors in just 20 min after injection (117). However,

NK-EVs can also be up-taken by normal cells and have shown

cytotoxic effects in activated peripheral blood mononuclear cells

(PBMCs) (118). Active NK cells with cytokines (e.g., IL-15) may

promote its targeting ability (114, 119). In general, multiple

investigations have concluded that there are no significant safety

issues with NK-EVs in animal experiments (120–122).

3.4.2 Dendritic cells
DCs are professional antigen-presenting cells (APCs) presenting

antigens to T cells to stimulate their anticancer response. Its unique

ability to induce primary and secondary immune response attracts

investigation on EVs derived from DCs (DCs-EVs) for cancer

treatment (123, 124). DCs-EVs are inextricably linked to the

function of T cells. The presence of MHC-I, MHC-II, and

costimulatory molecules such as CD86 in DCs-EVs stimulate T-cell

immunity directly and indirectly (125). As a direct mechanism, DCs-

EVs carry MHC molecules and costimulatory molecules and bind

with the corresponding receptors including the TCR complex and

coreceptor (CD4/CD8) to activate T cells via allorecognition in vivo

(126, 127), yet some studies point out that this pathway does not

occur in large quantities in vitro (126), and is less efficient than

directly interacting with donor DC cells (128). However, increasing

quantities of DCs-EVs may facilitate the direct-activation mechanism

in vitro. An indirect mechanism activates T cells assisted by bystander

APCs (129). EVs from mature DCs are transferred to naïve DCs,

some are internalized, and the rest remain on the surface, which
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stimulates T cells (126, 130). Surface EVs can activate T cells by

transferring MHC–peptide complexes, which are processed through

the endosomal pathway. This process enables the transfer of antigen

peptides from internalized EVs to the MHC molecules of recipient

DCs (131), which is heavily influenced by integrins, ICAMs, and the

activation status of the donor APC (132). DCs-EVs can also activate

NK cells. It is reported that DCs-EVs can stimulate IFN-g secretion
by NK cells via exosomal TNF-a, Toll-like receptor (TLR)-4, and

TLR1/2 (133, 134). Natural killer group 2-member D (NKG2D)

ligands and IL-15Ra in DCs-EVs play a significant role in the direct

activation of NK cells (135). The BAT3 molecule in EVs produced by

DCs participates in the activation of NK cell-mediated cytokine

release via binding to its ligand for the natural cytotoxicity

triggering receptor 3 (NKp30) on NK cells (136).

3.4.3 Macrophages
Similar to DCs, macrophages can serve as potent APCs. However,

research on macrophage-derived EVs mainly focuses on their

regularity function in the TME. M1 macrophage-derived EVs (M1-

EVs) promote tumor apoptosis. According to research, canine M1-

EVs can activate caspase-3 and caspase-7 to induce tumor death.

Additionally, the expression level of CCR4, Foxp3, and CTLA-4 is

reduced in canine peripheral mononuclear cells cocultured with

tumor cells (137). A recent study highlights the role of human

cytosolic glycyl-tRNA synthetase (GARS1) on the M1-EVs

membrane in tumor apoptosis via interacting cadherin6 (CDH6)

on the cancer cell surface. Additionally, the extracellular cadherin

subdomains 1–4 of the cadherin EGF LAG seven-pass G-type

receptor 2 (CELSR2) interact specifically with the N-terminal

WHEP domain-containing peptide region of GARS1 to cause M1

divisiveness of macrophages and activate the RAF-MEK-ERK

pathway for M1-type cytokine production and phagocytosis (138).

Cytokine signaling 3 in alveolar macrophage-derived EVs inhibits

STAT3 activation, suppressing the progress of lung cancer (139).
4 The potential application of EVs in
cancer treatment

With the enhanced understanding of EVs’ role in the TME, the

application of EVs as a tumor immunotherapy agent has been

realized. The potential of EVs as a tumor vaccine has been explored

since EVs possess immunogenicity. As a cell product, EVs inherit

the characteristics of donor cells, which may serve as alternative

ACTs since EVs have a lower side effect than cells. EVs can activate

and regulate the immune system with outstanding targeting

capacity and editable flexibility, attracting researchers to

transform them into antitumor drugs and drug delivery platforms.
4.1 EVs as a cancer vaccine

Cancer vaccines activate the immune system against tumor cells. In

the process, a high volume of high-quality tumor antigens are

presented to DCs and activate them to promote CD8+ T cells and
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CD4+ T cells, in which EVs are mainly involved (140). EVs, mirroring

the functions of their donor cells, can present exosomal tumor antigens

to DCs, eliciting tumor-specific CD8+ T cells and CD4+ T cells (141–

143). The inclusion of tumor neoantigens within EVs further

contributes to the development of tumor vaccines (11). DCs-EVs as

antigen presenters have also found application in immunotherapy,

serving as agents of vaccines. Additionally, these EVs can activate

immune cells through the regulation of cytokines (144). Figure 5 shows

the basic mechanism of an EV-based cancer vaccine.

Tumor-derived EVs provide antigen to APCs. MHC class I and

class II are found on the surface of tumor-derived EVs, which is

responsible for antigen presentation (145). In lung cancer, EGFR,

K-Ras, basigin, carcinoembryonic antigen-related cell adhesion

molecule 6, claudin1, claudin3, and RAB family proteins are

found to be differentially expressed (146). EVs derived from

colorectal cancer can interact with DCs, significantly enhancing

immune responses by lowering the antigen presentation threshold

for activation at the mucosal level (147, 148). APC-derived EVs

inherently rely on MHC compatibility, necessitating a precise

match with the MHC haplotype. Conversely, EVs derived from
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tumor cells transcend this limitation, as they do not require MHC

haplotype matching. This pivotal characteristic enables the

development of anticancer vaccines that are cell-free and can be

universally applied, eliminating the need for individualized

engineering for each patient. Furthermore, these EVs harbor

tumor antigens that transcend the confines of a single cancer

type, hinting at their potential to confer protection against a

diverse spectrum of cancers (149). It is noted that exosomal heat

shock protein 70 (HSP70) can active DCs and monocytes to trigger

immune response and stimulate NK cells to release granzyme B,

inducing tumor apoptosis (150, 151). In conclusion, HSP70 can

potentially act as an antigen on the surface of EVs to trigger

antitumor responses. In certain stages of tumor progression or

under proper stimulation, tumor-derived EVs can activate immune

cells. For instance, it is reported that bladder cancer cell-derived

EVs can boost CD8+ T-cell function via cytokine regulation (144).

Tumor antigens on these EVs also efficiently activate immune

responses (152). EVs derived from tumor cell exposure to

methotrexate (MTX) impair the antitumor effect of neutrophils

via internalization and degradation of PD-1 in the lysosomes (56).
FIGURE 5

EVs as a tumor vaccine. EVs are deeply involved in the progress of tumor immunoregulation and, thus, have the potential to serve as a tumor
vaccine for the next generation. Tumor-derived EXOs or the debris of dead cancer cells involves tumor-specific cargoes like tumor neoantigens and
some tumor markers like HSP 70, EGFR, and K-Ras. These factors can activate mDCs including mDC1 and mDC2, which are responsible for
transferring the antigens to rDC1 and rDC2. It is noted that the antigen-distributing process is based on surface contact and transferring of EXOs
containing tumor antigens. rDC1 tend to receive more EXOs than rDC2 from mDC2, and mDC1-derived EXOs have a preference for rDC2. In the
last, rDC1, rDC2, and mDC1 can work together to promote CD8+ T-cell activation while just mDC2 can boost CD4+ T-cell function. In addition,
tumor-derived EXOs are capable of activating immune cells like NK cells, CD8+ T cells, and CD4+ T cells directly without assistance of APCs.
BioRender was used to create the figure.
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Similarly, antitumor drugs induced highly enclosed HSPs in EVs

from human hepatocellular carcinoma cells, which induce

inhibitory receptor CD94 and reduce activating receptors CD69,

NKG2D, and NKp44, efficiently enhancing NK cell cytotoxicity and

granzyme B production (153). However, their application relies on

advanced isolation techniques capable of precisely extracting

tumor-derived EVs from complex body fluid.

