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The structural and functional integrity of glomerular cells is critical for

maintaining normal kidney function. Glomerular diseases, which involve

chronic histological damage to the kidney, are related to injury to glomerular

cells such as endothelial cells, mesangial cells (MCs), and podocytes. When faced

with pathogenic conditions, these cells release pro-inflammatory cytokines such

as chemokines, inflammatory factors, and adhesion factors. These substances

interact with glomerular cells through specific inflammatory pathways, resulting

in damage to the structure and function of the glomeruli, ultimately causing

glomerular disease. Although the role of inflammation in chronic kidney diseases

is well known, the specific molecular pathways that result in glomerular diseases

remain largely unclear. For a long time, it has been believed that only immune

cells can secrete inflammatory factors. Therefore, targeted therapies against

immune cells were considered the first choice for treating inflammation in

glomerular disease. However, emerging research indicates that non-immune

cells such as glomerular endothelial cells, MCs, and podocytes can also play a

role in renal inflammation by releasing inflammatory factors. Similarly, targeted

therapies against glomerular cells should be considered. This review aims to

uncover glomerular diseases related to inflammation and pathways in glomerular

inflammation, and for the first time summarized that non-immune cells in the

glomerulus can participate in glomerular inflammatory damage by secreting

inflammatory factors, providing valuable references for future strategies to

prevent and treat glomerular diseases. More importantly, we emphasized

targeted glomerular cell therapy, which may be a key direction for the future

treatment of glomerular diseases.
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1 Introduction

Glomerular disease (GD) is divided into two main categories:

primary glomerular disease and secondary glomerular disease. The

former mainly includes focal segmental glomerulosclerosis (FSGS),

minimal change disease (MCD), IgA nephropathy (IgAN), primary

membranous nephropathy (PMN), membranoproliferative

glomerulonephri t is (MPGN), and primary crescent ic

glomerulonephritis, while the latter includes lupus nephritis (LN),

HIV-associated nephropathy (HIVAN), diabetic nephropathy (DN),

hypertensive nephrosclerosis, post-infectious glomerulonephritis

(PIGN), non-IgA membranoproliferative glomerulonephritis

(MesPGN), and hypo-immunoglobular nephritis (1–4). These

glomerular diseases result from glomerular injury, severe tubular

loss or atrophy, some cystic degeneration, and thickening of the renal

vasculature, are considered to be one of the major causes of

progressive end-stage renal disease. The glomerular disease can be

definitively diagnosed by renal biopsy, histopathologic examination,

and laboratory tests. Several studies have shown a multimodal

progression of glomerular diseases, which is mainly characterized

by inconsistent prevalence of different glomerular diseases in different

regions. Focal segmental glomerulosclerosis (FSGS; 19.1%)

predominated in North America; lupus nephritis (38.1%) and FSGS

(15.8%) predominated in Latin America; IgA nephropathy (IgAN;

22.1%) and FSGS (14.9%) predominated in Europe; and IgAN

(39.5%) and lupus nephritis (16.8%) predominated in Asia (5). In

China, MCD is the most common glomerular disease, accounting for

28.7% of primary glomerular diseases, while MPGN and IgAN

account for 25.8% and 22.1%, respectively, in the second and third

places (6). It is safe to assume that LN and DN are the most common

secondary glomerular diseases and this finding is prevalent

worldwide (2, 7). Despite the fact that the occurrence of glomerular

disease varies globally (1), it is known to have an impact on mortality

rates associated with chronic kidney disease (8, 9).

The glomerular filtration barrier is composed of three main

components: glomerular endothelial cells, MCs and podocytes.

Investigating the impairment of those components is a major focus

in the study of glomerular diseases. Glomerular endothelial cells have

a similar role to other endothelial cells, help maintain tissue perfusion

and hemodynamics by constructing a filtration barrier, and

regulating the inflammatory process through the expression or

binding of various circulating factors, such as endothelin-1 (ET-1),

prostacyclin inflammatory receptor, intercellular adhesionmolecule 1

(ICAM1), vascular cell adhesion protein 1 (VCAM1), E-selectin and

membrane cofactor protein 1 (MCP1) among others (10–12).

Mohamed A demonstrated that intravenous injection of ET-1 into

the glomerulus caused an increase in plasma soluble intercellular

adhesion molecule-1 (sICAM-1) and MCP-1 in the glomerulus, as

well as an increased in the number of macrophages and lymphocytes

in the renal cortex (13). Studies have demonstrated that

overexpression of ET-1 in the kidney leads to renal inflammation

and fibrosis (14). When glomerular cells are injured, they stimulate

the secretion of inflammatory factors. As a kind of stromal cell, in

addition to organizing the glomerular structure and maintaining the

homeostasis of endothelial cells and podocytes, MCs also participate

in the immune response through the production of chemokines
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(including Col6a3, Mmp14, Mmp17, Col12a1, Cxcl1, Ccl2 and

Cx3cl1) (15, 16), which provides the basis for the development of

glomerular inflammation. The chemokines Ccl2 and Cx3cl1 have also

been found to be involved in the development of inflammation in DN

(17). Glomerular disease progression is often linked to inflammation

caused by podocyte injury. Inflammatory factors, primarily

originating from podocyte injury, are commonly overexpressed in

various glomerular diseases. In an experiment by Rachael D. Wright

et al., podocytes were exposed to inflammatory factors (IL-1b, TNF-
a, IFN-a, and IFN-g) individually or in combination. The aim was to

establish an in vitro renal inflammation model that mirrors the

inflammatory conditions observed in patients with lupus nephritis

(LN). As a result of this stimulation, there was a rise in the secretion

of IL-6, IL-8, IL-10, VEGF, M-CSF, and interferon gamma-inducible

protein-10 (IP-10) (18).

Inflammatory factors released after glomerular cell injury may

play a crucial role in the progression of glomerular diseases. Studies

have shown that oxidative stress can also trigger the release of

inflammatory factors from glomerular cells (19, 20). ROS

overproduction and impaired antioxidant defense systems are the

two leading causes of oxidative stress, which is an imbalance between

ROS production and elimination (21) This imbalance is often seen in

mitochondria, where excess ROS production can be harmful and

cause further damage to mitochondria. This can lead to elevated

mtROS levels, reduced ATP production, and ultimately result in

mitochondrial metabolic disorders (22–24). Increased levels of ROS

in renal tubular epithelial cells can induce the secretion of

chemokines and pro-inflammatory cytokines, such as interleukin-

1b (IL-1b), through NOD-like receptors (NLRs), leading to sustained
kidney injury (25). High glucose levels induce ROS in glomerular

mesangial cells, activating the NF-KB pathway and increasing

expression of EGR-1 and PKC-a in MCs of patients with DKD.

