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Objective: Autoimmune diseases have long been recognized for their intricate

nature and elusive mechanisms, presenting significant challenges in both

diagnosis and treatment. The advent of artificial intelligence technology has

opened up new possibilities for understanding, diagnosing, predicting, and

managing autoimmune disorders. This study aims to explore the current state

and emerging trends in the field through bibliometric analysis, providing

guidance for future research directions.

Methods: The study employed the Web of Science Core Collection database for

data acquisition and performed bibliometric analysis using CiteSpace, HistCite

Pro, and VOSviewer.

Results: Over the past two decades, 1,695 publications emerged in this research

field, including 1,409 research articles and 286 reviews. This investigation unveils the

global development landscape predominantly led by the United States and China.

The research identifies key institutions, such as Brigham & Women’s Hospital,

influential journals like the Annals of the Rheumatic Diseases, distinguished

authors including Katherine P. Liao, and pivotal articles. It visually maps out the

research clusters’ evolutionary path over time and explores their applications in

patient identification, risk factors, prognosis assessment, diagnosis, classification of

disease subtypes, monitoring and decision support, and drug discovery.

Conclusion: AI is increasingly recognized for its potential in the field of autoimmune

diseases, yet it continues to face numerous challenges, including insufficient model

validation and difficulties in data integration and computational power. Significant

advancements have been demanded to enhance diagnostic precision, improve

treatment methodologies, and establish robust frameworks for data protection,

thereby facilitating more effective management of these complex conditions.
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1 Introduction

Autoimmune diseases (AID) encompass a spectrum of

conditions instigated by an anomalous immune reaction to internal

antigens (1, 2). The intricacies and fundamental mechanisms of these

disorders pose challenges in diagnosis and treatment. Although

substantial headway has been achieved in comprehending the

pathophysiology of AID in recent years, there remains a need for

more refined diagnostic modalities and efficacious therapeutic

approaches. The advent of artificial intelligence (AI) technology

offers promising new avenues for advancing our understanding,

diagnosis, and management of AID. AI algorithms have the

capacity to scrutinize copious datasets from diverse origins such as

electronic health records, laboratory indicators, medical imaging, and

genomic information (3–5). Through discerning subtle patterns and

associations, AI facilitates disease prognosis, early detection, and

refinement of treatment modalities (5–8). Despite having

demonstrated significant potential in the field of AID, AI has

encountered numerous challenges related to models, data, and

treatment. Future advancements are expected to be driven by data

integration and algorithm optimization, aimed at enhancing

diagnosis, treatment, and monitoring capabilities. The integration

of AI in AID research has proliferated in tandem with advancements

in AI technology in the last two decades. The objective of our

investigation is to explore the evolution of this field over the past

twenty years through a bibliometric lens.

Bibliometrics is a method that reveals the research patterns and

trends in a specific field through quantitative and qualitative analysis

of literature data (9, 10). While traditional review articles exist to

summarize research progress, each review article focuses differently.

Currently, there is still a lack of comprehensive, objective, and

intuitive analysis of the evolution and trends of AI applications in

AID. Bibliometric analysis based on quantitative analysis of literature
Frontiers in Immunology 02
can objectively and comprehensively describe the historical

characteristics and development trends of this field (11).

In this study, based on bibliometric analysis tools, we provided

the research contents as follows (Figure 1): (1) comprehensively

summarized the global development status in that field; (2)

identified the high-productivity institutions, interested journals,

highly cited authors, and pivotal milestone articles in that field;

(3) visualized the evolution trajectory of research clusters in that

field in a timeline format; (4) explored the current state of AI

applications in the AID; (5) detailed the challenges and prospects.
2 Methods

2.1 Data collection

The Web of Science Core Collection (WoSCC) is a highly

regarded database in the field of bibliometrics (11, 12), having

gained significant recognition among scholars and serving as the

primary data source informing this study. The search term strategy

in this study was formulated by integrating reviews, bibliometric

studies related to artificial intelligence and autoimmune diseases, as

Medical Subject Headings (MeSH) terms in PubMed (5, 13).

Supplementary Table S1 provides a list of the search terms

employed in this study.

