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ETS-1, a key member of the Erythroblast Transformation-Specific (ETS)

transcription factor family, plays an important role in cell biology and medical

research due to its wide expression profile and strong transcriptional regulation

ability. It regulates fundamental biological processes, including cell proliferation,

differentiation, and apoptosis, and is involved in tumorigenesis and metastasis,

promoting malignant behaviors such as angiogenesis, matrix degradation, and cell

migration. Given the association between ETS-1 overexpression and the aggressive

characteristics of multiple malignancies, it represents a promising therapeutic

target in cancer treatment. This study aims to systematically analyze the role of

ETS-1 within the tumor immune microenvironment, elucidating its mechanisms in

cancer initiation, progression, and metastasis. It also investigates the differential

expression of ETS-1 across tumor tissues and adjacent normal tissues, exploring its

potential as a molecular marker for tumor diagnosis and prognosis.
KEYWORDS
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1 Introduction

The Erythroblast Transformation-Specific (ETS) transcription factor family consists of

proteins characterized by a highly conserved ETS domain, which is involved in key

biological processes, including cell proliferation, differentiation, apoptosis, and

organogenesis (1, 2). This family has numerous members with coding genes distributed

across various genomic loci, regulating downstream gene expression through specific DNA

sequence recognition and binding to gene promoters or enhancers (3–5). ETS transcription

factors are important in embryonic development, tissue homeostasis, and disease

progression, making them one of the hot spots in biological and medical research (6).

Among the ETS family, ETS-1 is characterized by its broad expression and potent

transcriptional regulation, making it a key research subject (7). ETS-1 participates in
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lymphocyte development and differentiation and significantly

influences the proliferation, migration, and invasion of various

cell types (8, 9). Notably, aberrant ETS-1 expression in various

malignancies is strongly associated with tumor progression,

including angiogenesis, extracellular matrix degradation, and

metastasis—crucial steps in cancer invasion (10–13). Therefore,

ETS-1 is considered a promising therapeutic target in cancer

treatment, and its comprehensive study holds significant scientific

and clinical importance.

Research in tumor immunity is a prominent focus in

biomedicine, aiming to elucidate the mechanisms of interaction

between tumors and the immune system and to identify effective

immunotherapy strategies. Advances in understanding the tumor

immune microenvironment have highlighted the immune system’s

vital role in tumorigenesis, progression, and metastasis. Immune

cells not only inhibit tumor growth through direct cytotoxicity but

also modulate the tumor microenvironment via cytokine secretion

(14). Therefore, a detailed investigation into the roles of key

molecules such as ETS-1 in tumor immunity is of great

significance for developing novel immunotherapeutic approaches.

This review systematically examines the expression and function

of ETS-1 within the tumor immune microenvironment, aiming to

elucidate its mechanisms in tumor initiation, progression, and

metastasis. To thoroughly understand ETS-1’s role, we compare its

expression in various tumor types and adjacent normal tissues.

Evaluating the differential expression of ETS-1 across cancer

subtypes may facilitate the identification of novel molecular

markers for tumor diagnosis and prognosis. Moreover, this study

explores the relationship between the molecular structure of ETS-1

and its functional roles. As a transcription factor, ETS-1’s activity is

determined by key domains, including the ETS domain,

transcriptional activation domain, and protein interaction domain.

This review analyzes the binding mechanisms of ETS-1 to target gene

promoter DNA using molecular biology and biochemical methods,

thereby revealing the molecular basis of its transcriptional regulation.

It also explores the interactions between ETS-1 and other

transcription factors or signaling molecules to clarify its

involvement in complex networks of tumor immune regulation.

Overall, this review aims to provide a comprehensive analysis of

ETS-1’s mechanisms in tumor immunity, offering novel theoretical

and experimental insights for tumor diagnosis, treatment, and

prognosis assessment.
2 Overview of ETS transcription
factor family

2.1 ETS family members and classification

The ETS transcription factor family is a large and diverse gene

family that is present in humans and various other species (1). The

family members are further subdivided into multiple subfamilies

based on sequence similarity and functional differences of the

ETS domain (15–17). As genomics research advances, more ETS

family members continue to be identified. The classification criteria
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include the conserved sequences within the ETS domain, structural

protein features, combinations of functional domains, and the types

of target genes they regulate.