DC-derived EVs serve as the main source of exosomal antigen

provider (154). As the most potent APC in vivo, DCs are

responsible for antigen uptake and T-cell activation (155).

Migration DCs (mDCs) in the TME encapsulate the tumor

antigen via EVs and transfer them to resident DCs (rDCs) in

draining lymph nodes, which is responsible for activating CD8+

and CD4+ T cells (156). rDC1, rDC2, and mDC1 are responsible for

CD8+ T cells’ activation while only mDC2 can make CD4+ T cells

work. The delivery of antigen also relies on the intercellular

transferring of EVs. T cells cannot be activated if the EVs are

unable to form (157). Nowadays, DC-derived EVs have been

welcomed by many researchers as tumor vaccine carriers. Tumor

neoantigen can be loaded in the nanovaccine delivery platform built

via DC-derived EVs for individualized immunotherapies. The

nanovaccine has demonstrated efficient cargo loading and

sustained cargo delivery to the lymph nodes, leading to robust

antigen-specific T-cell- and B-cell-mediated immune responses

with excellent biosafety and biocompatibility. Notably, the

delivery of the neoantigen-EV nanovaccine significantly inhibits

tumor growth, extends survival time, delays tumor recurrence with

long-term immunological memory, and eradicates lung metastasis

in therapeutic, prophylactic, and metastatic B16F10 melanoma

models, as well as in therapeutic MC-38 models. Furthermore,

the EV-based nanovaccine exhibits a synergistic antitumor response

that outperforms liposomal formulations, owing to the presence of

EV proteins. Collectively, the research presents enhanced strategies

for cell-free vaccines and highlights the potential of EV-based

nanoplatforms in cancer immunotherapy and personalized

nanotechnology. These findings pave the way for the rapid

generation of individualized nanovaccines for clinical use (158).

Immunogenic cell death (ICD) inducers are encapsulated within

DC-derived EVs and used as a tumor vaccine against breast cancer

cells. This approach demonstrates potent antitumor activity in both

a mouse model and human breast cancer organoids by enhancing

the activation of cDC1s in situ, thereby boosting subsequent tumor-

reactive CD8+ T-cell responses (159).

Non-antigenic immune adjuvants are essential in cancer

immunotherapy, as they enhance immunogenicity and promote

antigen presentation, thereby improving the immune response

against weakly immunogenic tumors. Previous research has shown

that adjuvant-loaded EVs are more effective than administering free

adjuvants. Leveraging these insights, as well as the unique properties

of EVs, they have been investigated as nanocarriers for the targeted

delivery of adjuvants (160, 161). Immune cell-derived EVs can serve

as adjuvants themselves, influencing the proliferation and

differentiation of immune cells (162). During infection, the amount

of circulating phosphatidylserine+ (PS) EVs increases, actively

modulating CD8+ T-cell responses and preferentially interacting

with activated, but not naive, CD8+ T cells (163). The researchers
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either take advantage of the inherent homing ability of EVs or modify

their surface for precise targeting (164, 165). Additionally, EVs’

capability to deliver adjuvants directly into the cytosol through

membrane fusion exhibits significant potential for enhanced

immune activation (166). Currently, CpG DNA (167),

lipid adjuvants (168, 169), cytokine adjuvants (170–172),

HSPs (153, 173), and Gram-negative bacterial outer membrane

vesicles (OMVs) (174) are applied as adjuvants prioritizing

activation of CD4+/CD8+ T cells. However, safety concerns persist

because adjuvants can trigger inflammatory reactions, which may

include fever, ulcers, or even potentially life-threatening

cytokine storms.
4.2 Engineered EVs in ACTs

ACT is a type of cancer treatment that genetically modifies T

cells to detect and destroy cancer cells. This approach enhances or

changes the intrinsic immune function of T cells, increasing their

effectiveness in combating cancer (175). T cell receptor-engineered

T (TCR-T) cell therapy and chimeric antigen receptor T (CAR-T)

cell therapy are two major trends in ACT, involving genetically

engineering T cells to express receptors that specifically target

tumor antigens (176, 177). TCR-T cells possess receptors binding

TSAs both on the tumor surface and inside tumor cells while CAR-

T cells target cancer cells via membranal proteins and kill them

without undergoing the antigen-presenting process (178).

Traditionally, the engineered T cells are amplified in vitro and

infused into the patient’s body, yet the effect is limited because of

the reduced penetration ability and potential side effects like

cytokine release syndrome (CRS), immune effector cell-associated

neurotoxicity syndrome (ICANS), and secondary cancers, among

others (179–181). Altering CAR-T cells with CAR-T cell-derived

EVs may be a solution boosting its antitumor effect. First, CAR-T-

derived EVs are stable particles with a limited lifespan and are

unable to proliferate, which may reduce the side effects induced by

CAR-T cells, especially CRS. Second, CAR-T-derived EVs are non-

cell preparations with low antigenicity, making its application in

third-party settings as an off-the-shelf product favorable. Third,

CAR-T cell-derived EVs can penetrate the tumor barrier, which

may be a solution towards solid tumors (182). CAR-T cell-derived

EVs show great potential as direct agents in immunotherapy. These

EVs equipped with EGFR and HER2-specific CARs demonstrate a

strong capacity against EGFR+ and HER2+ tumor cells in xenograft

models. Compared to CAR-T cells, CAR-T cell-derived EVs lack

the expression of PD-1, making their antitumor activity resistant to

suppression by recombinant PD-L1 treatment (183).

CAR-NK-EVs have also caught researchers’ attention in recent

years. Compared with CAR-T cells, CAR-NK cells are less likely to

induce life-threatening CRS. Furthermore, CAR-NK therapy is

anticipated to be more cost-effective, as NK cells can be sourced

from PBMCs, NK cell lines, and human pluripotent stem cells

(hPSCs) (184). Moreover, NK EVs will not harm normal cells (118).

It has been reported that NK EVs can induce the death of target cells

through two major mechanisms: ligand–receptor interactions and

plasma membrane fusion (185, 186). Recently, CAR-NK-EVs have
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been engineered to enhance antitumor therapy by targeting and

disrupting the iron death defense mechanism. By modifying the

transferrin receptor-binding peptide and expressing CAR on the

surface of the EVs, these engineered vesicles can effectively cross the

BBB and release therapeutic molecules precisely at the intended

sites and times (187). However, the interaction between NK-EVs,

other immune cells, and tumor cells is comprehensive and the

mechanism has not been clearly delineated; thus, the application of

CAR-NK-EVs is worth further exploration.
4.3 EVs as an en route drug
delivery platform

Given that EVs are natural nanocarriers with a remarkable

biocompatibility, their potential as drug delivery platforms has been

extensively investigated by numerous researchers.

EVs are recognized as safe vesicles. Native EVs in vivo are

reported to undergo reduced hepatic clearance (36, 188). This helps

reduce the administration dosage and decrease the potential side

effects (34). EVs exhibit exceptional biocompatibility and reduced

immunogenicity. In one study, EVs extracted from bovine milk

show limited liver and kidney toxicity and no significant increase in

histamine concentration (189). Furthermore, early-phase clinical

trials have reported mild to moderate side effects of EV-based NP

delivery platforms, supporting their safety in clinical applications

(15, 190).