The search was conducted on July 1, 2024, with the search terms

limited to English language articles and reviews published between

2003 and the search date. After the retrieval and screening process, a

total of 1,695 publications were identified, comprising 1,409

research articles and 286 reviews. The WoSCC was used to

systematically collect data on publication countries/regions,

institutions, journals, authors, articles, and keywords. Excel

software (version 2021) was used to conduct summary and analysis.
FIGURE 1

Analysis framework of this paper.
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2.2 Bibliometric analysis

CiteSpace is a Java application created by the research team led

by Chen Chaomei at Drexel University (14). This software offers

visualization techniques for publication data and has been widely

acknowledged in the field of bibliometrics for providing objective

analyses of academic frontiers (15, 16). In the CiteSpace analysis,

co-occurrence networks were used to distinguish merged networks

via color-coded nodes and edges. Burst detection, based on

Kleinberg’s algorithm, was employed as an indicator of active

topics (17). In this study, CiteSpace charted the literature network

within the relevant field, offering analyses on research hotspots,

frontier trends, and the evolution of knowledge structures.

VOSviewer, developed by Leiden University in the Netherlands,

was utilized to extract and analyze elements within literature data such

as authors, keywords, and institutions (18–20). It calculated the strength

of their associations and presented them in a visual format. This process

involved data extraction and preprocessing, association calculation, and

visualization mapping to facilitate co-occurrence analysis, citation

analysis, and clustering analysis. VOSviewer was utilized to create a

node network, and relevant information was obtained through

parameters such as link strength, cluster color, and node size analysis.

HistCite Pro 2.1 was employed to manage and analyze a large

volume of literature data, excelling particularly in citation analysis

(21). By utilizing HistCite, citation relationships between documents

could be traced, elucidating the knowledge dissemination pathways

and developmental trends within the research domain, thereby
Frontiers in Immunology 03
identifying highly significant literature in the field. In HistCite Pro

2.1, the “Limit” was set to 30, with the remaining settings kept at their

default values. Subsequently, the “Make graph” option was selected to

effectively and visually represent the interconnectedness within the

research field, facilitating the efficient identification of key literature.
3 Results

3.1 General features of publications

Bibliometric analysis was able to quantitatively portray the

developmental status within a specific academic research field.

Our study revealed that over the past two decades, the total

number of publications in this research field amounted to 1,695.

Among these, 1,409 were research articles and 286 were reviews.

These publications include the contributions of 10,915 authors from

7,070 institutions across 703 journals (Supplementary Table S2).

As depicted in Figure 2A, we observed a rising trend in the

number of publications over the past two decades, with particularly

accelerated growth in the last five years. The count surpassed 100

for the first time in 2020, reaching 139 publications. By 2023, it had

reached 341 publications, and in the first half of 2024 alone, the

count had already reached 222 publications. In terms of citations,

there was a noticeable upward trend in the number of citations in

2017, surpassing 1,000 and reaching 1,152. It is noteworthy that by

2023, the number of citations had reached 5,777.
FIGURE 2

The evolution and distribution characteristics of publications. (A) The annual number of publications and citations over the past 20 years. (B) Top 20
Web of Science Categories for Publications. (C) Analysis of the publication numbers by country/region. (D) Global Distribution Overview
of Publications.
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3.2 Categories of publications

A thorough examination revealed that over the past two

decades, publications on AI in AID spanned 124 Web of Science

Categories. As illustrated in Figure 2B, the top 20 Categories with

the highest publication counts are showcased. Among these, there

are 5 Categories with over 100 publications, with Rheumatology

leading at 222 publications, followed by Immunology with 189

publications. Subsequently, there were 117 publications in

Medicine General Internal, 110 publications in Multidisciplinary

Sciences, and 105 publications in Surgery.
3.3 Publication analysis of countries/
regions

In the field of research, a total of 57 countries/regions

contributed publications, with the USA having the highest

number of publications at 506, accounting for 21% of the total,

followed by China with 416 publications, making up 17%.

Additionally, Germany had 137 publications, while England and

Italy each had 136 publications. The pie chart in Figure 2C
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illustrates the distribution of publications by different countries/

regions, revealing that the top 12 countries accounted for 73% of the

total publications. The global distribution of publications by

countries/regions, as depicted in Figure 2D, overall indicates that

the United States and China made the most significant

contributions to the field in terms of publication output.

Unfortunately, it is noted that countries in Central Asia and

regions in Africa have not yet ventured into this research field.

Through the analysis of co-authorship relationships among

countries/regions using VOSviewer, it was found that the USA had

the highest total link strength, reaching 437, indicating a higher

frequency and wider scope of collaboration with other countries

(Figure 3A). In terms of publication citations, a minimum citation

threshold of no less than 5 times was set, and a country/region citation

network map was generated (Figure 3B). In this network, node size

represents citation counts, with the top five countries in citation

counts being the USA, Germany, China, England, and Italy, with

citation frequencies of 13,515, 3,425, 3,298, 3,277, and 2,436

respectively. Furthermore, through the analysis of total link strength,

the USA, Italy, and China ranked in the top three with values of 1,849,

1,040, and 1,023 respectively, indicating the wider dissemination of

publication citations from these three countries/regions.
FIGURE 3

The co-authorship network among countries/regions and academic institutions. (A) Co-authorship Network of Countries/Regions. (B) Publication
Citation Network of Countries/Regions. (C) Co-authorship Network of academic institutions. (D) Publication Citation Network of academic
institutions. Network nodes symbolize publication or citation values, with larger nodes signifying higher values; Links between nodes reflect
collaboration or citation strength, where thicker and darker lines denote stronger connections; Nodes of the same color are part of the same
cluster, indicating similar characteristic.
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3.4 Publication analysis of academic
institutions