Each ETS subfamily has unique structural and functional

characteristics. For instance, the Polymoma Virus Enhancer-3

(PEA3) subfamily (e.g., PEA3, ETS Variant Transcription Factor 4

(E1AF), and Erythromycin Resistance Methylases (ERM)) is involved

in processes such as cell migration, invasion, and tumor progression

(18–20). The ETS Related Gene (ERG) subfamily is closely associated

with heart and vascular development (21), while the ETV6 (or TEL)

subfamily (e.g., TEL and ETS variant 6 (ETV6)) plays a role in

hematopoietic system development and tumorigenesis (22).

Furthermore, other subfamilies, such as ETS variant (ETV), friend

leukemia virus integration (FLI), and GA binding protein

transcription factor subunit alpha (GABPA), are implicated in a

wide range of biological functions, including cell proliferation,

differentiation, metabolism, and immune regulation (23–25) (Table 1).
2.2 Binding mechanism of ETS domain
to DNA

The ETS domain is the core functional region of ETS

transcription factors, showing a significant degree of conservation

across different family members, particularly at the DNA-binding

interface (26). This conservation enables ETS proteins to recognize

and bind specific DNA sequences, thereby regulating the expression

of downstream target genes. However, subtle variations in the

sequence, domain length, and combination with other functional

domains result in diverse DNA-binding specificities and

transcriptional regulation capabilities among different ETS

proteins (27).

The interaction between ETS proteins and DNA is a complex

process involving multiple molecular interactions. The ETS domain

typically recognizes and binds to the ETS binding site, usually a

GGAA/T core sequence, located in the promoter or enhancer

regions of target genes, through an a-helix-turn-a-helix motif

(28–30). During this binding process, specific amino acid residues

in the ETS domain form hydrogen bonds and hydrophobic

interactions with DNA bases, stabilizing the protein-DNA

complex (31, 32). Moreover, ETS proteins may interact with

other transcription factors, further influencing transcriptional

regulation (33, 34).
2.3 Regulatory network of ETS
family proteins

The activity of ETS family proteins is not only regulated by

external signals and other transcription factors but also by intrinsic

molecular mechanisms. Post-translational modifications such as

autophosphorylation and ubiquitination influence ETS protein

stability, subcellular localization, and transcriptional activity, with

these modifications catalyzed by specific enzymes and finely

controlled by intracellular and extracellular signals (26, 35, 36).
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ETS proteins also engage in combined regulation with other

transcription factors. In complex gene expression networks, they

often form transcription factor complexes that co-regulate target gene

expression, enhancing regulatory specificity and efficiency. This

coordinated regulation allows for fine-tuned transcriptional

responses to different external signals and cellular states (37).

Furthermore, ETS protein activity is modulated by growth factors

and signaling pathways. For instance, epidermal growth factor (EGF)

and fibroblast growth factor (FGF) activate the mitogen-activated

protein kinase (MAPK) pathway, leading to phosphorylation and

activation of ETS proteins (38, 39). Further, ETS-1 can inhibit

transforming growth factor alpha (TGF-a) expression, thereby

restoring tumor cell proliferation in vivo and promoting

autonomous growth in culture (40). Other pathways, including
Frontiers in Immunology 03
Phosphoinositide 3-kinase (PI3K)/Protein Kinase B (Akt) and

Janus kinase and signal transducer and activator of transcription

(JAK-STAT), also contribute to ETS protein regulation by

modulating phosphorylation, stability, and interactions with other

molecules (41, 42).
3 The molecular characteristics and
functions of ETS-1

3.1 Molecular structure of ETS-1

ETS-1, a key member of the ETS transcription factor family, has

unique and complex structural characteristics. Its amino acid
TABLE 1 ETS factors in cancer.

Subfamily Gene name Cancer Refs

ETS ETS1 Breast cancer; glioblastoma; colorectal cancer; clear cell renal cell carcinoma; ovarian cancer; gastric carcinoma;
pancreatic carcinoma; thyroid cancer; esophageal cancer; lung cancer; hepatocellular carcinoma

(43–52)

ETS2 Bladder cancer; hypopharyngeal cancer; prostate cancers; gastric cancer; esophageal squamous cell carcinoma;
colon cancer

(53–57)

ERG ERG Glioblastoma; cervical cancer; prostate cancer; cholangio carcinoma; Ewing sarcoma (58–64)

FLI1 Bladder cancer; breast cancer; Ewing sarcoma; nasopharyngeal carcinoma (65–68)

FEV Colorectal cancer; Ewing sarcoma (69, 70)

ERF ERF Prostate cancer; bladder cancer (71)