This activation enhances inflammatory factors MCP-1 and fibrotic

markers collagen I and III, promoting localized inflammatory and

fibrotic responses in the kidney (26). In glomerular endothelial cells,

elevated glucose levels increase the expression of insulin-like growth

factor-binding protein 5 (IGFBP5) in endothelial cells, leading to

upregulation of EGR1. In addition, it was found that EGR1 enhances

the enzymatic function of PFKB3, which leads to the secretion of

inflammatory factors such as ICAM-1, TNF-a, IL-6, and MCP-1

from endothelial cells through the enhancement of glycolysis, and

ultimately causes inflammatory injury (27). These effects are linked to

disruptions in mitochondrial metabolism. Furthermore, when

mtROS induce mitochondrial permeability transition pores

(mPTP), IMM proteins, such as cytochrome c, are released into the

cytosol, resulting in inflammatory response and apoptosis (28).

Inflammatory response caused by glomerular cell injury is a key

factor in the progression of glomerular diseases and increase the risk

of cardiovascular and all-cause mortality. While immune cells have

long been known to be involved in the development of inflammation,

recent studies have shown that non-immune cells such as glomerular

endothelial cells, mesangial cells (MCs), and podocytes could also

contribute to renal inflammation by releasing inflammatory factors.

This article provides a review of research on the molecular

mechanisms, prevention, and treatment of inflammatory responses

in various types of glomerular diseases. Understanding the signaling
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pathways involved in triggering glomerular diseases in pathological

conditions and implementing strategies to prevent inflammatory

responses can help protect against glomerular damage.
2 Structure and function of
the glomerulus

The glomerulus is a filtration system consisting of a central

capillary bulb and a renal capsule that filters blood and forms

primary urine. It consists of an open endothelium layer of

endothelial cells, a glomerular basement membrane (GBM) made

up of extracellular proteins in the second layer; and the distal layer

consists of visceral epithelial. Podocytes contribute to the formation

of filtration slit septa, and play a key role in supporting capillary

flow and maintaining the integrity of the freestanding capillary loop

(29). Glomerular disease can occur due to damage to any of the

structures in the glomerular filtration barrier, leading to

inflammation. The three types of glomerular cells, including the

MCs, have endocrine functions and interact with each other

through autocrine and paracrine pathways, which can contribute

to the inflammation in the glomerulus (Figure 1).
2.1 Endothelial cell

Glomerular endothelial cells (GEnC) are a vital part of the

glomerulus, responsible for maintaining the filtration barrier. These

cells are attached to the inner glomerular basement membrane, and are

separated from the podocytes by the basement membrane. The open

window, found in the cytoplasmic portion of the cytosol, opposite the

podocyte pedicle, and passes through the filtration slit of the
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glomerular basement membrane. This structure not only plays a key

role in glomerular permeability but also facilitates communication

between GEnC and neighboring cells (30). The glycocalyx, a specialized

structure found in GEnC (31), plays a crucial role in limiting the

penetration of macromolecular proteins (32). Notably, there is growing

evidence that loss of endothelial openings and a decrease in the number

of glycocalyx are among the earliest changes in glomerular disease (33),

and is also associated with inflammation. A study revealed that in

patients with type 2 diabetes mellitus, serum levels of tumor necrosis

factor (TNF) receptors 1 and 2 were inversely related to the percentage

of open-window GEnC (34). Moreover, dysfunction in GEnC opening

and a decrease in glycocalyx quantity can hinder the interaction

between GEnC and adjacent glomerular cells, leading to irregular

expression of certain cytokines (30, 32). There is evidence that ET-1

and Krüppel-like factor (KLF) mediate communication between

endothelial cells and podocytes and bind to corresponding receptors

to promote/inhibit inflammation (13, 35). In DN, ET(A) receptor-

induced oxidative stress in endothelial mitochondria has been shown to

lead to GEnC damage and loss of open windows (36). Mitochondrial

oxidative stress induces GEnC dysfunction, causing podocyte injury

(37). KLF acts as a transcription factor that inhibits NF-KB activation,

resulting in anti-inflammatory effects (38, 39). Endothelial openings

and glycocalyx play a key role in the glomerular cell communication

and the development of glomerular inflammation.
2.2 Mesangial cells

Mesangial cells (MCs), as resident cells of the kidneys, play an

important role in maintaining glomerular function. They are

located between the capillary loops of the glomeruli and are

adjacent to endothelial cells and the capillary basement
FIGURE 1

Structure and function of the glomerulus. This diagram depicts the structure and function of glomerular endothelial cells, glomerular basement membrane, and
podocytes, primarily podocytes. Podocytes consist of cell bodies, primary processes, and secondary foot processes; adjacent foot processes form the slit
diaphragm. The cell bodies and primary processes are based on microtubules and intermediate filaments, while the foot processes mainly depend on the
actin filaments.
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membrane (40). Mesangial cells are now recognized to belong in a

class of cells known as mesenchymal stromal cells. Consistent with

their role as stromal cells, MCs are the main producers of

glomerular matrix, which comprises type iv collagen (Col iv),

fibronectin (FN), laminin subunit beta 2 (LAMB2), proteoglycans

(PG) and other ECM components (41, 42). The main functions of

MCs include providing support to the capillary plexus, constricting

vascular and secretion of extracellular matrix components,

producing cytokines such as Col6a3, Mmp14, and Mmp17, as

well as chemokines like Ccl2 and Cx3cl1, and carrying out

phagocytosis and clearance of macromolecules (15). MCs can be

affected by changes in the glomerular environment, leading to

functional transformation. They can act as stromal cells and

influence the recruitment of immune cells by altering ECM

components and producing chemokines. This can result in a

quick response to innate immune stimuli or tissue damage. MCs

also have the potential to function as antigen-presenting cells,

expressing surface markers like MHC and ICAM-1 when

activated. They can interact with CD4 T cells to participate in the

local renal immune response (43). Additionally, studies have shown

that mast cells (MCs) also express innate immune signaling

components such as Toll-like receptors TLR3 and TLR4, as well

as intracellular pattern recognition receptors NOD1 and NOD2

(16). In summary, the interaction between MCs and the immune

system leads to the production of various chemokines and matrix

components that regulate the inflammatory response, aiding in the

characterization of inflammation in glomerular disease.
2.3 Podocytes

Podocytes, the glomerular basement membrane (GBM), and

endothelial cells make up the glomerular filtration barrier (GFB)