Various institutions leverage their expertise in clinical medicine,

data algorithms, and biological research to collaboratively

consolidate resources and knowledge. Setting the publication

threshold at a minimum of 8 articles, a collaboration network

comprising 88 academic institutions was established (Figure 3C).

Node size represented publication output, with Brigham &

Women’s Hospital, Harvard Medical School, Sichuan University,

Mayo Clinic, and University of California San Francisco ranking as

the top five institutions, with publication counts of 37, 36, 25, 23,

and 23 respectively. Moreover, in this network, Brigham &

Women’s Hospital, Harvard Medical School, and Massachusetts

General Hospital ranked among the top three for total link strength,

with values of 91, 67, and 60 consecutively.

By focusing on citations, with a minimum threshold of 100

citations, a total of 223 academic institutions were identified in the

network graph (Figure 3D). The analysis revealed that Harvard

University claimed the top position with 1,567 citations, followed by

Brigham & Women’s Hospital with 1,372 citations and

Massachusetts General Hospital with 1,129 citations. In the

citation network graph, Brigham & Women’s Hospital was

identified as the institution with the highest total link strength,
Frontiers in Immunology 05
with a value of 743. Massachusetts General Hospital and Harvard

University recorded 638 and 597, respectively. These findings

indicate that these three institutions occupy a dominant position

within the field.
3.5 Publication analysis of authors

Interdisciplinary collaboration among authors overcomes

professional barriers and drives progress in the field. Based on a

minimum threshold of 3 publications, an analysis was performed to

construct a co-authorship network graph for 323 authors

(Figure 4A). The analysis revealed the existence of distinct co-

author clusters, with notable prominence observed in clusters

spearheaded by Gainer, Vivian S. and Karlson, Elizabeth W., Cai,

Tianxi and Liao, Katherine P., as well as Kleyer, Arnd, Simon,

David, and Schett, Georg. These findings suggest that the

aforementioned individuals demonstrated higher levels of

involvement and collaboration in research activities within their

respective clusters. With regard to the presentation of citations,

Figure 4B depicts the citation network graph, wherein the nodes

represent the citation counts. Cai, Tianxi was the most highly cited

author, with 955 citations, and also ranked first in total link strength

within the network, with a value of 106. A co-citation network
FIGURE 4

Author analysis of publications. (A) Network of co-authors of publications. (B) Citation network of authors in the field. (C) Co-citation network of
authors. (D) Analysis of Total link strength and Normalized citations among the top 15 authors based on publication count.
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graph was constructed based on a minimum citation frequency

threshold of 20 times, comprising a total of 219 authors (Figure 4C).

In this co-citation network, the highest number of citations were

attributed to Smolen, JS; Breiman, L.; and Aletaha, D., with

respective citation counts of 177, 136, and 129.

We also analyzed the total link strength and norm. Citations of

the top 15 authors in terms of publication volume (Figure 4D). Our

results revealed that the author with the highest publication volume

was Cai, Tianxi, with 17 articles, and the highest total link strength

of 106. However, Cai, Tianxi ranked second in the norm. Citations

with 22.10. The author ranked first in the norm. The citation was

Liao, Katherine P., with a publication volume of 12 and a total link

strength of 92, which placed them second. This indicates the

significant influence of Cai, Tianxi, and Liao, Katherine P. in the

field of study.
3.6 Publication analysis of journals

Through an analysis utilizing VOSviewer of journal citation

networks, it was observed that Autoimmunity Reviews, Annals of

Thoracic Surgery, European Journal of Cardio-Thoracic Surgery,

Scientific Reports, and Lupus Science & Medicine emerged as the top

five journals based on total link strength, achieving scores of 134,

114, 111, 105, and 99 respectively (Figure 5A). These findings

suggest a pronounced citation relationship with other journals.