Their great penetration power brings EVs to almost everywhere

in vivo. There are several barriers in the human body that protect

some important organs or tissues from foreign bodies and maintain

their normal function. Yet, the barriers prevent most of the drugs

from entering these locations (191). The BBB is an intricate and

highly selective barrier in the human body. It serves to safeguard the

brain and maintain the stability of the central nervous system

(CNS). This barrier is primarily composed of endothelial cells

that form a tightly joined monolayer, covering the brain’s

capillaries. What is worse, brain tumor cells tend to format the

BTB (192). EVs can cross the barrier via several mechanisms like

receptor-mediated transcytosis, lipid raft-mediated endocytosis,

and micropinocytosis (21). Given this character, EVs are

considered promising carriers targeting tumors in the brain.

Ginseng-derived exosome-like nanoparticles (GENs), composed

of phospholipids and various bioactive components, are currently

being evaluated for their ability to stimulate antitumor immune

responses in T cells and Tregs, with the aim of inhibiting tumor

progression. Their enhanced targeting ability to the BBB and glioma

shows a significant therapeutic effect, demonstrating strong efficacy

in recruiting M1 macrophage expression within the TME. GENs are

proved to be successful candidates for glioma therapeutics in both

in vitro and in vivo studies, indicating excellent potential for

inhibiting glioma progression and regulating TAMs (193). Fruit-

derived EV-engineered structural droplet drugs (ESDDs) are

created by programming the self-assembly of fruit-derived EVs at

the interface of DOX@squalene-PBS, significantly enhancing their

antitumor efficacy against glioblastoma. The blood–testis barrier is

among the most restrictive blood–tissue barriers found in
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mammals. It separates the seminiferous epithelium into two

distinct areas: the basal compartment and the apical (or

adluminal) compartment (194). EVs have been applied in

delivering drugs to testis. Sertoli cell-derived small extracellular

vesicles (SC-sEVs) can cross the BTB and enter germ cells. By

loading miR-24-3p inhibitors into these vesicles, the nano-drug SC-

sEV@miR-24-3p inhibitor is created, which efficiently delivers the

miR-24-3p inhibitor to germ cells. In a mouse model of gossypol-

induced asthenozoospermia, treatment with the SC-sEV@miR-24-

3p inhibitor significantly enhanced sperm motility, increased the

success rate of in vitro fertilization, and improved blastocyst

formation rates. As expected, it also increased the litter size in

asthenozoospermia mice. These findings suggest that the SC-sEV@

miR-24-3p inhibitor could be a promising clinical treatment for

asthenospermia (195).

The potent targeting capacity of EVs boosts precision medicine.

EVs can be passively accumulated in the TME via the enhanced

permeability and retention (EPR) effect. The EPR effect refers to the

phenomenon where NPs of appropriate sizes preferentially

accumulate in tumor tissues compared to normal tissues, leading

to an extended retention time of the NPs within the tumor area

(196, 197). This phenomenon occurs because the abnormal blood

vessels found in tumors enhance vascular permeability (198). NPs

ranging from 20 to 200 nm in size can infiltrate the interstitial space

due to the misaligned and defective endothelial cells (199).

Additionally, the clearance of NPs from the TME is often delayed

due to the limited lymphatic drainage present in these areas (200).

Moreover, EVs can be actively targeted to tumor cells by the ligand–

receptor connection. On the surface of tumor cells are tumor

markers such as carcinoembryonic antigen (CEA) for colorectal

cancer (201), carbohydrate antigen 125 for ovarian cancer (CA125)

(202), and neuron-specific enolase (NSE) for neuroendocrine

tumors (NET). Furthermore, taking advantage of the prosperity

in the field of membrane-editing technology, the EVs’ membranes

are engineered to enhance their targeting ability for precise

cytotoxic effect and limited harm to normal cells. Engineered

DCs-EVs, bound with membrane anchor lysosome-associated

membrane glycoprotein 2b (Lamp2b) and brain-specific rabies

viral glycoprotein (RVG), showcase the potential of EVs as

targeted drug delivery systems. After tail vein injection of the

EVs, knockdown of BACE1 mRNA and protein is demonstrated

in the brains of mice (19). EVs can also be reprogrammed to

promote their accumulation in the TME. It is reported that low pH,

a significant feature in the TME, reprograms tumor EVs for

enhanced homology via a glycolipid self-aggregation-based

mechanism, which sheds light on the exploitation of

environment-responding EVs (203). The engineered EVs derived

from M1 macrophages are conjugated with dibenzocyclooctyne-

modified antibodies targeting CD47 and SIRPa (aCD47 and

aSIRPa) via a pH-sensitive linker. These EVs are designed to

accumulate in the acidic TME and specifically target tumor cells

by recognizing the interaction between aCD47 and CD47 on the

tumor cell surface (204). Additionally, the magnetic field gradient is

an alternate noninvasive technique to improve targeting efficacy.

EVs derived from macrophages are loaded with drugs and iron

oxide NPs, which spatially regulate the absorption of EVs and drugs
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by cancer cells in vitro (205). The self-targeting capacity of tumor-

derived EVs can also be employed for precise targeting (206). EVs

derived from tumor-repopulating cells (TRCs) isolated from three-

dimensional fibrin gels enhance the efficiency of drug delivery.

Compared to EVs derived from tumor cells cultured on

conventional tissue-culture plastic, TRC-derived EVs, when

intravenously injected into mice with tumor xenografts, show

increased accumulation in tumor tissues, improved crossing of

blood vessels, and deeper penetration into the tumor

parenchyma. They are also preferentially taken up by highly

tumorigenic TRCs. Additionally, the cytoskeleton-related protein

cytospin-A plays a crucial role in regulating the softness of

TRC-derived EVs. Modulating the mechanical properties of these

EVs could improve the delivery efficiency of anticancer drugs (207).

The EV preparation can be delivered to tumor sites via drainage

tubes for some metastatic tumors like malignant pleural effusion

(MPE) or malignant ascites, or injected directly into the superficial

solid tumors like melanoma. For most tumors, intravenous

injection is the most common administration method. Since

tumor capillary permeability (~780 nm) is larger than that in

normal tissue (5–8 nm), it is hard for tumor-derived EVs (100–

1,000 nm) to reach normal tissues while they can enter tumor

parenchyma easily (208–210). However, the potential oncogenesis

risk of tumor cell-derived EVs limits their application as theriacal

molecules and drug delivery, yet an attempt to apply tumor cell-

derived EVs to deliver drugs is on trial (listed in Table 3).

Moreover, surface modification of EVs through cellular

machinery techniques facilitates tumor targeting and intercellular

transformation (34). For example, modified NK-EVs can be

obtained by exogenous and endogenous alterations. Exogenous

modifications involve loading drugs like sorafenib or cisplatin

onto NK-EVs, which enhance apoptosis in TNBC and reactivate

NK cell functions against drug-resistant ovarian cancer, respectively

(211, 212). Engineered NK-EVs with small interfering RNA

(siRNA) and hydrophobic photosensitizer Ce6 present cytotoxic

effects towards tumor cells via reactive oxygen species (ROS) and

conscripted immune cells (122). Endogenous modifications

achieved enriched specific cargo through lentiviral transduction

into the parent cells. Lentiviral transduced NK92MI cells enrich

BCL-2 siRNAs in EVs, enhancing their intrinsic apoptosis in breast

cancer cells (121). Though NK cells share similar functions with T

cells, rare attention has been paid to CAR-NK-derived EVs, which

may be endogenous modification methods of the next generation.

M1-EVs, when engineered, demonstrate enhanced abilities to

inhibit tumor growth and regulate the immunosuppressive TME.