(44). The foot process of podocytes can be divided into three

specialized membrane regions: the basal, apical, and lacunar septum

regions. The apical membrane region plays a crucial role in the

negatively charged glomerular barrier; with the slit diaphragm

regulating glomerular permeability. In addition, podocytes have a

well-organized cytoskeletal structure that includes microtubules

(MTs) and intermediate filaments (IFs). It is crucial for maintaining

GFB integrity and regulating cell structure, stability, motility, cell

adhesion, and slit diaphragm insertion (45). Sijia Ma et al.

emphasized the importance of foot cytoskeletal rearrangements in

glomerular diseases. The slit diaphragm interacts with various focal

adhesion proteins, causing the breakdown of the foot cytoskeletal

structure. This includes the involvement of signaling node nephrin,

calcium influx through transient receptor potential channel 6 (TRPC6),

and regulation of the Rho family, ultimately resulting in the disruption

of the initial cytoskeletal framework (46). The slit diaphragm also

contains lipid rafts that are abundant in sphingolipids, which serve a

structural purpose in cell membranes and possess various bioactive

functions (47). Dysregulation in sphingolipid metabolism has been

shown to cause podocyte injury and drive the progression of

glomerular disease (48). Podocytes, as the critical component of the

kidney filtration units, maintain their unique cellular structure through

an intricate and coordinated network of cytoskeletons (49). When
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podocytes suffer direct or indirect injury, it disrupts the cytoskeleton,

leading to foot process effacement (FPE), proteinuria, and ultimately

kidney inflammation (46, 50).
3 Inflammatory factors in
glomerular disease

3.1 Three types of glomerular cells and
inflammatory factors

Inflammation plays a significant role in the onset of chronic kidney

disease, leading to reduced renal blood flow and glomerular filtration

rate (GFR) (51). Glomerular endothelial cells, mesangial cells, and

podocytes, as resident cells, function collectively to preserve the

structure and function of the glomerulus, and establish

communication with one another. When inflammation occurs, renal

resident cells become activated and display a pro-inflammatory

phenotype (10, 52), this activation involves the release of

transcription factors, pro-inflammatory factors, chemokines, and

adhesion factors, ultimately resulting in glomerular injury and

fibrosis (53, 54). Immune injury, metabolic injury, toxicity, and

genetic injury can all lead to the activation of glomerular cells (16).

Immune injury is mainly characterized by macrophage recruitment

and upregulation of some cytokines, including inflammatory factors,

adhesion factors, and chemokines (16, 55). Under these pathological

circumstances, glomerular cells crosstalk with each other via signaling

and inflammatory mediators, ultimately resulting in glomerular

damage (54, 56, 57). In summary, the activation of these three kinds

of glomerular cells in pathological conditions leads to the release of pro-

inflammatory factors, exacerbating glomerular injury and ultimately

causing glomerular disease.

It has been reported that all three types of glomerular cells can

express inflammatory factors (Table 1) and lead to glomerular

diseases. Here, we will explore the pathophysiological processes of

these four glomerular diseases, which are triggered by glomerular

cell injury and the inflammatory response.
3.2 Glomerular injury resulting
from inflammation

3.2.1 Inflammation associated with diabetic
nephropathy can cause damage to the glomeruli

DN is a progressive microvascular diabetic complication and

one of the major causes of end-stage renal disease (ESRD), which is

clinically characterized by persistent hyper-proteinuria and reduced

glomerular filtration (87). Recently, numerous studies have shown

that DN may be characterized as a chronic inflammatory kidney

disease, with the upregulation of inflammatory signaling pathways

and the infiltration of inflammatory cells are associated with kidney

injury and the development of DN (88, 89). Reviews have indicated

that several inflammatory factors are involved in DN inflammatory

processes, such as nuclear transcription factors (NF-kB), pro-
inflammatory cytokines (IL-1, IL-6, IL-18 and TNF), chemokines

(MCP-1, CXCL12, CX3CL1 and CX3CR1) adhesion molecules
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(ICAM1, VCAM1, E-selectin and a-actinin 4), and signaling

molecules (STAT1,STAT3 and STAT5) are involved in DN

inflammatory processes (17, 90). Yuheng Qiu et al. identified the

biological pathways involved in the development of DN by

enrichment analysis, revealing that chemokines, cytokines, and

inflammation-related pathways were strongly associated with the

progression of DN to end-stage renal disease (91). Evidence

demonstrated that TNF-a, a pro-inflammatory factor, is

necessary for the development of DN (92).

Ioanna et al. found evidence indicating that the TNF-a pathway

is activated in the early phases of DN. They observed elevated levels

of TNF-a in the urine of patients with early DN compared to those

in later stages (93). Elevated levels of TNF-a receptors (TNFR1 and

TNFR2) and the kidney injury marker KIM-1 have also been linked

to DN (94), TNFR1 and TNFR2 have been recognized as markers

for the risk of developing ESRD in people with type 2 diabetes (95).

TNF-a is an inflammatory mediator that binds to TNFR1 and

TNFR2, leading to the activation of various signaling pathways.

This results in the expression of transcription factors, cytokines,

growth factors, receptors, cell adhesion molecules, and other

inflammatory mediators. When bound to TNFR2, TNF-a, a

downstream target of the NF-KB pathway, induces persistent NF-

kB activation. It also triggers MCs by releasing chemokines like

MCP-1, IL-6, and IL-8 (96),while directly promotes the expression

of ICAM-1 on MCs (97). In summary, TNF-a is responsible for

initiating and development of DN inflammation, mainly by

stimulating the production of adhesion molecules and releasing

chemokines when it binds to TNFR. Interestingly, MCP-1 and

TNF-a are recognized as novel inflammatory biomarkers for the

diagnosis of DN (98).
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3.2.2 Lupus nephritis
Systemic lupus erythematosus that affects the kidneys is

commonly referred to as LN, which is a serious and frequent

complication. Various models have been studied to uncover the

cause of LN, and most of these modern models suggest that anti-

chromatin antibodies have a significant impact on the initiation of

LN, mainly by binding to exposed chromatin in the glomerulus. In

the early stages of LN, there is often an accumulation of chromatin

fragments and IgG complexes in the mesangial matrix, likely due to

the decrease in DNase I enzyme activity. Therefore, the failure to

degrade chromatin from secondary necrotic cells leads to its

accumulation with IgG complexes in the GBM (99–102). Since

the mesangial membrane is one of the major sites of IG deposition,

the development of LN inflammation may be associated with MCs

(103). It has been demonstrated that anti-dsDNA antibody binds

directly to MC membrane connexin II and a-actinin to induce the

expression of pro-inflammatory factors in cultured MCs, including

TNF-a, IL-1b, IL-6 (104, 105). A recent study has indicated that IL-

6, a well-known pro-inflammatory factor, does not appear to be

linked to the emergence of LN (106). Anti-dsDNA antibody also

induces MCP-1 secretion and CXCL1 and CX3CL gene expression

in cultured MCs through activation of PKC, increased IL-1b
secretion, and IkB and NFkB signaling pathways (105, 107, 108).

