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The complement system is a key component of the innate immune system. In

antiacetylcholine receptor (AChR) antibody-positive (Ab+) generalized

myasthenia gravis (MG), complement activation has long been considered a

principal driver of pathology. Understanding the role of complement in AChR-Ab

+ generalized MG has gained increasing importance in recent years, as

anticomplement drugs have been approved for clinical use or are undergoing

phase II/III clinical trials. This review aims to discuss recent and previous findings

on the role of complement in AChR-Ab+ MG pathology, including its interaction

with pathogenic antibodies and mechanisms beyond the classical

pathway activation.
KEYWORDS
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Introduction

Myasthenia gravis (MG) is a rare, chronic neuromuscular autoimmune disease with a

median global prevalence of 10 per 100,000 and an in-hospital mortality rate of 1.8%. The

hallmark of MG pathology is defective transmission at the neuromuscular junction. MG is

characterized by fatigability and fluctuating weakness of the ocular, bulbar, respiratory, and

limb muscles. Most people with MG (pwMG) develop ocular symptoms at some point

during the disease course. Approximately 80% of pwMG with ocular onset progress to

generalized MG within 2 years of disease onset (1–3).
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MG is a T-cell-dependent disease in which CD4+ T cells

produce cytokines and promote B-cell differentiation into plasma

cells (4). The trigger for T-cell activation and MG development

remains unknown but has been linked to thymomas (1, 5). Plasma

cells produce autoantibodies that target neuromuscular junction

proteins, a specialized synapse that transmits nerve impulses to

muscles across the synaptic cleft. MG autoantibodies and serum

molecules, including complement proteins, can bind to and become

activated at the neuromuscular junction, as this structure lacks

protection from the blood–nerve barrier (4).

MG autoantibodies vary in IgG subclasses, protein targets, and

pathogenic actions, forming the basis for disease subgroup

classification. In particular, autoantibodies against the

acetylcholine receptor (AChR) belong to the IgG1 and IgG3

subclasses (6) and account for 85% of cases. There are three

pathogenic mechanisms by which AChR autoantibodies lead to

MG: antibody blocking, antigenic modulation, and complement

activation as described below. Another 5% of all pwMG have

autoantibodies against muscle-specific kinase (MuSK), which

belongs to the IgG4 subclass (7). IgG4 antibodies have a limited

capacity to interact with complement proteins and are therefore

considered noncomplement-fixing antibodies (8). Additionally,

1%–5% of pwMG have autoantibodies targeting low-density

lipoprotein receptor-related protein 4 (LRP4), which belongs to

the IgG1 subclass (9). Approximately, 10% of pwMG are

diagnosed without detectable autoantibodies and are classified

as seronegative.

The complement system is a key effector mechanism in anti-

AChR antibody-positive (Ab+) MG (4, 10). Complement activation

may occur as an early and crucial event in MG (11–13), while the

impact of autoantibodies alone remains poorly understood (14).

Therefore, a causal rather than a bystander role for complement in

MG pathology should be considered, given its involvement in

primarily degenerative processes such as autophagy and synaptic

pruning (15, 16). This review discusses the mechanisms of

complement-mediated damage at the neuromuscular junction in

the presence or absence of autoantibodies.
AChR autoantibody-mediated
pathogenic mechanisms in MG

AChRs are heteropentamers consisting of two a-subunits and
one b-, d-, and either g-subunit (in embryonic muscle) or e-subunit
(in adult muscle), organized around a central ion channel. These

receptors are located at the postsynaptic membrane of the

neuromuscular junction and facilitate the generation of a muscle

fiber action potential upon binding of Ach, which is released by the

firing nerve ending. In MG, the anti-AChR antibody response is

polyclonal; however, at least half of the AChR autoantibodies target

the a-subunits, specifically the N-terminal region of AChR-a,
which includes the main immunogenic region (MIR). The MIR is

a cluster of conformation-dependent epitopes recognized by

functionally and structurally heterogenous monoclonal anti-MIR
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antibodies (17). These anti-MIR antibodies may promote AChR

clustering at the neuromuscular junction by binding to the a-
subunits of adjacent receptors (18).