Engineered M1-EVs deliver RSL3 as a ferroptosis inducer, which

disrupts redox equilibrium to increase the oxidative stress-triggered

robust ferroptosis of tumor cells (213). Docetaxel-loaded M1-EXOs

polarize naïve M0macrophages toward the M1 phenotype as opposed

to the M2 phenotype by using mitochondrial function (214). M1-EVs

can also load therapeutic agents, like catalases, DNA damage repair

inhibitors, and anti-PD-L1, which simultaneously target tumor

hypoxia, cancer DNA damage, and T-cell function (215). In

addition, EVs derived from macrophages are potent drug delivery

systems. Engineered M1-EVs have been created by functionalizing the

membrane with chemical excitation source CPPO and photosensitizer
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Ce6, as well as encapsulating the hydrophobic prodrug AQ4N. These

modified M1-EVs penetrate the BBB, induce M2-to-M1 polarization,

and increase hydrogen peroxide (H2O2) levels. The reaction between

H2O2 and CPPO activates Ce6, generating large amounts of oxygen

species to achieve chemiexcited photodynamic therapy (CDT). AQ4N

also converts into toxic AQ4 in the hypoxic TME, inducing apoptosis

of glioblastoma multiforme (GBM) (216). AS1411 aptamer-modified

macrophage exosomes are also utilized to coat the sonosensitizer

indocyanine green, enhancing the sonodynamic therapy of

glioblastoma (217). Furthermore, the modified macrophages’ EVs

demonstrate strong antitumor activity, indicating the significant

potential of macrophages as sources of EVs (218).

The excellent feature of inflammatory chemotaxis makes

neutrophil-derived EVs (NE-EVs) a remarkable drug for targeting

tumors. NE-EVs are loaded with DOX for targeted glioma therapy,

which penetrates the BBB and reacts to inflammation. Additionally,

NEs-EVs/DOX intravenous infusion effectively slows tumor growth

and lengthens survival in a mouse model of glioma (219). In

another study, NE-EVs are decorated with superparamagnetic

iron oxide nanoparticles (SPIONs) to improve the tumor-

targeting capacity, enhancing the antitumor effect of DOX. These

EVs induce tumor apoptosis without affecting normal cells,

exhibiting superiority in targeting and efficacy compared to

normal NE-EVs (220).
5 Challenges and opportunities for
clinical application

The progress in the field of EV studies attracts more and more

researchers to investigate the potential of EVs in clinical settings.

However, laboratory conditions differs from those in clinic, and the

focus varies. In the laboratory, researchers mostly care about the

characteristics and functions of EVs, yet the cost of large-scale

synthesis, the safety of EV preparation, and storage methods,

among others, are of great importance in clinical settings.

Moreover, standards and guidelines illustrating EV application

remain to be established. The current plights and potential

solutions are reviewed in the following section.
5.1 Large-scale synthesis of EVs to be
amenable in the clinic

As mentioned above, strategies applying EVs as therapeutic

agents have been explored in-depth. However, the widespread

clinical application requires large-scale synthesis of EVs. Notably,

scaling out and scaling up can optimize the cell culture process and

thus contribute to the vast production of EVs.

The scale-out of the culture system refers to the cultivation of

more cells in a limited space. For instance, the Integra CELLine

Culture System increases EV yield to 10.06 ± 0.97 mg/mL compared

with 0.78 ± 0.14 mg/mL by traditional culture (221). This technology

is designed for scalable production of EVs from adherent cell lines,

like cancerous bladder cells (222). Regretfully, this platform is not
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suitable for stromal cells since it maintains cells at high densities for

prolonged periods of time. Another strategy for vast production is the

automatic release of EVs in hollow fiber bioreactors. In this system,

cells are grown on the surface of semi-permeable fibers and release

EVs to flowing supplemented media. However, previous research

reported the occurrence of cell differentiation and increased cell

density after 6 weeks of culture. This phenomenon leads to the low
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EV yield of a single cell (223, 224). Optimizing collection frequency

may solve such challenges. In particular, a combination of hollow

fiber bioreactor and size exclusion chromatography/tangential flow

filtration enables the production and enrichment or purification of

clinical-grade EVs at a moderately vast scale (225). In addition, the

application of hyperflasks reduces manual operations during cell

culture and media harvest and promotes the production of EVs, yet
TABLE 3 EVs as a nanoparticle delivery platform.

Cell source Size Isolation method
Engineer
strategy

Functional
molecules

Function
Year
of

publication
Reference

Human lung
carcinoma A549 and
hepatocarcinoma

H22 cell

~210
nm

Ultracentrifugation Incubation
DOX,

methotrexate,
cisplatin, PTX

Transfer pro-tumor
M2 macrophages to

antitumor M1
phenotype

Release IFN-b
Reverse drug

resistance of soft
tumor-

repopulating cells

2016, 2023 (397, 398)

Human breast cancer
cell MDA-MB-231

~100
nm

Ultracentrifugation Incubation
Bovine

milk lactoferrin
Inhibit MDA-MB-231
cancer cell growth

2023 (399)

Epithelial cancer cell
MCF-7

~140
nm

Electroporation
(eliminate endogenous

cargoes)
Sonication, hypertonic
loading, electroporation

(load cargoes),
and incubation

Gemcitabine
(GEM), miR-
21 inhibitor

Potent targeting
ability
Higher

antitumor efficiency

2023 (400)

Murine breast
cancer 4T1

–
Differential

ultracentrifugation
Electroporation

Let-7i, miR-142
and, miR-155

Inhibit tumor growth
Promote IFN-g and

granzyme B
production ability of
cytotoxic T cells

2021 (401)

Myeloid leukemia cell
line K562

~58
nm

Total exosome isolation

reagent, Invitrogen™,

No. 4478359

Genetic modification
IL-15, IL-18,

and 4-
1BBL (TNFSF9)

Increase cytotoxicity
of NK cells
Promote NK

cell proliferation

2017 (402)

Melanoma cell B16 – Ultracentrifugation Transfection
Early secretory
antigenic target-
6 (ESAT-6)

Suppress
tumor growth

2016 (403)

Murine B cell (M12.4)
<150
nm

Ultracentrifugation, anti-
CD63 immunomagnetic

capturing and

Exoquick-TC™

HiPerFect and
FuGENE®

HD (transfection)

MiR-
155 inhibitor

Reduction in LPS-
induced

TNFa production
2014 (404)

B cell
<180
nm

Differential
ultracentrifugation

Epstein–Barr
virus (transduction)

Glycoprotein
gp350

Inhibit EBV infection
in B cell

2011 (405)

Human umbilical
cord blood-derived
mononuclear cells
(hUCB-MNCs)

~131
nm

Differential
ultracentrifugation

Exo-Fect Exosome
Transfection

Reagent (transfection)
MiR-124-3p

Protect dopaminergic
neurons in the

substantia nigra and
striatal fibers

2022 (406)

Platelet
120–
150
nm

Chromatography
Extrusion, freeze/thaw,

or sonication
DOX Kill breast cancer cell 2023 (407)

Platelet
100–
300
nm

Size
exclusion

chromatography
Incubation PTX Kill breast cancer cell 2023 (408)

Platelet
~140
nm

Differential
ultracentrifugation

Electroporation Yap1 protein Regenerate tendon 2023 (409)
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compared with 2D flasks, they are not economical (222). The

CellBIND® surface is pretreated with oxygen-containing functional

groups and carries a net negative surface charge. Bioreactors are

commonly utilized for large-scale production due to their dynamic

monitoring systems, which are advantageous for GMP processes

(226). Xeno-free cell culture significantly improves EV production by

reducing cell doubling time, increasing EV yield, and achieving up to

97% removal of contaminating proteins. Specifically, a 10% pooled

human platelet lysate (HPL)-based, EV-depleted medium effectively

supports the production of human MSC-derived exosomes while

maintaining their characteristic surface markers, morphology,

viability, and in vitro differentiation potential (226, 227).