The MCs possess TLR receptors, and upon activation, these

receptors initiate pathways that lead to the generation of various

adhesion molecules, cytokines, and chemokines (109). Moreover, in

the LN mouse model, the adhesion molecules ICAM-1 and VCAM-

1 showed an increase in expression in MCs (110). A recent study

has shown that the activation of NLRP3 in podocytes may be a

contributing factor to LN (111). Moreover, the expression of
TABLE 1 Inflammatory molecules associated with glomerular disease.

Glomerular cells Category Molecules

Endothelial cells Transcription factors KLF (58), NF-KB (59)

Pro-inflammatory cytokines IL-6 (60), IL-1 (61), TNF-a (62), IFN-a (63)

Chemokines MCP-1(Ccl2) (64)

Adhesion molecules ICAM1 (65), VCAM1 (66), E- selectin (67)

other ET-1 (68), IGFBP5 (27)

Mesangial cells Transcription factors NF-KB (69, 70)

Pro-inflammatory cytokines IL-6 (71, 72), IL-8 (73), TNF-a (74)

Chemokines Col6a3 (75), Mmp14, Mmp17, Col12a1,
CXCL10 (75), MCP-1(CCL2) (76), CCL5 (75),Cx3cl1 (77),

Adhesion molecules ICAM1 (78), a-Actinin 4 (79)

other MIF (80)

Podocytes Transcription factors KLF (58), NF-KB (81)

Pro-inflammatory cytokines IL-6 (82), IL-8 (83), IL-10, TNF-a (84)

Chemokines CXCL1, CCL2 (85),

Adhesion molecules a-Actinin 4 (86)
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proinflammatory cytokines (such as IL-1 and IL-6) by classically

activated macrophages leads to the proliferation of MCs and the

expression of extracellular matrix (112). MCs contribute

significantly to IL-6 production in glomeruli and also releases M-

CSF, which triggers the recruitment of macrophages in glomeruli

(113). Thus, it is evident that macrophages are also involved in the

development of LN inflammation. A recent study proposed that

macrophages may be a marker for the onset and remission of

inflammation in LN (114). Traditional markers for detecting LN,

including serum creatinine, urinary protein, anti-dsDNA antibody,

and complement C3/4, do not directly reflect the onset of LN or

differentiate between active and chronic disease. Some studies have

reported that rinary CD11c+ macrophages derived from circulating

monocytes are abundant in the urine of patients with active

proliferative LN and are significantly associated with the serum

anti-dsdsorbutin antibody. significantly associated with the serum

anti-dsDNA antibody titer, inflammation and interstitial fibrosis

(115). Soluble CD163 is the most discussed macrophage product,

and it can be detected in the urine of LN patients (116). Moreover,

some studies have reported that patients with active LN have

significantly higher levels of urinary soluble CD163 (117). In

summary, CD11c+ and CD163 can be used as biomarkers for

clinical and pathological features of LN patients (114, 116).

3.2.3 Focal segmental glomerulosclerosis
FSGS is characterized by the formation of glomerular scarring

and capillary occlusion in specific glomerular clusters due to

extracellular matrix deposition (118). Studies have indicated that

inflammation can exacerbate glomerulosclerosis and progress to

end-stage renal disease. Recently, there have been several new

pathogenic mechanisms proposed, such as circulating

permeability factors that are able to activate inflammatory factors

in glomeruli and subsequently induce glomerulosclerosis (119).

Lilian Otalora et al. performed gene-enriched KEGG pathway

analysis of glomeruli from FSGS patients and showed that

inflammatory pathways including TNF-a, IL-17, and NF-kB were

significantly activated by one or more circulating permeability

factors (120). Furthermore, they also showed that chemokines

such as CCL2, CCL3, CCL20, CXCL1, CXCL2, CXCL5, CXCL6,

and CXCL12 were activated in the podocytes of FSGS patients.

Notably, CCL3 was only rapidly activated when it was exposure to

circulating factors present in the serum of FSGS patients (120).

Another study revealed that CCL2/CCR2 signaling might

contribute to the damage of glomeruli in FSGS (85). The absence

of CCL2 has been linked to a reduction in both structural and

functional damage to the kidney in glomerulosclerosis. Moreover,

individuals with primary FSGS have shown elevated levels of IL-9.

Experiments have shown that blocking the attachment of the IL-9

receptor to podocyte membranes can effectively prevent

glomerulosclerosis (121). These cytokines not only reflect the

degree of inflammation in the disease, but also serve as

biomarkers of disease onset and are detected in the patient’s urine

(122). As for recurrent FSGS, the mechanism of its occurrence may

be related to circulating permeability factors, including soluble

urokinase-type plasminogen activator receptor (suPAR), anti-
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CD40 antibody, cardiolipin-like cytokine 1 (CLCF-1),

apolipoprotein A-Ib (ApoA-Ib), calmodulin-dependent serine

protein kinases (CASK), microRNAs, and transforming growth

factor-b (TGF-b) (119, 123). Recently, CPF (circulating

permeability factor)-containing plasma from FSGS patients was

found to induce the accumulation of lipid droplets and perilipin-2

expression in podocytes, and perilipin-2 was proposed to be

identified as a potential biomarker (124). Whether these

circulating permeability factors can be used as specific biomarkers

for the diagnosis of FSGS requires further experimental evidence.