MG pathology may result from the direct blockade of AChRs by

autoantibodies, which inhibits ACh binding to its receptor. Steric

interference with ACh-AChR binding may lead to an activity-

dependent reduction in neuromuscular junction efficacy,

preventing striated muscle contraction and ultimately causing

denervation of the affected muscle (19, 20). Anti-AChR

autoantibodies have also been found to slow AChR channel

closure, leading to abnormal AChR desensitization and the

formation of miniature rather than normal endplate currents

(21). In MG, miniature endplate currents are insufficient to reach

the threshold level necessary for generating a muscle fiber action

potential (22).

However, most MG autoantibodies do not block the binding of

ACh to its binding sites. This may—at least in part—explain the

lack of a significant relationship between antibody titers and disease

severity (23, 24). PwMG in remission may present with the highest

antibody abundance (25), whereas severe disease is primarily

associated with the loss of AChRs and the destruction of

junctional folds (26). Previous studies have categorized

pathogenic antibodies as blocking or binding using standard

immunoprecipitation assays to quantify binding antibodies and

assays to measure antibodies that block a-bungarotoxin binding to

receptors (24, 25, 27). Although the degree of AChR blockade was

significantly correlated with the generalization of muscle weakness

(25), people with severe generalized MG had either both blocking

and binding antibodies or binding antibodies alone (28). Whether

blocking and binding MG antibodies bind to distinct AChR sites

with higher or lower agonist affinity—and whether the two types of

antibodies act synergistically to exert a functional action on AChR

—remains to be determined.

The second hypothesis for MG pathogenesis is based on the

ability of anti-AChR autoantibodies and their divalent F(Ab′)2
fragments to modulate—rather than block—AChRs (29).

Antigenic modulation activity in MG has been linked to antibody

titers (30). Autoantibodies targeting AChRs are believed to

accelerate the natural AChR degradation cycle by binding to the

MIR and inducing AChR cross-linking (18). AChR cross-linking is

followed by internalization and lysosomal degradation of the

autoantibody-bound receptors, which—similar to the first

hypothesis—reduces AChR densities at the neuromuscular

junction (29). Notably, studies in rodents have indicated that

increased AChR internalization is compensated by enhanced

AChR synthesis, resulting in similar AChR levels before and after

internalization (31, 32). However, other studies have reported

contradictory data (33, 34). A key question remains: what is the

impact of coexisting pathological mechanisms on the synthesis and

insertion of newly synthesized AChRs at the neuromuscular

junction? In addition, further research is needed on the kinetics

and recycling potential of internalized AChRs to better understand

the exact contribution of the modulatory effect of autoantibodies on

MG pathogenesis and progression.
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Complement-mediated pathogenic
mechanisms in MG

The complement system consists of more than 30 proteins

found in plasma and on cell surfaces, which enhance the activity of

antibodies and phagocytic cells in removing microbes,

immunocomplexes, and dead or modified self-cells. It primarily

serves the innate immune system while also interacting with

components of the adaptive immune system to regulate antibody-

mediated responses. Complement proteins, mainly produced by

hepatocytes, have both effector and regulatory roles (35).

Activation of complement occurs through three pathways: the

classical, lectin, and alternative pathways (Figure 1). The classical

pathway is triggered when C1q binds to immune complexes or “eat

me” signals displayed by apoptotic cells. Similarly, the lectin

pathway is initiated when mannose-binding lectin (MBL) or

ficolins bind to carbohydrate patterns on the cell membrane. The

alternative pathway is activated by the slow spontaneous hydrolysis

(tick-over) of C3 to C3(H2O), allowing a continuous but subtle

complement activation that contributes to immune surveillance and

can amplify neuroinflammatory responses. All complement

pathways ultimately lead to three key outcomes: opsonization of a

target for phagocytosis via the covalently bound C3b component,

induction or amplification of inflammation through the released

C3a and C5a anaphylatoxins, and target cell damage via the

membrane attack complex (MAC). MAC is a pore-forming

structure that integrates into the lipid bilayer of the plasma

membrane, causing lysis (13, 35) or triggering proinflammatory

responses when formed at sublytic levels (36).