Moreover, an examination of the temporal aspect of journal

citations, as illustrated in Figure 5B, revealed that yellow nodes

denote journals that have displayed heightened activity in the field

in recent years, whereas progressively bluer nodes signify earlier

periods of relative activity for these journals. Furthermore, by

setting the minimum citation threshold to no fewer than 100, a

total of 154 core journals were utilized to construct the co-citation

network (Figure 5C). The results indicated that the total link

strengths for Annals of the Rheumatic Diseases, Nature,

Proceedings of the National Academy of Sciences of the United

States of America, PLOS One, and Journal of Immunology were

88,303, 72,645, 60,534, 58,811, and 57,919, respectively.

In the realm of academic publication output, Frontiers in

Immunology emerged as the frontrunner with 86 articles, closely

trailed by Scientific Reports with 50 articles, Rheumatology with 35

articles, Arthritis Research & Therapy with 31 articles, and PLOS

One with 25 articles. Additionally, in terms of scholarly impact

measured by citations, the Journal of the American Medical

Informatics Association claimed the top position with 808

citations, followed by Scientific Reports with 745 citations,

Frontiers in Immunology with 732 citations, PLOS One with 681

citations, and Annals of Thoracic Surgery with 660 citations

(Figures 5D, E).

The dual-map overlay function illustrated the distribution of

citing and cited journals, revealing the interdisciplinary connections

between the research field and other disciplines. In Figure 5F, the

dual-map overlay showed citing journals on the left side and cited

journals on the right side. Two significant citation pathways were

observed. The yellow path indicated that journals in the fields of
Frontiers in Immunology 06
molecular biology and immunology tended to cite publications

from molecular biology, genetics, as well as health, nursing, and

medical disciplines. The green path, on the other hand, suggested

that medicine, medical, and clinical journals were inclined to cite

publications from molecular, biology, genetics, as well as health,

nursing, and medical fields.
3.7 Historical trajectory of the research
field

3.7.1 Analysis of influential literature
Using HisCite, a citation history map of research articles was

generated. Supplementary Table S3 listed literature of significant

reference value based on the Local Citation Score (LCS) and Global

Citation Score (GCS). The LCS indicates the frequency of citations a

work receives within a specific research database or field,

showcasing its influence within that scope. The study by Rea F

et al. in 2006 reported the experience of thymectomy in myasthenia

gravis patients using the “da Vinci” robotic system, which received

the highest LCS of 45 (22). This was followed by the comparative

study of robotic versus non-robotic thoracoscopic thymectomy by

Rückert JC et al. in 2010, and the research by Yuanfang Guan et al.

in 2019 on predicting the response to anti-tumor necrosis factor

drugs in rheumatoid arthritis patients by integrating clinical and

genetic markers using machine learning, with LCS values of 38 and

34, respectively (23, 24).

In VOSviewer, with the citation threshold set to no fewer than

25 times, a citation network graph comprising 309 publications was

constructed (Figure 6A). The nodes in the graph represent the

citation counts, with Forbes (2018) (25), Ritchie (2010) (26), and

Ford (2016) (27) ranking top three with 254, 240, and 220 citations,

respectively. Additionally, we analyzed the co-citation of literature

in the research field by setting the citation frequency threshold to no

fewer than 20 times, resulting in the selection of 80 publications for

creating a co-citation network (Figure 6B). Through the analysis of

the total link strength, it was revealed that the publications by Rea F

(2006) (22), Ritchie ME (2015) (28), and Rückert JC (2011) (24)

held prominent positions in the network, with total link strengths of

270, 235, and 204, respectively.

3.7.2 Analysis of literature development
characteristics

In bibliometrics, Citespace was used to cluster all references using

the log-likelihood ratio (LLR) algorithm, resulting in the visualization

of the top 9 clusters in Figure 7A. By plotting the average cluster years,

we mapped the developmental trajectory of clusters in this research

field. Furthermore, based on Citespace’s clustering criteria, silhouette

values close to 1 indicated high cohesion and separation within the

clusters, while values above 0.7 signified convincing clustering.

Supplementary Table S4 detailed the cluster names chronologically.

In 2010, the establishment of Cluster #1, Robotics Thoracic

Surgery, marked a significant milestone in the field, with a primary

focus on the utilization of robotic thymectomy in patients with

myasthenia gravis (24, 29, 30). The subsequent year, 2011, witnessed
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the emergence of Cluster #2, Computable Representation, which delved

into the utilization of electronic health records and algorithms to

elevate the precision in the identification of conditions such as

rheumatoid arthritis (31, 32). Fast forward to 2015, Clusters #4 and

#5 came into existence. The former, Cluster #4, highlighted the pivotal

role of HEp-2 cell classification in the realm of autoimmune disease

diagnosis (33), whereas Cluster #5, Human Health, provided insights

into the intricate relationship between the immune epitope database

(IEDB) and gut microbiota. This cluster shed light on the dynamic

interplay between gut microbiota and the host immune system,

contributing to a deeper comprehension of immune system

functionality (34–36). In 2016, Cluster #8 (Thoracoscopic Surgery)

was established, focusing on conducting thymectomy using a
Frontiers in Immunology 07
combination of robotic and video-assisted thoracoscopic surgery