3.2.4 IgAN
IgAN is a chronic inflammatory kidney condition caused by the

abnormal presence of galactose-deficient immunoglobulin A1 (Gd-

IgA1), resulting in the accumulation of immune complexes in the

mesangium, ultimately leading to kidney inflammation and damage

(125, 126). According to a recent review, the mechanism of IgAN

inflammation may be caused by the elevated levels of renal-derived

ICs, such as anti-Gd Ig A1 antibodies and/or Ig M antibodies,

leading to the deposition of serum Gd-Ig A1, and these antibodies

in the mesangial region of IgAN patients (127). Some of the deposits

can form the nephritic immune complex (HIT3) and activate the

MCs, which leads to an increase in the production of extracellular

matrix components, cytokines, and chemokines (128). The entire

process is consistent with the multihit hypothesis of IgA

nephropathy, including production of galactose-deficient IgA1

(Gd-IgA1; Hit 1), IgG or IgA autoantibodies that recognize Gd-

IgA1 (Hit 2), and their subsequent immune complexes formation

(Hit 3) and glomerular deposition (Hit 4), which has been widely

supported by many studies. Whichever stage of injury occurs

triggers glomerular inflammation, which is regulated by the

CCL2/CCR axis (129). Since IgAN is defined by immuno-

histochemical or immunofluorescent detection of glomerular IgA

deposits, the diagnosis can only be made by renal biopsy (130). In

addition to the predominantly, mainly mesangial cell IgA deposits

(sometimes also visible along the capillary wall), complement C3

can be detected, and rarely other complement components (C4d,

C1q) and/or (to a lesser extent) IgG. During the treatment of IgAN

patients, the extent of disease progression can be monitored by

testing for urinary inflammatory biomarkers, thus avoiding further

renal biopsies. Soo-Young Yoon et al. detected inflammation-

related biomarkers in the urine of IgAN patients by multiplex

enzyme-linked immunosorbent assay (ELISA) (131). Compared

with normal controls, the IgAN group had higher levels of eight

urinary inflammatory biomarkers, including BAFF, MCP-1,

CXCL10, GDF-15, IL-6, MBL, TfR, KIM-1, GDF-15 and EGF.

Recently, MCP-1 and EGF were proposed as valuable biomarkers

of IgAN progression and development of chronic histological

lesions (132). Torres et al. demonstrated that the predictive value

of the EGF/MCP-1 ratio was significantly higher than that of EGF

or MCP-1 alone, histologic grading, creatinine clearance, or

proteinuria (132). Ju et al. demonstrated that measurements of

urinary EGF improved the prediction of renal outcome (133).

Therefore, urinary inflammatory biomarkers can be used as

alternative predictive biomarkers in patients with IgAN.
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4 Pathways in
glomerular inflammation

4.1 JAK/STAT signaling pathway

After being phosphorylated by Janus kinase (JAK) in the

cytoplasm, the signal transducer and activator of transcription

(STAT) translocated from the cytoplasm to the nucleus and

regulates the expression of relevant genes. This pathway is known

as the JAK/STAT signaling pathway (134). Activation of the JAK/

STAT signaling pathway can be mediated by various factors such as

high glucose (135), advanced glycosylation end products (136), and

Adriamycin (137). Studies have shown that these substances can

induce inflammation by activating the JAK/STAT signaling

pathway at the cellular or animal level (138). Moreover, specific

cytokines such as TGF-b (139), rIL-6 (140), and IFN (141), can also

activate the JAK/STAT signaling pathway.

Extensive research has been conducted on the role of JAK/

STAT in various glomerular diseases, including IgAN (142), DN

(143), FSGC (144) and LN (142). The overexpression of STAT has

been detected in various renal disease caused by glomerular cell

injury, including podocytes in DN mice, human glomerular

endothelial cells in an in vitro model of LN, and MCs in pediatric

FSGS patients (63, 144, 145). Thus, blocking the JAK/STAT

signaling pathway is essential for alleviating inflammation in

glomerular disease, mainly involving STAT1/3/4.

SOCS, known as suppressor of cytokine signaling (SOCS), is

involved in the negative regulation of glomerular disease and act as

the negative feedback regulators of JAK/STAT signaling. SOCS-1, a

member of the SOCS family, regulates the intensity and length of

JAK/STAT signaling by employing various methods such as kinase

inhibition and binding to STAT proteins (146, 147). SOCS-1 has

been shown to reduce renal damage in diabetic mice by enhancing

MCP-1 expression and controlling JAK/STAT phosphorylation

(148). The possible mechanism is that the structure of SOCS-1

contains a 12 amino acid N-terminal kinase inhibitory region (KIR),

which is essential for inhibition of JAK tyrosine kinase activity.

Carlota and her team studied the renal effects of a peptidomimetic

peptide in the KIR region of the SOCS-1 structure. They found that

the peptide inhibited STAT1/3 activation, lowered the expression of

mediators induced by hyperglycemia and inflammatory diseases,

and decreased MCs proliferation (149). A recent study indicated

that inhibitors of insulin-like growth factor-1 (IGF-1) may improve

renal injury by reducing renal inflammation and fibrosis via the

SOCS/JAK/STAT pathway (150). MiR-145 is able to inactivate the

JAK/STAT signaling pathway by directly targeting colony

stimulating factor-1(CSF1), thereby inhibiting apoptosis and

inflammatory injury in MCs. This ultimately prevents the

progression of LN (143).

IL-35, the newest member of the IL-12 family, is composed of

IL-12A (p35) and Epstein-Barr virus-induced (EBI)-3 subunits.

These subunits bind to the IL-12Rb2 and gp130 chains,

respectively. The gp130 and IL-12Rb2 chains can form a

heterodimer (IL-12Rb2:gp130), the IL-35 receptor (151).

According to a recent study, IL-35 has been proposed to regulate
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the JAK/STAT signaling pathway in LN model of MCs (152). IL-35

suppresses angiogenesis and also inhibits the mRNA and protein

expression levels of TNF-a and IL-6 through the JAK/STAT1

pathway (153). It is possible that STAT1/4 could form a unique

heterodimer and bind to the promoter regions of both IL-35

subunits (p35 and EBI3), leading to the mediation of IL35R

signaling (154). In addition, the interaction of IL-35 with IL-35R

enhanced the inhibitory signaling of leukocyte-associated

immunoglobulin (Ig)-like receptor-1 (LAIR1) on the membranes

of MCs, leading to the inhibition of the JAK/STAT signaling

pathway (152). IL-35 transduces phosphorylation signaling

through the JAK/STAT signaling pathway, which in turn

enhances the inhibitory effect of LAIR1, reduces the proliferation

of MCs, suppresses massive inflammation, and ultimately inhibits

the progression of LN.