Complement can have the potential to harm self-tissues;

therefore, its activation is tightly regulated (Figure 1) to eliminate

pathogens or “unwanted” cells without injuring the host. When this

balance is disrupted, excessive complement activation can lead to

tissue injury and contribute to the pathology of various diseases (35).

Numerous studies assessing the levels of complement activation

products and regulators in plasma (37–41) and biopsied material

(42–46) from individuals with AChR-Ab+ MG have confirmed that

the activated complement system is a key mediator of AChR-Ab+

MG pathology (10, 13, 47). Its physiological role in eliminating

antibody-targeted pathogens (35) leads to binding and activation at

the autoantibody-fixed AChR-Ab+ MG neuromuscular junction,

resulting in tissue damage (42–44). Activation occurs via the

classical pathway when the C1q molecule binds to the Fc region

of IgG1 and IgG3 autoantibodies attached to AChRs (48). Since

optimal C1q binding requires multiple IgG molecules to bind one

C1q, the clustering of autoantibody-bound AChRs on the

postsynaptic membrane plays an important role in classical

pathway activation (49). Activation of the classical pathway leads

to the assembly of the pore-forming MAC, which serves as the key

effector of complement-mediated damage in AChR-Ab+ MG. MAC

induces direct destruction of the postsynaptic membrane, reducing

AChRs and voltage-gated channels, and significantly contributing

to the widening of the postsynaptic cleft and muscle denervation

(50). Next to the role of MAC, activation of the classical pathway

results in the covalent binding of C4b and C3b opsonins on the
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muscle surface. These opsonins be recognized by complement

receptor type 1 (CR1)- and type 2 (CR2)-bearing cells, including

T and B cells. Furthermore, activation leads to the release of C3a

and C5a, which modulate leucocyte responses by binding to C3aR

and C5aR (Figure 2). It remains unclear whether, in AChR-Ab+

MG, C1q activates complement in the absence of antibodies by

binding to motifs or molecules exposed on muscle endplates. This

possibility might explain its deposition on the motor endplates in

the intercostal muscle of amyotrophic lateral sclerosis (ALS) donors

(51). Alternatively, C1q activation may be linked to activity patterns

at the neuromuscular junction, a mechanism previously suggested

to underlie its role in the synapse elimination in the central nervous

system by microglia (52).

The molecular contribution of MAC to MG pathology has been

inferred from studies conducted in experimental autoimmune

myasthenia gravis (EAMG) models (53, 54). Pharmacological

inhibition of MAC in EAMG has been achieved using C5

inhibitors, such as the 4G2 monoclonal antibody (55) and the

rEV576 compound (56), both of which block rat C5 and thereby

inhibit MAC formation as well as C5a-induced anaphylaxis.

Additionally, MAC inhibitors, including the 7E5 monoclonal

antibody targeting human C6 (57) and the TPP1820 monoclonal

antibody targeting mouse C7 (58), have also been used to suppress

MAC activity. The administration of C5, C6, or C7 terminal

complement pathway inhibitors in rodents mitigated EAMG.

Moreover, inducing EAMG in mice deficient in C5 (59) or C6

(53), both components of the terminal pathway, resulted in a

reduced incidence of severe disease and better preservation of

AChRs compared with wildtype littermates. In contrast, animals

lacking the CD59a gene, which encodes the CD59 regulator of MAC

formation, exhibited high levels of C9 immunoreactivity at the

diaphragm neuromuscular junctions, indicating MAC deposition

(60). In line with these data, C3 or C4 knockout mice, which are

unable to form MAC, exhibited autoantibody deposition at the

neuromuscular junctions when immunized with anti-AChR

antibodies but remained resistant to EAMG development, with no

alterations in AChR densities (61). This demonstrates the role of

complement in the induction and progression of EAMG. In

contrast, mice deficient in the CD55/decay-accelerating factor

(DAF), a regulator of C3 and C5 convertase decay, exhibited

excessive MAC formation and extensive damage to the

postsynaptic membrane (60). Notably, EAMG rodents deficient in

the C3 protein exhibited reduced serum IgG levels, including anti-

AChR IgGs, and a decreased number of B cells, impacting the

adaptive immune system (61). Collectively, these findings indicate

that complement serves as the primary effector mechanism in

EAMG (Table 1).
Limiting complement activation vs.
lowering AChR autoantibody titers for
suppression of MG