PEA3 ETV1 Hepatocellular carcinoma; Adeno carcinomas; prostate cancer; renal cell; Ewing sarcoma (4, 63, 72–75)

ETV4 Melanoma; Ewing sarcoma; hepatocellular carcinoma; endometrial cancer (75–78)

ETV5 Ewing Sarcoma; breast cancer; esophagus carcinoma; thyroid cancer; cervical cancer; endometrioid
endometrial carcinoma

(75, 79–82)

TCF ELK1 Hepatocellular carcinoma; endometrial cancer; thyroid cancer; cervical cancer (83–86)

ELK3 Glioma; hepatocellular carcinoma; breast cancer; cervical cancer (87–89)

ELK4 Cervical cancer; hepatocellular carcinoma (90, 91)

ELG GABPa Prostate cancer; bladder cancer (25, 92)

TEL ETV6 Hematological malignancies; glioblastoma (93, 94)

ETV7 Breast cancer; bladder cancer (95)

ELF ELF1 Cervical cancer; osteosarcoma; prostate cancer; ovarian cancer (63, 96–99)

ELF2 Nasopharyngeal carcinoma; clear cell renal cell carcinoma; ovarian cancer; papillary thyroid carcinoma (100–103)

ELF4 Clear cell renal cell carcinoma; glioma; esophageal squamous cell carcinoma; hepatocellular carcinoma (104–107)

SPI SPI1 Lung squamous cell carcinoma; clear cell renal cell carcinoma; cervical cancer (108–110)

SPIB Ovarian cancer; hepatocellular carcinoma (42, 111)

ESE EHF Papillary thyroid carcinoma; cervical cancer; ovarian cancer (112–114)

ELF3 Bladder cancer; cervical cancer; ovarian cancer; gastrointestinal cancer; (114)

ELF5 Gastrointestinal cancer; endometrial carcinoma; renal cell carcinoma; ovarian cancer (114–117)

PDEF SPDEF Neck squamous cell carcinoma; breast cancer; colorectal cancer; hepatocellular carcinoma; prostate cancer (118–122)
Friend leukemia integration 1 transcription factor (FLI1); Fifth Ewing variant (FEV); ETS2 repressor factor (ERF); ETS variant 1(ETV1); ETS variant 4(ETV4); ETS variant 5(ETV5); ETS
domain-containing protein Elk1(ELK1); ETS transcription factor ELK3 (ELK3); ETS domain-containing protein Elk-4 (ELK4); ETS variant transcription factor 7 (ETV7); E74-like ETS
transcription factor 1 (ELF1); E74-like ETS transcription factor 2 (ELF2); E74-like ETS transcription factor 4 (ELF4); Spleen focus forming virus proviral integration oncogene (SPI1); Spi-B
transcription factor (SPIB); Ets homologous factor (EHF); E74-like factor 3 (ELF3); E74-like factor 5 (ELF5); SAM pointed domain-containing Ets transcription factor (SPDEF).
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1526368
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2025.1526368
sequence is highly conserved, particularly in the ETS domain, which

is essential for recognizing and binding DNA target sequences. In

addition to the ETS domain, ETS-1 contains other functional

regions, including a transcriptional activation domain, inhibition

domain, nuclear localization signal (NLS), and potential

phosphorylation sites. These domains collectively determine the

transcriptional regulation activity and intracellular localization of

ETS-1 (1, 123).

The ETS domain is the core structure of ETS-1, having a unique

a-helix-turn-a-helix DNA-binding motif (Figure 1). This domain

relies on hydrogen bonds and hydrophobic interactions to perform

its function (124). The high conservation of the ETS domain

ensures the precise recognition and binding to specific ETS

binding sites, such as the GGAA/T core sequence, thereby

regulating the expression of downstream target genes (125).
3.2 Biological function of ETS-1

ETS-1 plays a crucial regulatory role in cell proliferation,

differentiation, and migration (126). It influences gene expression

by binding directly to the promoter or enhancer regions of target

genes, thus affecting cell growth and differentiation (127). For

example, ETS-1 can up-regulate cyclin expression, accelerating

the transition from the G1 to S phase, thereby promoting cell

proliferation (128). Moreover, ETS-1 is also involved in

cytoskeleton remodeling and regulates the expression of

intercellular adhesion molecules, impacting cell migration and

invasion (129).