PTPN2, a non-receptor protein tyrosine phosphatase, is

recognized as a key regulator in controlling metabolism and

microinflammation (155, 156). There is growing evidence that

PTPN is involved in the development and progression of

inflammatory diseases (157, 158), and its main mechanism may

be to exert anti-inflammatory and anti-fibrotic effects through

inhibition of the downstream mediator STAT3 signaling pathway

(159). TC45 is the predominant form of PTPN2 in most species,

which shuttles between the nucleus and cytoplasm in response to

growth factor and cytokine receptor signaling to dephosphorylate

different substrates, including STAT3 (160, 161). In addition,

PTPN2 is the only PTP known to regulate STAT1 other than

SHP2. TC45 is the major PTP regulator of STAT1, which is

hyperphosphorylated and activated in PTPN2-deficient cells

(162). It has been shown that knockdown of PTPN2 in mouse

intestinal epithelial cells results in severe colitis and leads to

increased inflammation and increased cell proliferation through

activation of STAT1 (163). Interestingly, there are studies showing

that PTPN2 can improve renal lesions and fibrosis in DN by

reducing the expression of pro-inflammatory and pro-fibrotic

cytokines through inhibiting the STAT1/3 signaling pathway

(164).The mechanisms involves PTPN2 preventing kidney injury

by inhibiting STAT activation, down-regulating STAT-dependent

genes, and inhibiting the proliferation of mouse mesangial cells and

endothelial cells. Previous research indicated that the recruitment of

PTPN11 (SHP-2) could play a role in transmitting negative signals

through LAIR-1 molecules involved in transduction (165, 166).

Blocking PTPN11 genetically or pharmacologically result in the

inhibition of the JAK2/STAT3 signaling pathway (167). In IL-35-

treated lupus mice, it has been suggested that the upregulation of

LAIR1 may transmit a negative signal by inhibiting PTPN11 to

suppress STAT3 activation in MCs (152). In summary, PTPN may

be a potential target for the treatment of inflammation in

glomerular diseases, and its mechanism needs to be verified by

more experiments.
4.2 CCL2/CCR

Chemokines participate in the adaptive immune response by

recruiting small cytokines from different cell types, mainly through
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1526285
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xiong et al. 10.3389/fimmu.2025.1526285
chemotaxis (168, 169). Inflammatory chemokines such as CCL2,

CCL5 (RANTES), and C-X3-C motif chemokine 1 have the ability

to induce the migration of leukocytes to injured tissues (170, 171).

CCL2, also known as macrophage chemokine-1 (MCP-1), is

involved in the development of glomerular diseases by facilitating

the recruitment of macrophages via interaction with type 2 C-C

chemokine receptor (CCR2) (172). The glomerular expression

levels of CCL2 and its receptor CCR2 were found to be elevated

in human glomerulopathies (85), and CCL2/CCR2 signaling may

mediate the development of a variety of glomerular diseases.

Anja Wilkening et al. discovered that CCL2 secretion was

notably elevated in MCs and mural epithelial cells exposed to

adriamycin, while there was no significant increase in podocytes

and glomerular endothelial cells (85). Adriamycin was also found to

induce TNF production in MCs and mural epithelial cells.

Moreover, TNF indirectly induced CCL2 secretion in all

glomerular cell lines, but did not alter CCR2 expression in these

cells. However, CCR2-deficient mice demonstrated lower renal

expression of these inflammatory markers (173). Moreover,

further evidence suggested that the absence of CCR2 led to

decreased macrophage infiltration in the glomerular and

tubulointerstitial areas, leading to enhanced renal injury (174–

176). The absence of CCR2 did not seem to impact the

adriamycin-induced injury to podocytes or glomerular endothelial

cells in FSGS mice, indicating that adriamycin might not directly

harm these cell types as previously believed (37, 177, 178). Another

study also noted that CCL2 can trigger the inflammatory response

by binding in a synergistic manner to glycosaminoglycans located in

the glomerular endothelial glycocalyx, such as acetyl-heparin sulfate

(HS), chondroitin sulfate, and non-sulfated hyaluronic acid (179).

When the N-deacetylase/N-sulfotransferase-1 enzyme is specifically

knocked out in endothelial cells, there is a notable decrease in

glomerular endothelial chemokine and leukocyte binding, resulting

in diminished inflammatory responses in experimental anti-

glomerular basement membrane nephritis mice (180).

In addition to recruiting leukocytes, CCL2 also recruits other

cells to infiltrate the kidney to trigger glomerular inflammation,

such as gd1 T cells. Previous research indicates that the

extravasation of gd1 T cells to target organs is primarily facilitated

by CCL2 and involves the expression of CCR2 (174, 181, 182).

Whereas high expression of CCL2 has been demonstrated in the

MCs of IgAN patients (183). A recent study shows that gd1 T cells

in the peripheral blood of IgAN patients can be recruited to the

kidney via the CCL2-CCR2 chemokine axis and enhance CCL2-

CCR2 axis-mediated chemotaxis via C5a (184). C5a is a potent

chemoattractant of immune cells, released by local complement

activation of IgAN leading to C5 cleavage, which leads to renal

injury in IgAN by promoting migration of gd1 T cells. Previous

studies have shown that activation of C5a-C5aR1 signaling

promotes Th9 cell recruitment and IL-9 levels via CCL20-CCL6,

leading to IgAN deterioration (185). In summary, the C5a/CCL2/

CCR2 pathway may serve as a potential mechanism to ameliorate

glomerular inflammation, primarily by decreasing the recruitment

of immune cells.
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4.3 NLRP3 inflammasome activation

In the innate immune system, inflammatory vesicles are

assembled by cell cytoplasm pattern recognition receptors (PRRs)

and play a crucial role in responding to pathogen-associated

molecular patterns (PAMPs) or danger-associated molecular

patterns (DAMPs). Among the five families of PRRs, the NOD-

like receptor family, containing the pyrin domain 3 (NLRP3), is the

most extensively studied in chronic kidney disease inflammatory

vesicles (186). The NLRP3 inflammatory vesicle consists of three

proteins: the NLRP3 scaffold, the PYCARD junction protein (ASC),

and the active cysteine asparaginase 1 (caspase-1). This structure is

crucial for the production of inflammatory factors (187). The

NLRP3 protein consists of a C-terminal leucine-rich repeat

sequence (LRR), a central nucleotide-binding oligomeric

structural domain (NACHT) and an N-terminal pyrin structural

domain (PYD). When injury-associated molecules are recognized

and bound by the LRR, NACHT will oligomerize, PYD will recruit

ASC and pro-Caspase-1 to form NLRP3 inflammatory vesicles, and

pro-Caspase-1 will be activated and then cleave pro-IL-1b and pro-

IL-18 to produce mature IL-1b and IL-18 (188, 189). Currently,

more and more studies confirm the role of NLRP3 in the kidney,

including renal fibrosis, oxidative stress, autophagy and pyroptosis,

especially glomerular inflammation (189, 190).