Since 2017, terminal complement pathway inhibition has been a

therapeutic option for individuals with AChR-Ab+ MG.
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FIGURE 1

The pathways of complement system activation. In the classical pathway, C1q, a subunit of the C1 complex, binds to an antibody-fixed cell. This
binding activates the proteases C1r and C1s (also components of the C1 complex). C1s cleave the C4 protein into C4a and C4b. C4b binds
covalently to the target and attracts C2, which is cleaved by C1s into C2a and C2b. C2b binds to C4b to form the C4b2b complex, also known as C3
convertase. C3 convertase cleaves C3 into C3a and C3b. C3b may bind to the C3 convertase, forming the C4b2b3b complex, also known as C5
convertase. C5 convertase cleaves C5 into C5a and C5b. C5b associates with C6, C7, C8, and C9 to form the final product of complement
activation, the membrane attack complex (MAC). In the lectin pathway, mannose-binding lectin (MBL) or ficolins bind to carbohydrate patterns on
the target cell, leading to the activation of MBL-associated serine proteases (MASP)1 and MASP2, which are complexed with MBL. MASPs cleave C4
and C2, forming C3 convertase. The pathway continues with the generation of the C5 convertase and the formation of MAC. In the alternative
pathway, inactive C3 undergoes spontaneous hydrolysis, forming C3(H2O). Factor B binds to C3(H2O), leading to its cleavage by factor D into Ba and
Bb, resulting in the formation of the fluid-phase C3 convertase, C3(H2O)Bb. C3(H2O)Bb converts C3 into C3a and C3b, with some C3b molecules
binding to the target and associating with factor B, which is subsequently cleaved by factor D to form the C3 convertase C3bBb. The pathway
progresses with the formation of the C5 convertase (C3bBb3b), cleavage of C5, and the assembly of the MAC. Selected regulators of the
complement cascade that interfere with different steps of the cascade are illustrated. C1 inhibitor (C1INH) promotes the decomposition of the C1
complex. Decay-accelerating factor (DAF), membrane cofactor protein (MCP), and complement receptor 1 (CR1) accelerate the decay of the C3 and
C5 convertases. CD59 inhibits the formation of MAC. Factor H (FH) prevents the assembly of the alternative pathway C3 and C5 convertases, while
factor P (properdin) stabilizes the alternative pathway C3 convertase, thereby promoting the amplification loop. Created with BioRender.com.
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Eculizumab, a C5 inhibitor, was the first anticomplement drug

approved for the treatment of refractory generalized MG in people

aged 6 years and older with AChR-Ab+. Four mutations on

eculizumab led to the development of ravulizumab, the first long-

acting C5 inhibitor, which received regulatory approval for AChR-

Ab+ generalized MG in 2022. Ravulizumab is administered via

intravenous infusion every 8 weeks, offering a longer dosing interval

compared to eculizumab, which is given every 2 weeks (62, 63). In

2023, a year later, zilucoplan, a peptidic C5 inhibitor, was

authorized for daily self-administration via subcutaneous

injection. Zilucoplan has a favorable safety profile and has been

shown to maintain or improve MG symptoms in pwMG switching

from intravenous C5 inhibitor therapy, based on data from the

interim analysis of a phase C3b study (64). The results of phase III

trials (65, 66), along with subsequent market authorizations of the

aforementioned C5 inhibitors, the ongoing preclinical testing of the

CP010 C6 inhibitor (https://gravitoncorp.com), and the extensive

list of complement inhibitors that have been evaluated in clinical

phase I/II and III trials or are currently undergoing phase II/III

clinical testing—including ALXN1720 (NCT05556096), iptacopan

(NCT06517758), DNTH103 (NCT06282159), and forelimb/

cemdis i ran (NCT05070858) inhib i tors— sugges t that

anticomplement therapeutics may play a central role in the
Frontiers in Immunology 05
treatment of AChR-Ab+ generalized MG. Several phase III trials

were followed by corresponding open-label extension

studies (Table 2).