ETS-1 also modulates apoptosis and angiogenesis (130, 131). It

regulates apoptosis by influencing the expression of genes such as

Bcl-2 family members and caspases (132). Furthermore, ETS-1 is

involved in regulating the expression of angiogenic factors,

including vascular endothelial growth factor (VEGF) and

fibroblast growth factor (FGF), which are critical for angiogenesis

and tumor-related vascular development (133, 134). Therefore,

abnormal ETS-1 expression is associated with various diseases

characterized by dysregulated angiogenesis, such as cancer and

diabetic retinopathy (44, 127, 130).

The expression of ETS-1 is both widespread and tissue-specific.

While it is expressed to varying degrees in most normal tissues and

organs, its levels are highly regulated temporally and spatially. During

embryonic development, ETS-1 is essential for the formation of

key organs, such as the heart, blood vessels, and nervous system
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(130, 135). In adult tissues, its expression is associated with

physiological processes, including cell proliferation, differentiation,

and immune responses (51, 132, 136). Under pathological conditions,

such as in tumor tissues, ETS-1 expression is often abnormally

elevated, correlating with its role in tumorigenesis, progression, and

metastasis (47, 137).
4 ETS-1 and tumor immunity

4.1 Expression and regulation of ETS-1
in tumor

The expression of ETS-1 varies across different tumor types,

with notable overexpression in several solid tumors, including

breast cancer (11), prostate cancer (138), lung cancer (137), and

colorectal cancer (45). Its expression levels also show significant

changes in hematological malignancies, such as leukemia (139) and

lymphoma (140). These variations may be attributed to the genetic

background, the microenvironment of different tumors, and the

functional specificity of ETS-1 in various cell types.

ETS-1 contributes to tumorigenesis and progression through

multiple molecular mechanisms. It can directly regulate genes

involved in cell proliferation, apoptosis, migration, and invasion,

thereby promoting the malignant transformation and invasiveness

of tumor cells (141, 142). The up-regulation of Ets-1 expression is

intimately linked to tumour invasion and metastasis. It triggers the

expression of a series of genes that have a crucial role in extracellular

matrix remodeling and angiogenesis through transcription, and

takes part in numerous invasion and metastasis processes such as

extracellular matrix degradation and cell migration (142).

Furthermore, ETS-1 may maintain the sustained growth and

metastasis of tumor tissues by modulating the self-renewal and

differentiation of cancer stem cells (143).
4.2 The effect of ETS-1 on tumor
immune microenvironment

ETS-1 plays a crucial role in shaping the tumor immune

microenvironment by regulating immune cell infiltration,

activation, and the expression of immunosuppressive factors. It

influences the migration and infiltration of immune cells into

tumor tissues by modulating chemokines (e.g., CXCL12) and
FIGURE 1

ETS protein structure. The ETS1 Pointed domain, the acidic transactivation domain, the autoinhibitory domains, and the Ets DNA binding domain, are
indicated. Also shown is the conserved MAP kinase phosphorylation site (T38) found at the N-terminus of ETS1 protein.
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adhesion molecules (e.g., ICAM-1) (144), and affects immune cell

activation and anti-tumor responses by regulating the expression and

function of immune cell surface receptors (145). Furthermore, ETS-1

promotes tumor immune escape by directly regulating the expression

of multiple immune checkpoint molecules. While the exact role of

ETS-1 in the upregulation of PD-L1, CTLA-4, LAG-3, and TIM-3

requires further confirmation, studies suggest that ETS-1 may

contribute to the regulation of these molecules, which are known to

suppress T cell activation and function, thus enabling tumor cells to

evade immune recognition and clearance (123, 146, 147).

Consequently, the pivotal role of ETS-1 in tumor immune evasion

highlights its potential as a promising target for immunotherapy.

As a multifunctional transcription factor, ETS-1 regulates genes

associated with immunosuppression, thereby facilitating tumor

immune escape. For example, ETS-1 exerts a pivotal influence in

renal epithelial cells, particularly in the context of TGF-b1 stimulation.

It primarily suppresses the downstream effects of the TGF-b signaling

pathway, which is indicative of its significant regulatory role in

extracellular matrix remodeling and fibrosis. This regulation is likely

mediated through its impact on key molecules within the TGF-b
signaling cascade. Additionally, ETS-1 plays a crucial role in shaping

the tumor immune microenvironment by regulating the expression of

immunosuppressive factors, such as TGF-b. TGF-b is known to inhibit
T cell activation and proliferation, while enhancing the function of

regulatory T cells (Tregs) and myeloid-derived suppressor cells

(MDSCs), thus contributing to immune evasion. While the exact

mechanism of ETS-1 activation of TGF-b expression requires further

validation, studies suggest that ETS-1 may regulate TGF-b and

its associated immune responses, underscoring its complex role in

both fibrosis and immune modulation (148–150). ETS-1 also regulates

interleukin-10 (IL-10), a cytokine that suppresses immune cell function

by inhibiting antigen presentation by macrophages and dendritic cells

and reducing the production of Th1 cytokines (151, 152). These factors

contribute to immune escape through complex signaling pathways and

cell-cell interactions, allowing tumor cells to evade the recognition and

clearance of the immune system.