Previous studies have shown that the activation of NLRP3 in

renal resident cells plays a role in promoting glomerular disease

(111, 191, 192). This pathway can be regulated by NF-kB (193).

Zhang Lei et al. found that icariin treatment attenuated renal injury

in IgAN rats by inhibiting NF-kB-mediated activation of NLRP3

inflammasome (194). Furthermore, research has revealed that

NLRP3 can affect the kidney through non-classical pathways.

Wenjie Wang et al. demonstrated that NLRP3 enhances TGF-b1
signaling and Smad activation, promoting renal tubulointerstitial

inflammation and fibrosis. Interestingly, these effects were found to

be independent on inflammatory vesicle components, such as

caspase-1 and the cytokines IL-1b and IL-18 (195). Khurrum

Shahzad and his team developed a mouse model with podocytes

specifically lacking in NLRP3 or caspase-1. They observed that the

absence of NLRP3 or caspase-1 prevented hyperglycemia-induced

glomerular injury, although the level of protection differed. Mice

with podocyte-specific NLRP3 deficiency were fully protected,

whereas those with podocyte-specific caspase-1 deficiency only

had partial protection (196). This is in line with earlier findings

that NLRP3 operates separately from caspase-1 (197).

Evidence has emerged indicating that the crosstalk between

autophagy and NLRP3 inflammatory vesicles is significant in

various inflammatory diseases and can be mediated by HDAC6

(168). HDAC6, a class IIb deacetylase, plays a crucial role in the

regulation of autophagy and the activation of NLRP3 inflammatory

vesicles (198, 199). HDAC6 amplifies pro-IL-1b transcription, raises

IL-1b release, and worsens inflammation by promoting NF-kB
expression and engaging with NF-kB upstream activators (200–

202). At the same time, the caspase-1-mediated signaling

intermediate Toll-Interleukin-1 Receptor (TIR) structural domain
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junction induces interferon-beta (TRIF) cleavage, thereby promoting

autophagy (203). HDAC6 could be involved in the crosstalk between

inflammatory vesicles and autophagy through its regulation of NF-

kB. Furthermore, it has been shown that there is a correlation

between increased HDAC6 levels and renal dysfunction (204).

Whereas treatment with HDAC6 inhibitors can effectively treat LN

in NZB/W mice by reducing a-microtubulin acetylation and NF-kB
activation in the glomeruli (205). Additionally, P62 is able to

stimulate autophagy by suppressing the deacetylase activity of

HDAC6, leading to a higher acetylation levels of a-microtubulin or

cortical proteins (206, 207). Hence, it is suggested that the regulation

of P62 by HDAC6 may indirectly impact a-microtubulin, potentially

playing a role in the crosstalk between inflammation and autophagy

in glomerular disease. Future studies should investigate this

pathway further.
4.4 Toll-like receptor signaling

Toll-like receptors (TLR) play an important role in kidney

inflammation (208). It is known that some resident renal cells,

such as podocytes, MCs, and endothelial cells, also express TLR in

response to immune stimulation (209). TLRs belong to the PRR

family and consist of 10 isoforms, including TLR1-10. TLR1, 2, 4, 5,

and 6 are transmembrane proteins with multiple leucine-rich

repeats, serving as the recognition domains for PAMP and

DAMP. The TLRs on the surface of these cells are in charge of

detecting PAMPs and DAMPs, with the latter triggering
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inflammation by interacting with TLR2 and/or TLR4 (210). The

binding results in TLR dimerization and conformational alterations,

causing the recruitment of TIRAP, TRIF, and TRAM adaptor

proteins, initiating subsequent inflammatory pathways (88). The

TLR signaling cascade results in the translocation of NF-kB and the

transcription of pro-inflammatory genes, such as IL-6, IL-1b, and
TNF (211, 212).

TLRs have the ability to engage in signaling cascades with PRRs,

such as NLRP3, which requires precise coordination to trigger a

targeted and efficient immune response (213). Activated TLR4

receptors initiate NF-kB and regulate the production of NLRP3,

pro-IL-1b, and pro-IL-18, which in turn induce a variety of pro-

inflammatory cytokines involved in diabetes-induced inflammatory

response and apoptosis, leading to DN (214, 215). Lei Liu et al.

found that miR-181a has the potential to reduce injury in CKD

patients by suppressing the CRY1 gene and the TLR/NF-kB
pathway (216). TLR4 deficiency results in decreased renal

inflammation by blocking NF-kB activation induced by

angiotensin II therapy (217). Furthermore, in cultured podocytes,

high glucose-induced up-regulation of TLR4 expression can be

mediated by ROS production and NF-kB activation (218). High

glucose-induced increase in TLR2 and TLR4 expression in

monocytes is mediated by activation of the protein kinase C

(PKC) pathway (219). Inhibition of toll-like receptor 4-mediated

STAT3 activation attenuates angiotensin II-induced renal fibrosis

and dysfunction (220). Genipin, a major active ingredient in

Gardenia jasminoides, is widely used in traditional Chinese

medicine for the treatment of various cardiovascular diseases,
FIGURE 2

Inflammatory pathways in glomerular disease. This figure depicts the key mechanisms of glomerular disease injury, mainly including the JAK/STAT
signaling pathway, CCL2/CCR axis, NLRP3 inflammasome activation, and Toll-like receptor signaling. Several pathological responses, such as
oxidative stress, inflammatory response, and fibrosis are among the major causes mediating the activation of these pathways. In addition, several
inflammatory factors (including SOCS, IL35, PTPN2, CCL2, NLRP3, etc.) have been found to act on these signaling pathways to modulate
glomerular injury.
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where it inhibits Ang II-induced cell proliferation, ROS generation,

and pro-inflammatory responses. These effects may be mediated

through the TLR signaling pathway (221). Taken together, TLR can

occur by interacting with various signaling pathways, and this
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interaction could potentially be a mechanism for the development

of glomerular inflammation.