Terminal complement pathway inhibitors are promising for

AChR-Ab+ MG therapy because they block the destructive MAC

while preserving upstream complement mechanisms. This ensures

physiological protection against infection and may facilitate

immune complex clearance in MG. Activated C3 is known to

mediate immune complex clearance via CR1-receptor-bearing

cells (67) and aids in their solubilization to prevent precipitation.

The solubilization of preformed immune complexes is considered a

primary function of the alternative complement pathway (68),

though the classical pathway is also involved (69). Precipitated

immune complexes, particularly those formed by IgG1 or IgG3

antibodies, can have significant pathological impacts on various

tissues (70), as they activate the complement system. Immune

complexes and C3 have previously been identified in forelimb

muscles in EAMG (45) and within degenerating junctional folds

in humans (71, 72). Additionally, IgG, C3, and C9 were detected at

the limb muscle endplates of pwMG (43). Interestingly, some

pwMG with immune complexes and activated complement

exhibited no detectable serum anti-AChR antibodies (43),

suggesting that insufficient immune complex clearance, rather
FIGURE 2

The complement system in AChR-Ab+ generalized myasthenia gravis: C1q binds to autoantibodies attached to AChRs (1) and to precipitated
immune complexes (2), when present, at the neuromuscular junction, thereby activating the classical pathway (CP). Hydrolysis of C3, either
spontaneously (3) or triggered by precipitated immunocomplexes (4), induces activation of the alternative pathway (AP). CP activation results in the
opsonization of the muscle membrane by C4b and C3b, which serve as potent activators of CR1- and CR2-bearing lymphocytes (a). Both the CP
and the AP result in the release of C3a, a product of C3 cleavage, and C5a, a product of C5 cleavage, which may interact with immune cells bearing
C3a and C5a receptors, respectively (b). Additionally, both pathways contribute to the formation of the membrane attack complex (MAC), composed
of C5b, C6, C7, C8, and C9, which serves as the key driver of neuromuscular junction damage (c). CP, classical pathway; AP, alternative pathway.
Created with BioRender.com.
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than autoantibody production, may contribute to complement-

mediated damage in seronegative pwMG (Table 1). However, the

possibility cannot be excluded that complement activation at the

neuromuscular junction of seronegative pwMG is triggered by an

unknown autoantibody targeting the synapse or that the sensitivity

of current antibody quantification assays is insufficient to detect low

levels of circulating antibodies. Live cell-based assays for detecting

anti-AChR antibodies may serve as a valuable tool for diagnosing

patients with radioimmunoassay-double seronegative MG (73).

Furthermore, the use of intercostal muscle biopsy to identify

complement depositions at the neuromuscular junction (74) may

need to be considered for diagnosis and/or therapeutic decision-

making in patients for whom live cell-based assay has also failed to

detect antibodies.

The advantage of selectively blocking only the damaging arm of

the complement system, rather than promoting broad

immunosuppression, has been inferred by real-world studies

demonstrating sustained improvement (65, 75–77) and a reduced

need for corticosteroids (78–85) in people with AChR-Ab+

generalized MG receiving C5 inhibitor therapies. In contrast,

plasmapheresis, which depletes MG autoantibodies from the

serum, is essential for symptom relief during a crisis but provides
Frontiers in Immunology 06
only a short-lasting (approximately 6 weeks) effect, as symptoms

return once autoantibody levels revert to baseline (86). Similarly,

intravenous immunoglobulin (IVIg) and other immunosuppressive

therapies—such as corticosteroids, azathioprine, and the neonatal

Fc receptor (FcRn) inhibitors—regulate autoantibody levels and

indirectly modulate complement-dependent damage. However,

these drugs cannot block the effects of residual autoantibodies

bound to the neuromuscular junction or suppress potential

activation of the antibody-independent alternative pathway,

meaning they do not specifically block complement-mediated

effects (11). Notably, these treatments are ineffective in reducing

alternative pathway activation, which implies the effects of initial

classical pathway activation. This has significant implications for

MG, particularly given data demonstrating changes in serum levels

of the alternative pathway regulator properdin in pwMG (87).