(VATS) techniques (37). Cluster #6 (Using Carotid Ultrasound)

emerged in 2017, with a focus on reporting the cardiovascular risk

assessment in autoimmune disease patients through the use of carotid

ultrasound B-mode imaging (38). Cluster #0 (Artificial Intelligence)

and Cluster #3 (Automated Detection) shared many similar research

foundations and were simultaneously formed in 2019. Cluster #0

focused on machine learning, aiming to better understand the

complex mechanisms of autoimmune diseases by organizing and

analyzing large volumes of clinical and immunological data to

enhance diagnostic and predictive capabilities (23, 39, 40).

Additionally, Cluster #3 centered on the identification of biomarkers

associated with autoimmune diseases to gain further insights into the
FIGURE 5

Journals analysis of publications in research fields. (A) Citation network analysis of journals. (B) Analysis of Journal Citation Years in the Field. (C) Co-
citation network analysis of journals. (D) The 25 Journals with the Highest Number of Publications. (E) Top 25 journals in terms of citations. (F) The
dual-map overlay of journals.
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mechanisms of disease onset (39, 41). The final cluster to emerge in

2022, Cluster #7 (Using Genomic Data), originated from the machine

learning cluster. The primary objective of this cluster was to employ

machine learning techniques for the analysis of both traditional clinical

data and novel genomic data, with the aim of developing predictive

models that could enhance the clinical diagnosis and treatment of

autoimmune diseases such as lupus nephritis and systemic lupus

erythematosus (39, 42–44).

3.7.3 References with the strongest citation
bursts

CiteSpace utilized an algorithm to identify the top 25 references

with the strongest citation bursts, setting a threshold for a minimum

burst duration of 3 years (Figure 7B). The case report by Rea F (2006)

on thymectomy using the “da Vinci” robot for treating myasthenia

gravis patients marked the earliest citation burst, lasting for 3 years

(22). In 2013, Marulli G reported on the surgical and neurologic

outcomes after robotic thymectomy in 100 consecutive patients with
Frontiers in Immunology 08
myasthenia gravis, which achieved the highest burst strength in the

field at 10.23 and lasted for 4 years (30). Additionally, ongoing

momentum was observed in some references, including

recommendations by Aletaha D (2018) (45) and Smolen JS (2020)

(46) on the diagnosis and management of rheumatoid arthritis,

including personalized therapy through predictive markers, and

Guan YF (2019) utilizing machine learning to predict drug responses

in rheumatoid arthritis patients (23).
3.8 Keyword-based topic evolution and
frontiers

3.8.1 Co-occurrence network analysis of
keywords

The co-occurrence analysis reveals the hotspots and overall

correlations in the research field. Utilizing VOSviewer, a co-

occurrence network consisting of 130 keywords is constructed
FIGURE 6

Analysis of publications in the field of research. (A) Network diagram of literatures citation analysis. (B) Network diagram for co-citation analysis of
literatures. Node size indicates the citation count of the literature. The same color represents the same cluster.
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with a minimum co-occurrence frequency of not less than 15 words

(Figure 8A). Upon analysis, it is observed that the most frequent co-

occurring keywords in the network are “machine learning” with 372

occurrences and “rheumatoid arthritis” with 208 occurrences.

Furthermore, the network exhibits distinct clustering, with a total

of 5 clusters identified. Among these, 4 clusters demonstrate

extensive interconnections, while the cluster represented by

purple nodes, centered around “myasthenia gravis,” shows limited

intersection with other clusters. This cluster primarily highlights the

application of AI-based robotics in thymectomy procedures.

Due to different time periods, the academic frontiers focus on

different hot topics. By analyzing the annual changes of the co-

occurrence network, we found that the cluster represented by

“thymectomy” was generally active before 2018, as shown in

Figure 8B. Additionally, we have also observed that “machine

learning” and “deep learning” are becoming hot topics in this

research field, particularly in the study of key diseases such as
Frontiers in Immunology 09
rheumatoid arthritis, systemic lupus erythematosus, lupus

nephritis, multiple sclerosis, among others.