Meanwhile, the scale-up strategy increases EV yield by

cultivating cells on microcarriers in stirred tank bioreactors. This

3D culture method outperforms the traditional 2D culture method

in the aspect of silencing siRNA loading (228). Additionally,

physical stimulation, including hypoxia (229), low pH (162, 230),

heat shock (231), or ultrasound (232), can improve the production

of EVs. Serum deprivation is another stimulation to boost EV yield

that prevents the contamination of serum-derived EVs and particles

(233, 234). Of note, although EVs produced by stimulation are often

reported to display similar physical characteristics with those

produced without stimulation, their protein and RNA contents

may be different, which could undermine the process of EV

preparations (235).

In addition to optimizing the cellular culture, ideal cellular

sources can also facilitate the large-scale production of EVs. One

potential source could be embryonic stem cells (ESCs). ESC exhibits

the capability of almost unlimited self-renewal and offers sufficient

EV sources for clinical application (236). According to previous

research, EVs secreted by ESCs display satisfactory antitumor

properties. Human red blood cells (RBCs) are another ideal

cellular source. Specifically, group O-RBCs could be utilized as

universal donors for the vast production of EVs. This is because

group O-RBCs are devoid of DNA and are available in blood

banks (237).
5.2 Clinic oriented purification strategies to
be optimized in the future

Purification strategies have always been a major problem

affecting the process of the clinical application of EVs (238). The

selection of purification strategies has a direct impact on clinical

effects. On the one hand, it is significant to eliminate

contaminations in EV preparation including the unexpected EVs,

liposomes, proteins, and RNAs. For instance, some EVs are

extracted from culture medium of cancer cells in vitro for their

well-known tumor-targeting capacity, yet the pro-tumor EV

subtypes may harness the therapeutic effect. What is worse, it is

noted that tumor-derived EVs play a critical role in modulating the

TME, promoting tumor growth, metastasis, immune evasion, and

even drug resistance via various means (239, 240). On the other

hand, some so-called “contaminations” ought to be kept in EV

preparation. One reason is that it is impossible to isolate the single-

component EVs or one designated subtype of EVs from complex
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EV groups of body fluid or culture medium (241). One major

obstacle in the field of EV isolation is the large scale of co-isolated

lipoproteins sharing similar characteristics such as density, size, and

component (242, 243). It is noted that the application of density-

gradient ultracentrifugation for EV purification results in the co-

isolation of LDL and HDL due to the similar density, and a SEC-

based isolation strategy will lead to contamination of chylomicrons

(244). Even the purification strategy combining the SEC

purification step and the differential ultracentrifugation cannot

avoid the presence of LDL in plasma EV preparations since the

LDL particles have a higher concentration by several orders of

magnitude than EVs in human plasma (245). Ultracentrifugation,

the main applied isolation method, is also impaired by LDL and

HDL residues due to the sedimentation rate difference of EVs and

HDL/LDL (246). Though there is a new technique applying the

styrene-maleic acid (SMA) copolymer to selectively break down

lipoproteins, it has not been widely applied and its adverse effect on

SMA remains unknown (247). Another reason is that the so-called

“contamination” may facilitate efficacy in some cases. In a study,

researchers discovered that the presence or absence of EVs did not

impact the ability of human mesenchymal stem cell (hMSC)-

conditioned medium to promote angiogenesis and wound healing

in vitro while much smaller soluble factors like VEGF play a more

important role in the progress. However, when applied in far higher

concentrations than those presented in conditioned medium, the

hMSC-derived EVs also exhibit wound-healing capacity (248). The

research can be seen as a warning, urging scientists to reconsider the

complex relation between EV and non-EV factors and the potential

experimental hazards when conducting experiments regarding EV

bioactivity. In a word, it is both unlikely and unnecessary for

researchers to achieve “complete purification”, namely, isolating

the single-ingredient EV during preparation. For the clinical

application of EVs, we can focus on isolating EV groups

including specific subtypes of EV and non-EV factors. The EV

groups should satisfy clinical needs, avoid potential adverse effects,

and entail reduced purification cost.

Different isolation methods lead to different outcomes. Despite

starting with the same source, different processing procedures may

lead to the various mixtures of co-isolates and EV subsets. In the

study, higher pERK/ERK ratios are observed after stimulation of

SEC-EVs than after stimulation of UC-EVs, which indicates the

significance of optimizing isolation strategies in the clinic (249).

Another study reports that different isolation methods leave

different contaminations in HEK293T-derived EV preparation.

These media component contaminations result in the suspicious

error that HEK293T-derived EVs possess anti-inflammatory

bioactivity (250). These studies reveal that different isolation

methods applied in different research studies influence the

validity and accuracy of the result and even may lead to

false outcomes.

Standard purification strategy matters in clinical settings. The

impact of isolation methods has been mentioned above. The

heterogeneity of isolation methods hinders the quantification and

comparison of the results (251). It is noted that 80% of studies

simply conduct ultracentrifugation to isolate the EVs (242, 243).

Ultracentrifugation has been recognized as the gold standard for EV
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isolation and is efficient in enriching EV fractions, allowing for the

collection of additional larger EV components (252). However, it

has restricted the processing volume due to the limited thin loading

zone (253). Furthermore, the requirement of expensive equipment

and well-trained technicians restricts its wide application. In

addition, prolonged exposure to ultracentrifugal forces can

negatively impact the structure and biological function of isolated

EVs, making them less suitable for downstream applications like

EV-based functional studies and drug development (254).

According to MISV2018, you cannot obtain both high yield and

high purity in EV production (18, 255). Thus, we ought to establish

a standard purification strategy, which is a series of isolation

technique combinations catering different EV sources (culture

medium or body fluid). Moreover, such a strategy entails

guidelines that will evaluate existing and new methods and purify

EVs in order to confirm their usage in different scenarios. The

strategy aims at stipulating standard, economic, and efficient

purification methods for mass production and clinic use.
5.3 Allowing stabilized long-term storage
during EV preparation

Another noteworthy problem preventing EV preparations from

widespread clinic application is storage. Although numerous studies

have examined the properties of, and the roles played by, EVs in

vivo and their potential in immunoregulation, drug delivery, and

biomonitoring, they keep the EVs or raw materials containing EVs

(e.g., culture medium, body fluid, and extracts) for a short period,

ignoring the changes in the active ingredient in EVs during long-

term storage (256, 257). According to the research, even if the EVs

are carefully enriched, isolated, and purified, improper preservation

strategies may still result in EV fusion or crack, protein aggregation,

or degradation, leading to failure in EV preparation (256, 258). Like

other biopharmaceuticals, the application of EVs will involve a

series of procedures including transfer, storage, and disposal,

requiring the exploration of economic storage strategy and the

definition of quality period (256, 258, 259).