Remarkably, robust classical pathway activation may bypass the

effect of the alternative pathway (88), suggesting that alternative

complement pathway inhibitors may be beneficial only when

classical pathway activation is modest. This may explain the lack

of efficacy of vemircopan, a factor D inhibitor, in a phase II clinical

trial. A phase III clinical trial evaluating the effects of iptacopan, a

factor B inhibitor, is currently underway, and its results are awaited.
frontiersin.or
TABLE 1 Published data support an AChR-Ab-independent role of complement in generalized MG and suggest a causal role in EAMG pathology.

Myasthenia gravis

SNPs rs344555 and rs3745568 in the C3 gene were associated with a higher risk of MG. Yue et al. (100)

Complement attack on both epithelial and myoid cells precedes MG autoantibody diversification. Leite et al. (101)

Complement proteins are deposited on the motor endplates of seronegative MG donors. Nagaoka et al. (12); Hoffmann et al. (74)

C9 deposits at an endplate region are inversely related to the structural integrity of the junctional folds in MG. Sahashi et al. (45)

Complement and immune complexes are present on the endplates of seronegative MG people. Tsujihata et al. (43)

Immunohistochemical analysis of endplates of pwMG showed the presence of MAC at all endplates. Nakano and Engel (102)

Experimental models of myasthenia gravis

C3 and C4 KO mice showed IgGs on the neuromuscular junction but were unable to develop EAMG following AChR
immunization; anti-AChR Ab production was suppressed in C3KO mice.

Tuzun et al. (61)

C5 deficiency prevents EAMG induced by AChR immunization. Christadoss (59)

C6 deficiency prevents passive EAMG induction. Chamberlain-Banoub et al. (53)

Deficiency for Daf1 and/or Cd59a determines the severity of passively induced EAMG. Morgan et al. (54); Kusner et al. (103)

Treatment of active or passive EAMG with a C5 inhibitor reduced the amounts of C9 deposits at the neuromuscular junction
but did not alter total serum AChR Ab levels.

Soltys et al. (56)

Other autoantibody-independent neuromuscular diseases and related models

Amyotrophic lateral disease (ALS): MAC deposits were detected on innervated motor endplates in the intercostal muscles of
ALS donors.

Bahia el Idrissi et al. (51)

ALS: Y402H variant of CFH was associated with a higher risk of ALS. Baird et al. (104)

Experimental model of ALS: activated C3 and C1q deposited on the neuromuscular junction of a mouse model for familial
ALS, at the presymptomatic stage.

Heurich et al. (105)

Experimental models of Charcot Marie Tooth (CMT): C1q, C3, and C9 deposits detected on sciatic nerves of transgenic
mouse models of CMT1A

Michailidou et al. (106)
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TABLE 2 Clinical trials of complement inhibitors for the treatment of generalized MG.

NCT number Study title Study status Interventions Target Phase Study type Primary endpoint results Completion date

N/A 12 June 2029

N/A 12 January 2029

N/A 23 March 2028

N/A December 2027

N/A 11 August 2027

N/A 03 April 2024

N/A 07 December 2027

N/A 25 December 2026

A total of 188 (94%) patients experienced
a TEAE. The most common TEAEs were:
MG worsening (n = 52, 26%) and
COVID-19 (n = 49, 25%) (77)

02 June 2026

N/A 03 February 2025

Based on an interim analysis, four
(50.0%) participants reported treatment-
emergent adverse events; one treatment-
emergent adverse event was considered
treatment-related (injection-site
pruritus) (64)

23 October 2024

(Continued)

M
ich

ailid
o
u
e
t
al.