ETS-1 plays a pivotal role in the tumour immune

microenvironment by modulating antigen presentation and cytokine

networks through multiple mechanisms. Research has demonstrated

that ETS-1 regulates the expression of MHC Class I molecules in

tumour cells, thereby influencing the recognition of tumour cells by

cytotoxic T cells (153). Additionally, ETS-1modulates the expression of

cell adhesion molecules, such as ICAM-1, which affects the infiltration

of immune cells into the tumour microenvironment (154). These

actions not only enhance the immune evasion capabilities of tumour

cells but also weaken antitumor immune responses by influencing the

adhesion and migration of immune cells. Furthermore, ETS-1 is

involved in the regulation of various cytokines, including TGF-b and

IL-10, which inhibit antigen presentation and reduce the production of

Th1 cytokines, thereby further suppressing immune responses (151).

Collectively, these studies highlight the multifaceted role of ETS-1 in

promoting tumour immune evasion and progression by regulating

antigen presentation and cytokine networks.

In addition to its direct effects on immune cells, ETS-1 influences

the tumor microenvironment by regulating the extracellular matrix
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(ECM) composition and structure. The ECM plays a critical role in

tumor growth, invasion, and metastasis, and ETS-1 contributes to

ECM remodeling by up-regulating matrix metalloproteinases (MMPs)

(155–157). MMPs are a class of enzymes that degrade various

extracellular matrix components, and they play a key role in the

migration and invasion of tumor cells (158). ETS-1 up-regulates the

expression of MMPs, which not only helps tumor cells break through

the matrix barrier and infiltrate and metastasize to surrounding tissues

but also affects the infiltration and distribution of immune cells by

changing the physical structure of the tumor microenvironment (159).

For example, ECM degradation by MMPs may enhance vascular

permeability, allowing more immune cells and inflammatory factors

to enter the tumor microenvironment (160, 161). Structural changes in

the ECM can also impact immune cell movement and distribution

patterns, influencing anti-tumor immune responses (162–164).
4.3 ETS-1 related signaling pathway

ETS-1 plays a significant regulatory role in various biological

processes of tumors, with its function being influenced by multiple

signalling pathways, particularly the MAPK/ERK, PI3K/Akt, and

TGF-b pathways. Firstly, ETS-1 is a key target of the MAPK/ERK

(Mitogen-Activated Protein Kinase/Extracellular Signal-Regulated

Kinase) pathway, which is crucial for cell proliferation,

differentiation, survival, and response to external stimuli. Secondly,

the expression and activity of ETS-1 are also regulated by the PI3K/

Akt (Phosphoinositide 3-Kinase/Protein Kinase B) pathway. This

pathway, essential for cell survival and metabolism, stabilizes ETS-1

protein and promotes its nuclear accumulation, thereby enhancing its

transcriptional function. Additionally, the TGF-b (Transforming

Growth Factor Beta) pathway, under the regulation of ETS-1,

affects the remodeling of the extracellular matrix and the

infiltration of immune cells. TGF-b signalling promotes ETS-1

expression, influencing the immune response within the tumour

microenvironment and the potential for tumour metastasis, thereby

supporting the aggressiveness of tumors (Figure 2).
5 The role of ETS-1 in specific
tumor types

5.1 ETS-1 in breast cancer

In breast cancer, high expression of ETS-1 is closely associated

with poor prognosis, increased malignancy, and invasiveness.

Studies indicate that elevated ETS-1 levels correlate with higher

tumor grade, greater risk of lymph node metastasis, and shorter

patient survival (11, 127, 165). Thus, ETS-1 expression may serve as

a valuable prognostic biomarker for breast cancer.