In light of this lack of standard procedures for EV storage and

regarding research, current studies have not reached a consensus

(260). The application of cryoprotective agents (CPAs) like

trehalose (261, 262) or dimethyl sulfoxide (263, 264) is suggested

by some authors. Researchers have discovered that adding 25 mM

trehalose to the isolation and storage buffer for pancreatic beta-cell

exosome-like vesicles narrows the particle size distribution and

increases the number of individual particles per microgram of

protein. In macrophage immune assays, beta-cell EVs stored in

trehalose consistently show higher TNF-alpha cytokine secretion

stimulation indexes, indicating better preservation of biological

activity (261). Furthermore, polyacrylamide gel electrophoresis

(PAGE) analysis demonstrated that both proteins and RNA

within EVs are preserved after lyophilization when trehalose is

present . Lyophi l i za t ion has minimal impact on the

pharmacokinetics of Gaussia luciferase (gLuc)-labeled EVs

following intravenous injection into mice (262). Cryopreservation

of platelets with DMSO leads to the release of platelet microvesicles
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(PMVs) and a significant increase in thrombin generation and

procoagulant activity (TG-PCA) compared to liquid-stored

platelets (LSPs) (263). The morphology of EVs cryopreserved

using DMSO is similar to SEM images of fresh EVs. Although the

sizes and shapes of a certain percentage of EVs are preserved,

DMSO is unable to maintain the morphology of all vesicles in the

sample (264). Another widely applied method for long-term

preservation is cryopreservation including freezing and

lyophilization (262, 265). The EVs are usually recommended to

be preserved at −80℃ for long-term preservation and at 4℃ for

temporary storage (266). A series of studies discuss the effect of

different temperatures or the speed of freezing or thawing. Despite

encouraging findings, some results remain conflicting, and

comprehensive studies that compare different storage strategies

simultaneously are still lacking. Additionally, most studies have

analyzed samples after relatively short time periods (e.g., hours,

days, or occasionally weeks). Those that have examined samples

after longer preservation periods have primarily focused on the

storage of biofluids rather than isolated EVs (265, 267–272).

Lyophilization makes its progress in vacuum to protect the easily

oxidized components. Moreover, lyophilization reduces the water in

EV samples, which enhances their stability and reduces the risk of

contamination, facilitating transportation and extending storage

duration (273). Lyophilization without a cryoprotectant results in

the aggregation of exosomes derived from B16BL6 melanoma cells,

while adding trehalose, a cryoprotectant, prevents this aggregation.

PAGE analysis reveals that trehalose protects the proteins and RNA

of the exosomes during lyophilization. The procedure has little

effect on the pharmacokinetics of Gaussia luciferase (gLuc)-labeled

exosomes after intravenous injection into mice. Additionally,

lyophilized exosomes retain the activity of loaded gLuc and

immunostimulatory CpG DNA for approximately 4 weeks, even

when stored at 25°C (262). The spray-dry technique is another

technique preserving EVs. When an EV solution is atomized in a

drying chamber, the moisture quickly evaporates once in contact

with hot air and leaves dry powder. During this process,

atomization pressure and outlet temperature are factors that

influence the stability of EVs. Compared to lyophilization, spray

drying is a continuous process that can achieve one-step formation,

making it more economical and suitable for large-scale production

(274). However, like lipid nanoparticles (LNPs), shear stress, liquid

interface expansion, and stress caused by thermal dehydration

during the collection process may harness the EV membrane

(275, 276). In recent years, some researchers try to preserve EVs

in gelatin methacryloyl hydrogel (GelMA) (277). Since the irregular

Brownian transport of EVs is the cause of membrane fusion and the

inactivation of its contents (278–281), GelMA can encapsulate EVs,

limiting their random movement and reducing their aggregation,

thus improving their stability. The good biocompatibility, the ability

to be administered without affecting EV activity, and the well-

established preparation techniques that enable synthesis or

commercial availability highlight its potential for clinical

application (277).

In conclusion, there are six key points in EV storage. (1) Freeze–

thaw reduction. It is reported that the freeze–thaw cycle decreases

EV yield and increases particle size due to membrane fusion and
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protein loss. EV transportation should follow the principle of

minimizing freeze–thaw cycles. If the EVs being transported are

stored under frozen conditions, it is recommended to use sufficient

dry ice for transportation. When transporting freshly isolated EVs,

it is advised to use adequate ice packs and deliver them to the

destination as quickly as possible (282, 283). (2) Application of

screw caps and rubber seals to reduce the impact of freeze-drying

during the storage of EVs. The rubber seals enhance the tightness of

screw caps, separating EVs from contaminants from the air and

reducing oxidation (284, 285). (3) Utilizing low-adsorption

materials to store EVs. It reduces loss of EVs and assists in

keeping the key molecules on the EVs’ surface (286). (4) To

prevent ice crystal formation and reduce low-temperature

precipitation, seal the container with sealing film, aliquot the EV

samples, and quickly freeze them in liquid nitrogen. Store at −80°C

or below, and thaw at 37°C (287). (5) Purified EVs can be

temporarily stored at 4°C, but should not be kept for more than

48 h. Furthermore, it is recommended to prioritize storing

unextracted samples at −80°C because untreated samples are

better stored at −80°C compared to purified EVs (282, 283, 288).

(6) Storage conditions and duration have a significant impact on

EVs. A higher storage temperature and a longer storage time

contribute to fewer EVs remaining in the sample (260).
5.4 Potential of EVs as biomarkers in
clinical practice

Recently, applying EVs as a biomarker and as a diagnostic and

prognostic predictor has been another promising clinical

application (289). There are several reasons for EVs to be an

excellent disease indicator. First, EVs are intercellular vesicles

transmitting bioactive molecules regulating cell development,

differentiation, and function, which can serve as sensitive and

specific biomarkers (290). Second, secreted by most cells in vivo,

EVs exhibit a high concentration in most bodily fluids, which

means they can be easily captured and tested, especially large EVs

(291). Third, accumulating studies have revealed the relation

between changed EV content and certain diseases (292). For

example, it is reported that the combination of EV TDP-43 levels

and EV 3R/4R tau ratios can assist in diagnosing frontotemporal

dementia (FTD), FTD spectrum disorders, and amyotrophic lateral

sclerosis (ALS). EV tau ratios are low in progressive supranuclear

palsy (PSP) and high in behavioral variant frontotemporal dementia

(bvFTD) with tau pathology. EVs TDP-43 levels are elevated in ALS

and in bvFTD with TDP-43 pathology. Both markers effectively

discriminate between diagnostic groups, achieving area under the

curve values greater than 0.9. They also differentiate between TDP-

43 and tau pathology in bvFTD. Additionally, both markers

strongly correlate with neurodegeneration, as well as with clinical

and neuropsychological indicators of disease severity (293).

Through selective reaction monitoring/multi-reaction monitoring

(SRM/MRM), EphA2 on urinary EVs presents significant

expression differences between patients with bladder cancer/non-

malignant hematuria and healthy controls. The subsequent research

also shows that EVs-EphA2, which promotes the proliferation,
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invasion, and migration of bladder cancer cells, exhibits strong

diagnostic performance, with a sensitivity of 61.1% and a specificity

of 97.2% (294). In addition, EVs may have some prognostic value. It

is reported that tRNA-derived small RNAs (tsRNAs) are specifically

enriched in salivary EVs of ESCC patients with high sensitivity

(90.50%) and specificity (94.20%). According to the bi-signature

Risk Score for Prognosis (RSP), patients with a high RSP have

significantly shorter overall survival (OS) (HR 4.95, 95% CI 2.90–

8.46) and progression-free survival (PFS) (HR 3.69, 95% CI 2.24–

6.10) compared to those with a low RSP. Moreover, adjuvant

therapy is found to improve OS (HR 0.47, 95% CI 0.29–0.77) and

PFS (HR 0.36, 95% CI 0.21–0.62) only in patients with a high RSP,

but not in those with a low RSP (295). Another study indicates that

EV-derived B7-H3 and B7-H4 emerge as noninvasive predictors of

survival in patients with metastatic NSCLC treated with ICIs,

functioning independently from their expression in tumor tissue.

Interestingly, an increase in PD-L1+ EVs is primarily linked to

disease progression, while a rise in B7-H3+ EVs seems to be

associated with a positive response to ICI treatment (296).

Moreover, EVs can guide drug application. For example, it is

reported that small extracellular vesicles (sEVs) carry multiple

inhibitory immune checkpoint proteins, creating a potentially

targetable adaptive mechanism that suppresses antitumor

immunity. It sheds light on the role of sEVs in tumor drug

resistance mechanisms, which is helpful in improving the patient

response rate of immune checkpoint blockade therapy (297).