10
.3
3
8
9
/fim

m
u
.2
0
2
5
.15

2
6
3
17

Fro
n
tie

rs
in

Im
m
u
n
o
lo
g
y

fro
n
tie

rsin
.o
rg

0
7

NCT06607627 PK, PD, safety, and efficacy study of
gefurulimab in pediatric patients with AChR+
generalized myasthenia gravis

Recruiting Gefurulimab C5 Phase 3 INT

NCT06517758 A phase III study to investigate efficacy, safety,
and tolerability of iptacopan compared with
placebo in participants aged 18 to 75 years
with gMG

Recruiting Iptacopan Factor B Phase 3 INT

NCT05070858 A study to test how safe pozelimab and
cemdisiran combination therapy and
cemdisiran alone are and how well they work
in adult patients with generalized
myasthenia gravis

Recruiting Pozelimab +
cemdisiran|
cemdisiran|
pozelimab

C5 Phase 3 INT

NCT06282159 A phase 2 study to evaluate DNTH103 in
adults with generalized myasthenia
gravis (MAGIC)

Recruiting DNTH103 C1s Phase 2 INT

NCT05556096 Safety and efficacy of ALXN1720 in adults with
generalized myasthenia gravis

Active not recruiting Gefurulimab C5 Phase 3 INT

NCT05218096 Study of ALXN2050 in adult participants with
generalized myasthenia gravis

Terminated Vemircopan Factor D Phase 2 INT

NCT06435312 An open-label extension study to evaluate
subcutaneous zilucoplan in pediatric
participants with generalized myasthenia gravis

Enrolling by invitation Zilucoplan C5 Phase 3 INT

NCT06055959 A study to evaluate subcutaneous zilucoplan in
pediatric participants with generalized
myasthenia gravis

Recruiting Zilucoplan C5 Phase 2|
phase 3

INT

NCT04225871 Open-label extension of zilucoplan in subjects
with generalized myasthenia gravis

Active not recruiting Zilucoplan C5 Phase 3 INT

NCT06471361 A study to evaluate the safe and effective use of
a zilucoplan auto-injector by study participants
with generalized myasthenia gravis

Completed Zilucoplan C5 Phase 3 INT

NCT05514873 An open-label study to evaluate the safety,
tolerability, and efficacy of subcutaneous
zilucoplan in participants with generalized
myasthenia gravis who were previously
receiving intravenous complement component
5 inhibitors

Completed Zilucoplan C5 Phase 3 INT
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TABLE 2 Continued

NCT number Study title Study status Interventions Target Phase Study type Primary endpoint results Completion date

Least squares mean (95% CI) change from
baseline to week 12 in MG-ADL total
score—placebo: − 2.30 (− 3.17 to − 1.43);
zilucoplan: − 4.39 − 5.28 to −3.50) (66)

30 December 2021

Mean (standard deviation) change from
baseline in QMG total score at week 12—
placebo: − 3.2 (1.2); zilucoplan at 0.1 mg/
kg: − 5.5 (1.2); zilucoplan at 0.3 mg/kg: −
6.0 (1.2) (107)

19 November 2020

N/A 24 October 2034

N/A 31 December 2029

N/A 31 July 2028

Least squares mean (95% CI) change from
baseline in MG-ADL total score at week
26:—placebo: − 1.4 (0.37); ravulizumab: −
3.1 (0.38) (65)

25 May 2023

Based on an interim analysis, the least
squares mean (95% CI) change from the
OLE baseline in MG-ADL total score to
week 60—ravulizumab/ravulizumab: − 4.0
(− 4.8, −3.1); placebo/ravulizumab: − 1.7
(− 2.7, − 0.8) (108)

Least squares mean (95% CI) change from
OLE baseline in MG-ADL at week 164—
ravulizumab/ravulizumab − 4.0 (− 5.3, −
2.8); placebo/ravulizumab − 2.1 (− 3.3, −
0.9) (109)

Mean (standard deviation) change from
baseline in QMG total score at week 26
regardless of rescue treatment—
eculizumab: − 6.1 (4.56) (110)