3.8.2 Strongest citation bursts analysis of
keywords

Keyword bursts signify a significant increase in the frequency of

specific terms during a defined time period. Analyzing these bursts

aids researchers in identifying emerging trends, predicting future

directions, and guiding research decisions. Applying a threshold of

no less than 3 years, Citespace conducted an analysis of the Strongest

citation bursts of keywords based on Kleinberg’s burst detection

algorithm (47). In Figure 8C, the top 30 keywords were listed, with

“autoimmune disease” and “autoantibody” displaying the earliest

onset of Strongest citation bursts, dating back to 2003. The keyword

showing the highest burst strength was “myasthenia gravis” at 16.15.

Furthermore, the keywords “artificial neural network” and

“experience” maintained the longest durations, lasting for 15 years
FIGURE 7

Analysis of the development characteristics of literature clusters. (A) Literature clustering analysis and its evolutionary trajectory. (B) Top 25
References with the Strongest Citation Bursts.
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with burst intensity values of 5.22 and 6.94, respectively. Over the past

five years, “immune system” and “juvenile idiopathic arthritis” have

also emerged as focal points of research interest in the field.

3.8.3 Dynamic process of research topics
Clustering was performed using the LLR algorithm on a

keyword co-occurrence network. The top 9 clusters depicted in

Figure 9A include: #0 thymectomy, #1 mortality, #2 artificial

intelligence, #3 immune infiltration, #4 risk factors, #5 ulcerative

colitis, #6 hyposalivation, #7 rheumatoid arthritis, and #8 multiple

sclerosis. The central item in Cluster #8 is (2005) with a centrality of

0.26, followed by (2005) in Cluster #7 with a centrality of 0.20, and

(2005) in Cluster #1 with a centrality of 0.17. Figure 9B displayed

the cluster landscape based on keyword co-occurrence, allowing for

the observation of the distribution changes of each cluster from

2003 to 2024.
4 Discussion

4.1 Global development issues in the
research field of AI-AID

In this study, we observe an increasing trend in the number of

publications in the field over the past twenty years, with a
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particularly rapid growth in the past five years. The number of

publications surpassed 100 for the first time in 2020, reaching 139,

and by 2023 had escalated to 341. In just the first half of 2024, the

number had reached 222. This growth trend indicates a continuous

rise in research interest in the field, possibly influenced by factors

including advancements in related technologies, increased societal

attention, and heightened research investments. However, we must

also acknowledge that this rapid growth trend may bring about

certain challenges. With the increasing number of publications,

there could be variations in research quality, necessitating more

rigorous peer review mechanisms to ensure the reliability and

effectiveness of research.

Both the United States and China have made substantial

contributions in this field, however, there is an evident

developmental imbalance among countries and regions worldwide.

Patients with AID in these two countries benefit from more accurate

diagnosis and effective treatment, ultimately improving their quality of

life and reducing the suffering and societal burden imposed by these

illnesses. Publications and collaborations in the field from African and

Central Asian countries are relatively scarce, potentially due to limited

healthcare resources and research funding in these regions, leading to

disparities in the application of artificial intelligence in medicine.

Further analysis supports the notion that countries with fewer

publications or citations are predominantly from middle- to low-

income or low-income areas.
FIGURE 8

Keywords network analysis in the field. (A) Keyword co-occurrence network analysis. (B) Analysis of Keywords co-occurrence networks in a
temporal perspective. (C) Top 30 Keywords with the Strongest Citation Bursts.
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Although automated, AI-driven medical applications can

overcome barriers to healthcare equity in middle- to low-

income countries, AI medical models trained in high-income

regions may exhibit suboptimal performance when applied in

middle- to low-income countries due to the phenomenon of “data

set shift,” where differences in patient populations, clinical

practices, and healthcare systems lead to discrepancies (48, 49).

Hence, it is essential for the future to enhance collaboration with

middle- to low-income countries to ensure model generalizability

by collecting data from diverse and representative populations

across various countries and regions, thereby preventing data set

shifting (50).
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4.2 Current status of AI in autoimmune
diseases

Through the analysis of key terms in the research field, the main

applications of AI in autoimmune diseases have been identified. AI is

most commonly utilized in diseases such as multiple sclerosis,

rheumatoid arthritis, and systemic lupus erythematosus, possibly due

to the high prevalence and significant clinical attention these diseases

receive. The application scenarios of AI in this field encompass six

main areas: patient identification, risk factors and prognosis

assessment, diagnosis, classification of disease subtypes, monitoring

and decision support, and drug discovery (Figure 10) (5, 51, 52).
FIGURE 9

Keywords clustering analysis and development trajectory. (A) Keyword-based cluster analysis. (B) Landscape map analysis of keyword clusters.
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4.2.1 Patient identification
Electronic medical records (EMRs) have the capability to

integrate complex medical histories, facilitating the recording,

supervision, and extraction of clinical data (53–59). Meanwhile,

efforts are being made in some studies to integrate genomic and

EMR data, advancing the field of precision medicine (60, 61).