Another comprehensive review reveals the role of EVs in assisting

drug resistance and the possible methods that target EVs to

overcome tumor drug resistance (298). However, the application

of EVs as biomarkers is still in its infancy and there are some

practical problems that remain to be solved.

The source and isolation techniques of EVs determine their

application. Currently, EVs as noninvasive biomarkers are usually

extracted from blood and urine (299); CSF and saliva are also

included in some studies (300, 301). Blood is the most abundant EV

source among bodily fluids, yet its complex components and

viscosity bring up significant challenges for EV isolation (233);

thus, kits are not recommend for blood–EV isolation since co-

precipitated proteins and liposomes may contaminate the EVs

(302–304). Size exclusion chromatography (SEC) and

ultracentrifugation are effective methods for separating protein

from EV components with a higher yield and purity compared to

other methods, yet there are still residual lipoprotein particles.

Furthermore, EVs separated by ultracentrifugation tend to have

lower yields, which may not meet the minimal testing dose (305). It

is recommended that a combination of different methods can be

applied to remove liposomes and proteins when isolating blood EVs

(306). However, an improper isolation method may damage the

target protein, leading to a false result (307). Urine, as another

widely applied bodily fluid for disease detection, is considered the

most suitable biological specimen for research on urinary system-

related tumors due to its direct connection with the urinary system

(308). Unlike blood, urine samples can be collected in larger

volumes with a lower protein content. Given the characteristics of

urine samples, ultrafiltration is commonly used to concentrate the

urine, removing soluble contaminating proteins and obtaining
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concentrated EV-containing solution. Subsequently, methods such

as SEC or precipitation are employed to isolate relatively pure EVs

(309). CSF is recognized as the best bodily fluid reflecting brain and

spinal cord conditions, and CSF EVs are helpful in maintaining

healthy nervous system function (310). CSF can be collected via

brain puncture and lumbar puncture. Brain puncture can collect a

large volume of samples but may be contaminated by blood.

Lumbar puncture collects 20 to 25 mL of sample at a time; it is

usually free of blood and can ensure a replicable strategy (311). It is

important to exclude blood from CSF samples. Thus, centrifugation

of the lumbar CSF sample before freezing and storage is

recommended to eliminate any potential cellular contamination

that could interfere with EV research. The sampling position,

method, and the subsequent processing strategy should be

identical when making effective comparison in medical research

or clinical settings (312). As to CSF EV isolation, filtration and SEC

are recommend techniques since they work well on small-volume

samples (313). Saliva has its advantages of being easily collected,

noninvasive, and safe (314). Saliva EVs not only reflect the health

condition of the adjacent tissue of salivary gland (295, 315), but also

can be a biomarker for other tumor diseases like breast cancer,

pancreatic cancer, and lung cancer (316–319). However, saliva is

primarily secreted by the sublingual, submandibular, and parotid

glands, and the composition of saliva varies depending on the

sampling location and time (320). Thus, when collecting saliva EVs,

it is necessary to either standardize the sampling location or collect

saliva from all locations (320). Moreover, the composition of saliva

also changes at different times of the day; thus, sample timing is also

important (321). Notably, eating, drinking, smoking, and vigorous

exercise are prohibited within 1 h before sampling to ensure that

saliva EVs are not contaminated (322).

It is noted that race may have an impact on EV content. This

should be taken into consideration when determining the threshold.

For example, exosomal miR-1304-3p has been identified as the

most upregulated mRNA in African American breast cancer

patients, showing a significant difference when compared to

Caucasian American patients (323). However, limited attention is

paid to the field, partly because of the difficulty in sample

acquisition and insignificance in content difference.
5.5 Turning the tables: using EVs
as weapons

Attempts to apply EVs in preclinical and clinical settings have

emerged recently with satisfactory results (324). The application

mainly focuses on utilizing EVs as diagnosis and prognosis

biomarkers and modifying EVs as therapeutic agents (325–327).

Compared with healthy people, cancer patients tend to present

high levels of EV production (328). Their correlation with tumor

not only helps with early diagnosis but also indicates potential

targets for tumor immunotherapy (329). It is noted that the early

detection of tumors is crucial for effective cancer immunotherapy

(330). For instance, miRNA-200-5p, miRNA-378a, miRNA-139-5p,

and miRNA-379 are proven to be noninvasive sensitive biomarkers

in the diagnosis and screening of lung cancer (331). It is also found
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that postoperative blood samples from pancreatic ductal

adenocarcinoma (PDAC) patients showed reduced levels of

exosomal Sox2ot expression, which plays a role in tumor

development and may serve as a valuable prognostic marker for

pancreatic cancer (332). Understanding how EVs package their

cargo, release it into bodily fluids, and maintain stable levels in

health and disease is crucial for developing powerful biomarkers to

monitor disease onset and progression (324, 333).

Besides biomarkers, EVs can also be therapeutic agents. EVs

derived from DCs originate from either immature or mature DCs

activated by cytokines, such as recombinant interferon-g. The
injection dose typically ranges from 8.5 × 10¹¹ to 4.0 × 10¹³ EVs

containing MHC class II molecules. To stimulate an immune

response in cancer patients, these DC-derived EVs, loaded with

tumor antigens, are administered subcutaneously. Clinical trials

using these EVs have been conducted for melanoma and non-small

cell lung cancer, showing similar safety outcomes. However, in the

case of non-small cell lung cancer, MAGE-specific T-cell responses

have been observed (334). These tumor antigens, such as

carcinoembryonic antigen, can be obtained directly from cancer

patients by harvesting ascites-derived EVs. A phase I trial

demonstrated that this method is safe and well-tolerated.

Moreover, in the group receiving ascites-derived EVs combined

with granulocyte–macrophage colony-stimulating factor, a tumor-

specific cytotoxic T lymphocyte response is observed (335).

Manipula t ing EV content and product ion a lso a ids

immunotherapy. In a study, researchers discovered that EVs

extracted from malignant ascites contained the MET oncogene,

which enhanced tumor invasiveness. Furthermore, inhibiting the

secretion of these EVs suppressed tumor progression (336).

Co-delivery of chemotherapy drugs or siRNAs also boosts

tumor immunotherapy. EVs have been extensively utilized in the

treatment of various malignancies (337). It is reported that repeated

injection will not harm to body (328). Moreover, their immune

compatibility and biocompatibility make them well-suited for

therapeutic applications (338). Two clinical trials (NCT01854866

and NCT02657460) are investigating the application of

chemotherapy drugs to treat patients with malignant pleural

effusion. In the preclinical study and the NCT01854866 trial,

MTX and cisplatin are used as anticancer drugs, respectively.

Results from the preclinical study show a higher survival rate in

MTX application compared with cisplatin (339). KrasG12D siRNA

has been explored as a potential anticancer therapy for patients with

metastatic pancreatic cancer. In another study, mesenchymal

stromal cell-derived EVs have been proposed as a therapeutic

approach, as outlined in clinical trial NCT03608631. In an

orthotopic pancreatic tumor model, targeting tumor-initiating

cells (TICs) with MSC membrane-derived nanovesicles, known as

“nano-ghosts,” loaded with a CXCR3 antagonist improved

treatment efficacy and delayed tumor recurrence when combined

with gemcitabine. Since MSC-derived nano-ghosts may

preferentially home to tumors and specifically target the TIC

population, we propose utilizing them as “Trojan horses”. A

promising approach for overcoming treatment resistance,

particularly in desmoplastic cancers such as pancreatic

adenocarcinomas, is nano-ghost-based therapy (340).
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Insults to donor cells can produce EVs with distinct features.