The pathways associated with glomerular inflammation

mentioned above are succinctly summarized in Figure 2. The full

names of the abbreviations are listed in Table 2.
5 Prevention and treatment

Glomerular diseases are typically classified according to the

histological patterns of kidney injury, with various etiologies and

pathophysiologic mechanisms linked to different types of

glomerular diseases. The primary challenge in treating these

diseases lies in their immune-mediated nature, as well as the

diverse clinical manifestations and prognosis they present.

Recently, targeted therapies have emerged as more precise

treatments for glomerular diseases, that focus on the onset and

progression of the disease through the influence of specific

molecular or cellular processes. These therapies include biologics

and small molecule inhibitors that target inflammatory cytokines,

immune cells and signaling kinases (Table 3) (222). In a review, Yi-

Chan Lin et al. describe relevant targeted therapies for glomerular

diseases, including antibody-mediated immune cell exhaustion,

complement activation, and signaling (223). However, as we have

described, glomerular cells are also involved in the immune

response to glomerular disease, and direct targeting of glomerular

cells and their signaling is also one of the important options for the

treatment of glomerular disease. In recent years, small molecule

drugs targeted podocytes have entered clinical trials, offering a

glimmer of hope for the treatment of glomerular diseases caused by

podocyte injury (224).

Currently, the therapeutic mechanism of commonly used

clinical drugs is mainly to prevent rearrangement of the podocyte

and podocyte loss. Angiotensin-converting enzyme (ACE)

inhibitors and angiotensin receptor blockers (ARBs) can be

utilized to treat Ang II-induced renal disease and enhanced

podocyte tensile stress, one of the seminal therapeutic

breakthroughs in the history of nephrology (225, 226). Signaling

mechanisms reported to cause membrane damage in podocytes

include Ang II-mediated Rho-ROCK-related disruption of the actin

cytoskeleton and transient receptor potential channel 6 (TRPC6)-

mediated release of calcium from intracellular stores (227, 228).

TRPC6 is mediated by Ang II (229). As previously described,

rearrangement of the foot cytoskeleton is regulated by calcium

influx in transient receptor potential channel 6 (TRPC6) as well as

by the Rho family. Thus, the use of ACE inhibitors and ARBs to

treat Ang II-mediated disruption of podocyte structure and

homeostasis provides a mechanistic basis for the treatment of

glomerular disease. Similar to ACE inhibitors and ARBs,

treatment with SGLT2 inhibitor ameliorated mTORC1-related

podocyte injury (230), glomerular inflammation, rearrangement

of podocyte cytoskeletal (230), and loss of podocyte (230). The

first-line treatment for podocytes is glucocorticoids, supported by a

large body of efficacy data and evidence of the immunologic basis of

podocytosis. Research indicates that glucocorticoids play a role in

stabilizing the actin cytoskeleton and the cleft septal complex (231).
TABLE 2 List of abbreviations.

Abbreviations Full name in English

GD Glomerular disease

FSGS Focal segmental glomerulosclerosis

MCD Microscopic lesions

IgAN IgA nephropathy

PMN Primary membranous nephropathy

MPGN Membranoproliferative glomerulonephritis

PIGN Post-infectious glomerulonephritis

MesPGN Membranoproliferative glomerulonephritis

LN Lupus nephritis

HIVAN HIV-associated nephropathy

DN Diabetic nephropathy

ET-1 Endothelin-1

ICAM1 Intercellular adhesion molecule 1

VCAM1 Vascular cell adhesion protein 1

MCP1 Membrane cofactor protein 1

sICAM-1 Soluble intercellular adhesion molecule-1

AOPPs Advanced oxidation protein products

JNK Jun N-terminal kinase

AP-1 Activator of transcription factor 1

GBM Glomerular basement membrane

GEnC Glomerular endothelial cells

TNF Tumor necrosis factor

KLF Krüppel-like factor

GFR Glomerular filtration rate

ESRD End-stage renal disease

NF-kB Nuclear transcription factors

JAK Janus kinase

SOCS Suppressor of cytokine signaling

CSF1 colony stimulating factor-1

EBI Epstein-Barr virus-induced

LAIR1 leukocyte-associated immunoglobulin (Ig)-like
receptor-1

PAMPs Pathogen-associated molecular patterns

DAMPs Danger-associated molecular patterns

Caspase-1 Cysteine asparaginase 1

MCs Mesangial cells
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Calcineurin inhibitors (CNIs) are suggested as second-line

induction and/or maintenance agents for treatment of

podocytopathies (232). CNIs have been shown to decrease

podocyte damage by stabilizing the actin cytoskeleton, which

helps maintain RhoA and tight junction protein ZO-1 (233). In

the same way, rituximab treatment of podocytosis led to actin

stabilization, preservation of podocyte adhesion, and decrease in

apoptosis (234). Kristin Meliambro et al. have also suggested

various new therapeutic strategies for targeting podocytes, such as

harnessing the regenerative capabilities of podocytes, current

clinical trials of drug formulations specific to podocytes, and the

creation of drug delivery systems that target podocytes (224). In the

future, targeted therapies for podocytes focus more on the

above approaches.
6 Future prospects

This article reviews studies on the molecular mechanisms,

prevention, and treatment of inflammatory responses in various

glomerular diseases, especially diabetic nephropathy, lupus

nephritis, focal segmental glomerulosclerosis, and IgA

nephropathy. The development of glomerular disease as a chronic

histologic injury to the kidney is often accompanied by structural

and functional damage to glomerular cells, such as endothelial cells,

mesangial cells and podocytes. This process does not directly

depend on the activation of immune cells, instead, it is mediated

through a specific pathway that mainly includes the JAK/STAT

signaling pathway, the CCL2/CCR axis, NLRP3 inflammasome

activation and Toll-like receptor signaling. We discuss some

specific structural injuries in glomerular cells that are associated

with the development of glomerular diseases. Pro-inflammatory

cytokines expressed by glomerular cells under pathogenic
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conditions are summarized. This article focuses on a review of the

molecular mechanisms, preventive and therapeutic studies of the

inflammatory response in different types of glomerular diseases,

especially diabetic nephropathy, lupus nephritis, focal segmental

glomerulosclerosis and IgA nephropathy. These can help us to

understand the signaling pathways that trigger glomerular diseases

under pathological conditions and prevent glomerular injury

caused by inflammatory responses. In the future, research on the

inflammatory response in glomerular diseases should not only focus

on immune cells, but also pay more attention to the special

structure of glomerular cells and the interactions between cells.

This may lead to a better understanding of the molecular

mechanisms that trigger glomerular diseases in pathological

conditions and aid in preventing glomerular injury from

inflammatory responses.
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