Machine learning methodologies are utilized for the identification

of individuals diagnosed with autoimmune disorders from

electronic health records, with natural language processing

playing a crucial role in the recognition of associated

comorbidities such as celiac disease, osteoarthritis, and

rheumatoid arthritis-related complications (musculoskeletal

symptoms, infections) (62–66). Furthermore, it is possible to

reveal the comorbidity characteristics of autoimmune diseases

with other factors, including the co-occurrence of hypertension

and autoimmune disorders heightening the risk of Alzheimer’s

disease, as well as polycystic ovary syndrome (PCOS) impacting

immune system disorders (67, 68). Additionally, enhancements in

algorithm efficiency contribute to reducing the elevated error rates

stemming from inconsistent terminologies in the International

Classification of Diseases coding (69–71).

4.2.2 Risk factors and prognosis assessment
The prediction of autoimmune disease risk and identification of

new risk factors involve the utilization of genetic data, clinical data,

and other resources (72–75). Common methods include random
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forests, support vector machines, and logistic regression (76, 77).

Analysis of genetic data can reveal disease-associated genetic

variations, elucidating the genetic basis of the disease and

predicting individual disease risk. Integration and analysis of

clinical data can uncover the relationships between clinical

characteristics and autoimmune diseases. Feature selection

algorithms and similar methods enable the identification of

factors closely associated with disease risk from a vast amount of

data. These approaches are applied in the prediction of diseases

such as inflammatory bowel disease (IBD) (78, 79), type 1 diabetes

(T1D) (80–82), rheumatoid arthritis (RA) (83–86), systemic lupus

erythematosus (SLE) (87, 88), Sjögren’s syndrome (SS) (76)and

multiple sclerosis (MS) (89–91).

In disease progression and prognosis, commonly used methods

include support vector machines, random forests, and neural

networks combined with clinical data. Research on disease

progression and treatment encompasses conditions such as

psoriasis, lupus nephritis, rheumatoid arthritis, inflammatory bowel

disease, and celiac disease (92–98). Furthermore, machine learning

can utilize patient treatment response data to predict the effectiveness

of different treatment regimens for individual patients, such as the

response to anti-rheumatic drugs, adalimumab, and etanercept in the

treatment of rheumatoid arthritis (99, 100). It is worth mentioning

that drug prognostic responses in systemic lupus erythematosus,

multiple sclerosis, ankylosing spondylitis, inflammatory bowel

disease, and psoriasis are gradually being applied (101–105).
FIGURE 10

The scheme of major applications of artificial intelligence technology in autoimmune diseases.
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Genomics is also being increasingly integrated into this research area,

exemplified by studies on drug genomic research related to

methotrexate treatment response in patients with RA (106).

4.2.3 Diagnosis
AI plays a crucial role in disease diagnosis, encompassing

aspects such as distinguishing patients from healthy controls,

diagnostic classification of different diseases, and early detection.

Some studies focus on distinguishing specific diseases such as RA

and SLE from healthy controls (107–110), while others aim to

differentiate between diseases with similar symptoms, including

myalgic encephalomyelitis and chronic fatigue syndrome, multiple

sclerosis, celiac disease, irritable bowel syndrome, and psoriasis

(111–113). Additionally, there are research efforts dedicated to the

early diagnosis of delayed-onset diseases like MS and RA (114, 115).

4.2.4 Classification of disease subtypes
In the classification of subtypes of autoimmune diseases,

machine learning techniques are employed to utilize patient

clinical data, genetic data, and other resources to identify

potential subtypes by learning patterns and features in the data,

thereby understanding disease heterogeneity and individual

differences. Common methods include hierarchical clustering,

consensus clustering, agglomerative hierarchical clustering,

support vector machines, and random forests, among others. This

research encompasses subtype classification of diseases such as RA,

IBD, MS, SLE, SS, and idiopathic myositis (IM) (116–119).

4.2.5 Monitoring and decision support
Artificial intelligence technology is utilized to analyze patients’

clinical data, biological markers, and imaging data, enabling real-

time monitoring and tracking of autoimmune diseases. This assists

healthcare professionals in promptly identifying the progression

status and changing trends of diseases. Machine learning is applied

in the prediction of blood glucose levels, identification of

hypoglycemic events, and decision support in diseases such as

T1D (120, 121). Digital remote monitoring interventions are

employed for disease activity monitoring in patients with

inflammatory arthritis (122). Furthermore, AI is utilized for MRI

monitoring in MS, treatment compliance in IBD, and drug

management (123–125). AI integrated diverse data sources to

achieve precise diagnosis and risk prediction, assisted in

developing personalized treatment plans, and improved treatment

outcomes while utilizing smart devices for real-time patient

monitoring, thus providing continuous health management.