Generally speaking, tumor cell-derived EVs inhibit tumor

immunotherapy and promote tumor growth and metastasis.

However, there are some exceptions (341, 342). UV-treated

tumor cells produce EVs devoid of HSPs but enriched with

abundant genomic and mitochondrial DNA fragments. These

EVs can serve as vaccines stimulating DCs via cGAS/STING

signaling. This finding suggests a new tumor cell-free vaccine

strategy with promising potential for clinical applications (343).

Radiation-treated cell-released EVs show the capacity to suppress

murine brain metastasis via the reprograming of the TME by

inhibiting the MAPK pathway (342).

To date, the heterogeneity of EVs may have an impact on their

clinical application. The heterogeneity of EVs likely reflects their

size, composition, functional effects on recipient cells, and cellular

source. Size heterogeneity may be induced by the uneven

invagination of the limiting membrane during formation and

flaws in isolation techniques (344, 345). Even after purification,

EVs are observed to exhibit variable abundance of cargoes,

including mRNAs and proteins (244, 346). Subsets of EVs may

function differently in one set of the isolated EVs: one set may

promote cell survival while another induces cell apoptosis (347).

The heterogeneity of EVs may influence the results of EV studies,

yielding false-positive or false-negative results. Furthermore,

advanced techniques in EV purification and classification ought

to be developed to distinguish the subtypes of EVs with

different functions.
6 Conclusion and perspective

As a fast-growing and exciting new field developing rapidly in

the last 20 years, EVs have attracted the attention of numerous

researchers and its application has flourished. EVs not only play a

significant role in immunoregulation but also have become a

promising tool in diagnosis, prognosis, and target therapy. In this

review, we have summarized current EV isolation strategies,

classified standards, and researched their pros and cons in a

clinical setting. Although the biogenesis of EVs has been fully

explained, EV isolation and modification techniques have been

developed, and some researchers have attempted to take advantage

of EVs to build drug delivery platforms or EV-based

immunotherapy strategies, there is still a long way to go as

regards their clinical application. However, our understanding of

EVs is inadequate, which hinders us from fully exploiting the

potential of EVs. Most studies regarding EV biogenesis are

conducted in vitro, yet the relevance of mechanisms in vivo

remains to be investigated. Some studies suggest targeting the

formation and release of specific types of EVs. However, it is still

unknown whether all cells share the same mechanism in secreting

EVs and influencing the target cells, which may hinder the

development of the targeting therapy.

The interaction of EVs in vivo has been studied extensively by

numerous researchers. Current research reveals that EVs are deeply

involved in multiple cell activities and intercellular communication.

Presenting pro-tumor or immunosuppression factors, tumor or
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regulatory immune cell-derived EVs participate in the process of

TME shaping and tumorigenesis, tumor proliferation, tumor

metastasis, and tumor drug resistance. Antitumor immune cell-

derived EVs also present a strong capacity in promoting tumor

apoptosis or activating other immune cells. However, some details

in the EV regulatory process remains unknown, which may induce

the “butterfly effect” due to the complexity of the immune system,

ultimately leading to an incorrect result. Despite widespread

exploration, our understanding of EVs’ roles in the TME remains

superficial; continued research is needed to understand the content,

function, and responsiveness of EVs. The heterogeneity of EVs in

the TME suggests potential applications in monitoring tumor

growth, especially considering the influence of treatment, tumor

classification, grading, and stage. Moreover, the EV environment

decides whether EVs are either “good” or “bad”, indicating that

researchers should pay attention to not only the physicochemical

properties and content of EVs but also the biogenesis, position, and

activity of a specific type of EV in vivo. Utilizing naïve EVs as

antitumor drugs is a promising strategy, leveraging their reduced

tumorigenic risk and heightened biological activities. In a word, a

more comprehensive and systematic view of how EVs work in the

human body is required in future research.

The potential of EVs as a drug delivery platform has received

widespread attention. A limited number of clinical trials have

attempted to add EVs in their drug delivery systems (348). The

EV source, loaded cargoes, targeted disease, and drug

administration have witnessed a diversification. These trials

demonstrate the safety of EVs in a clinical setting. However, with

the development of techniques, these trails are not up-to-date

enough to meet current need. Production transformation is

encouraged to bridge the lab–clinic divide. In the future, certain

cell strains may be selected as engineered EV providers for

industrial production. According to recent research, MSCs and

cytotoxic immune cells (e.g., CD8+ T cells, NK cells, and M1

macrophages) are promising candidates, yet their indications

remain to be further explored. Another strategy caters the trend

of personalized medicine, emphasizing sampling the EV source

from the patient. For example, when treating cancer patients,

researchers may build a customized EV-based drug delivery

platform via tumor cells from the patients themselves. The

tumor-derived EVs should be processed to eliminate

tumorigenicity yet keep their self-targeting capacity. However, the

strategy may not be economic and efficient enough to be applied

immediately, thus relying on technique optimization in the future.

Furthermore, its safety and efficacy remain to be verified.

Advancements in EV-relevant techniques and guidelines are

also required for further application. EV isolation and modification

techniques have been developed and some researchers have

attempted to take advantage of EVs to build drug delivery

platforms or EV-based immunotherapy strategies, but there is still

a long way to go with regard to their clinical application. It is

necessary to exploit different isolation strategies aimed at various

application scenarios. When it comes to the large-scale production

of EV preparations, it is important to develop isolation strategies,

while balancing cost and purity and ensuring effectivity and safety.

When researching EVs or applying them as biomarkers, combining
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low-volume isolation strategies that are less harmful to target

molecules on EVs may be the solution (349). The modification of

EVs to serve as an effective drug-targeting nanoplatform establishes

the groundwork for the development of “next-generation”

anticancer nanomedicines. The development of international

guidelines, quality classifications, and good manufacturing

practices (GMP) rules is essential to ensure the safety and efficacy

of EV therapy in clinical settings. The establishment of standards

also helps in the comparison of different research outcomes.

The production of GMP-grade EVs depends on several factors,

including the type of applied cells, the culture environment, the

cultivation system, the dissociation enzyme, and the culture

medium. After production, further purification is typically

required, which is generally carried out in a three-step process. A

third critical aspect of GMP-compliant EV production is the

development of reliable identification methods, encompassing

both their physical structure and bioactivity characteristics. Five

types of cells have been applied in GMP EV production. However,

the lack of guideline enrolling new types of cells applicable in GMP

EV production may inhibit further exploration and clinical

application. Culturing systems, purification systems, and

characterization have been previously mentioned, yet a more

comprehensive and approved guideline should be determined.

The common flaws of the existing techniques in producing and

purifying EVs include a limited scale, the contamination of

heterogeneous EVs/proteins/lipids/nucleic acids, and the high

cost. The application of engineering cell lines, flasks/bioreactors

with a modified surface, and an enlarged surface area may boost

large-scale synthesis. To avoid contamination, culture medium

without EVs component ought to be used. Proper stimuli will

further promote EVs yield. The lack of regulation may result in

poor preparation quality and confusion in drug application.

Guidelines and consensus documents could be developed by

experts in the field annually to address the issue.

To fully realize the potential of EVs as biomarkers for diagnosis

and prognosis, progress in assorted hardware and software is

necessary. Currently, most attempts using EVs as biomarkers

remain in the laboratory, and the testing procedures are too

complex to be applied in the clinic. Microfluidic chips with highly

sensitive detectors may be the new trend in the field of EV

biomarkers. To calculate the reference value, credible algorithm

and software should also be developed, and a larger-scale clinical

trial is significant for data collection. In conclusion, a standard

procedure for data collection, analysis, and reporting should be

established for EV-specific regulatory approval.
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