06 November 2023

(Continued)
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NCT04115293 Safety, tolerability, and efficacy of zilucoplan in
subjects with generalized myasthenia gravis

Completed Zilucoplan C5 Phase 3 INT

NCT03315130 Safety and efficacy study of RA101495 in
subjects with generalized myasthenia gravis

Completed Zilucoplan C5 Phase 2 INT

NCT06312644 Study of Ultomiris® (ravulizumab) safety
in pregnancy

Recruiting Ravulizumab C5 N/A OBS

NCT04202341 Registry of participants with generalized
myasthenia gravis treated with alexion C5
inhibition therapies (C5ITs)

Recruiting Eculizumab/
ravulizumab

C5 N/A OBS

NCT05644561 Evaluation of pharmacokinetics,
pharmacodynamics, efficacy, safety, and
immunogenicity of ravulizumab administered
intravenously in pediatric participants with
generalized myasthenia gravis (gMG)

Recruiting Ravulizumab C5 Phase 3 INT

NCT03920293 Safety and efficacy study of ravulizumab in
adults with generalized myasthenia gravis

Completed Ravulizumab C5 Phase 3 INT

OLE INT

OLE INT

NCT03759366 A phase 3 open-label study of eculizumab in
pediatric participants with refractory
generalized myasthenia gravis (gMG)

Completed Eculizumab C5 Phase 3 INT
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The anti-B-cell rituximab is particularly effective in MuSK-Ab+MG

and is often prescribed for individuals with AChR-Ab+ refractory

MG based on long-term clinical experience (89, 90). However,

rituximab may promote complement activation as an adverse

reaction, which could explain the lack of response in some

pwMG (89), including those with refractory MG who are double

seronegative for anti-AChR and anti-MuSK antibodies (91). It is

noteworthy that anti-LRP4 antibodies can—at least partially—

activate the complement system (92), but the impact of

complement-mediated mechanisms in anti-LRP4 Ab+ MG

remains underrecognized in clinical practice.

Targeting the terminal complement pathway in AChR-Ab+

MG may regulate the disease course beyond MAC formation.

Zilucoplan has been shown to prevent C5b6 formation through

plasmin-mediated noncanonical C5 activation, thereby interfering

with red blood cell hemolysis (93). Meanwhile, eculizumab has been

found to induce functional pathways related to antioxidant activity,

cholesterol transfer, and cellular detoxification, while

downregulating pathways associated with antigen binding. In

addition, eculizumab reduced leukotriene production, possibly

due to the inhibition of C5a-induced anaphylaxis (94).

Studies indicate that despite current therapeutic interventions

for AChR-Ab+ generalized MG, a proportion of people,

approximately 10% or higher, do not respond adequately to

treatment. These pwMG may remain refractory, develop drug

dependency, or experience intolerable side effects (95–98). For

those receiving C5 inhibitors, vaccination against all

meningococcal strains should be administered as close as possible

to therapy initiation. When the interval between vaccination and

treatment is insufficient, prophylactic antibiotics are strongly

recommended (99). This is because activation of upstream

complement functions alone is insufficient for protection against

Neisseria species, a group of bacteria that requires activation of the

terminal pathway and can cause meningococcal sepsis or

meningitis. Since no reliable biomarkers of MG pathology are

currently available, the present treatment approach relies on trial

and error. There is an urgent need for personalized MG treatment,

which may be achieved by gaining deeper insights into both the

beneficial and adverse effects of existing therapies.

Overall, terminal complement activation is destructive, making

its inhibition a primary goal in treating people with AChR-Ab+

generalized MG. Identifying biomarkers to guide therapeutic

decisions and understanding inhibitor-induced molecular actions

may help improve treatment responses.
Concluding remarks

Complement plays a crucial role in MG pathology, as the

formation of MAC at MG endplates can lead to the destruction

of the neuromuscular junction. AChR blocking and antigenic

modulation trigger complement activation in MG. In addition to

the classical pathway, the role of the activated alternative pathway in

MG pathology requires further evaluation, as antibody-targeting

therapies may not efficiently suppress it.
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