4.2.6 Drug discovery
In the field of drug discovery for autoimmune diseases, AI is

employed to accelerate and enhance the drug development process

using machine learning, data mining, and artificial intelligence

technologies. This encompasses virtual screening, prediction of

molecular-drug interactions, forecasting candidate drug

mechanisms and side effects, as well as drug design optimization.

For SLE, some biologics have been approved, and molecular
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analysis has identified specific molecular features and genetic

markers of the disease (126–128). The treatment of RA includes

various traditional medications and TNF antagonists, which,

through genomic and transcriptomic analyses and machine

learning models, guide the prediction of TNF treatment response

and the development of new medications (129–132). Personalized

drug discovery for other autoimmune diseases is also progressively

advancing in relevance (3).
4.3 Challenges and prospects

AI shows potential in the field of autoimmune diseases, but it faces

numerous problems and challenges. In terms of models, there is

insufficient validation, necessitating enhanced cross-validation and

independent testing to improve accuracy and reliability. Complex

models are in demand, yet they encounter difficulties in

computational power, methods, and data management. Data

integration from multiple sources is challenging and requires

standardization. Additionally, there is a lack of comprehensive

“healthy” immune response models to differentiate between normal

and diseased states. In treatment, the testing of combination therapies

is hindered by numerous possibilities, requiring improved

computational methods to assess their effectiveness and safety, while

regulatory acceptance of digital evidence remains uncertain.

Autoimmune diseases are complex and heterogeneous, posing

difficulties in model construction and precise treatment

implementation. Understanding disease mechanisms and developing

advanced algorithms are crucial to address these challenges and drive

progress in the field. Furthermore, there are significant privacy and

security risks in medical health data, making the protection of patient

data privacy a critical consideration when utilizing AI for autoimmune

disease data processing (3, 5, 133–137). To address these challenges,

future research should enhance cross-validation and independent

testing, improve computational power, optimize data management

andmethods, promote data standardization, and develop universal and

practical models. Furthermore, researchers must prioritize data privacy

protection to ensure legal and compliant usage. Interdisciplinary

collaboration should follow ethical guidelines to safeguard patients

from potential harm and support the safe and reliable advancement of

the field.

AI shows significant potential in the field of autoimmune diseases.

The upcoming directions encompass enhanced diagnostic precision

and subcategorization achieved by amalgamating diverse datasets and

refining deep learning algorithms (138, 139). In the field of personalized

therapy, AI is poised to expedite drug discovery processes and

investigate combined treatment approaches (140). To facilitate disease

surveillance and prognosis evaluation, AI can use wearable technologies

and construct predictive models for continuous monitoring and risk

assessment (105, 141). Furthermore, fostering interdisciplinary

partnerships between medical and engineering sectors is imperative,

particularly in the innovation of novel technologies such as digital twins

(142). The establishment of extensive databases through data exchange

and collaborative research initiatives across institutions will play a

pivotal role in advancing autoimmune disease management (5).
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4.4 Limitations

It should be noted that there are certain limitations to

bibliometric analysis in practical implementation. Due to

variations in inclusion criteria and sources among different

databases, the publications covered may differ. However,

mainstream analysis tools currently struggle to fully eliminate the

impact of these differences. Therefore, the choice of using WoSCC

as the primary database aims to ensure the credibility and reliability

of the data to the greatest extent possible. Additionally, focusing

solely on English literature may lead to some omissions, and

alterations in institution names could also introduce biases. In

summary, we acknowledge these potential issues in conducting

bibliometric analysis and have referenced high-quality bibliometric

literature in the research process to enhance the accuracy and

reliability of the analysis results.
5 Conclusion

This study conducted a comprehensive bibliometric analysis on

the application of AI in the field of autoimmune diseases, marking a

pioneering endeavor. The analysis focused on publications from the

past twenty years, aiming to thoroughly map the developmental

trajectory and current status of this field. Through a systematic

review of a large body of literature, we accurately identified key

publications warranting attention in this field, meticulously

examined the dynamic trends of key terms, pinpointed influential

groups of authors, and highlighted professional journals and

research institutions deserving close attention. Furthermore, this

study vividly illustrated the evolution trajectory of research clusters

in this field, providing a comprehensive overview of the current

state, challenges, and future prospects of AI applications in the

fields of autoimmune diseases. The findings serve as crucial

reference points and direction indicators for further research and

development in this field.
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