ETS-1 plays a key role in regulating breast cancer cell proliferation

and metastasis. It acts as a transcription factor by binding to the

promoter regions of cell cycle-related genes, such as cyclin D1 and c-

myc. Cyclin D1, a key regulator in the cyclin family, is crucial for the

transition from the G1 to S phase during cell division. ETS-1 directly
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activates cyclin D1 transcription by binding to its promoter, resulting in

increased Cyclin D1 protein levels, which accelerate the progression

through the G1/S checkpoint and increase breast cancer cell

proliferation. Similarly, ETS-1 up-regulates the proto-oncogene c-

myc, a transcription factor involved in cell proliferation,

differentiation, and apoptosis. By increasing c-myc gene transcription,

ETS-1 increases the accumulation of c-Myc protein, a nuclear-

phosphorylated protein with transcription factor activity, thereby

activating downstream targets such as ribosomal biosynthesis and

cell cycle regulatory genes. This creates a positive feedback loop that

further promotes cancer cell proliferation (166–169).
5.2 ETS-1 in gastric cancer

ETS-1 plays a significant role in the development and progression

of gastric cancer. Research indicates that ETS-1 expression is

significantly elevated in gastric cancer tissues compared to normal

gastric mucosa and is strongly associated with the pathological stage,

lymph node metastasis, and patient prognosis (170). ETS-1 contributes

to gastric cancer progression by promoting cell proliferation, inhibiting

apoptosis, and facilitating migration and invasion (171). An important

mechanism in gastric cancer progression is immune escape, which

enables tumor cells to evade immune surveillance and destruction.

Inhibiting ETS-1 expression or function may help disrupt the immune
Frontiers in Immunology 06
escape process, potentially restoring the anti-tumor activity of the

immune system (56, 142).
5.3 ETS-1 in other tumor types

ETS-1 plays a significant regulatory role in colorectal cancer, where

its high expression is strongly associated with increased malignancy,

lymph node metastasis, and distant metastasis (166, 172). It promotes

the occurrence and development of colorectal cancer by regulating cell

proliferation, migration, and invasion (173). Furthermore, ETS-1 can

induce epithelial-mesenchymal transition (EMT), increasing the

invasive and migratory capabilities of colorectal cancer cells, thereby

facilitating metastasis (174). ETS-1’s interaction with immune cells and

matrix components in the tumor microenvironment affects local

inflammation and immune evasion, further contributing to colorectal

cancer progression. Thus, ETS-1 serves as both a key regulator in

colorectal cancer biology and a potential therapeutic target. Targeting

ETS-1 could provide new treatment options and improve clinical

outcomes for patients.

In prostate cancer, ETS-1 expression is often higher compared

to normal prostate tissue, correlating with disease progression and

prognosis (175). ETS-1 may interact with multiple signaling

pathways, including the androgen receptor (AR) pathway, which

is important in androgen-dependent prostate cancer (176).
FIGURE 2

The regulatory effect of ETS-1 related signaling pathway on tumor biological processes. This figure shows the role of ETS-1 in cell proliferation, cell
migration, immune escape and angiogenesis through the three main signaling pathways of MAPK/ERK, PI3K/Akt and TGF-b.
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Moreover, ETS-1 may interact with other transcription factors, such

as Nuclear Factor Kappa B (NF-kB), modulating inflammation and

the tumor microenvironment (177).

In addition, ETS1 can reduce the mRNA levels of Twist1, a gene

involved in tumor cell motility and dissemination, thereby decreasing

invasion and increasing cell growth to mitigate lung tumor metastasis.

Downregulation of the ETS1 gene can inhibit cell proliferation and

migration in non-small cell lung cancer (NSCLC) cells, slowing the

progression of lung cancer (51, 178). In chronic myeloid leukemia

(CML), ETS1 is associated with the BCR-ABL signaling pathway,

regulates granulocyte differentiation, and is downregulated during

tyrosine kinase inhibitor (TKI) treatment (179). In diffuse large B-cell

lymphoma (DLBCL), ETS1 modulates B-cell signaling, differentiation,

and immune-related genes, with FCMR identified as a novel target that

promotes lymphomagenesis. In adult T-cell leukemia/lymphoma

(ATLL), ETS1 is highly expressed in patients of North American

descent and promotes tumor growth by regulating CCR4, making it a

potential therapeutic target (180, 181).

Overall, ETS-1 plays a key regulatory role across various tumor

types, with its expression and functional activity closely associated

with tumor occurrence, development, prognosis, and response to

immunotherapy. Therefore, understanding the mechanisms of

ETS-1 in cancer is of great significance for developing novel anti-

tumor strategies (Figure 3).
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6 The potential of ETS-1 as a
therapeutic target
With an in-depth understanding of the mechanism of action of

ETS-1 in tumors, the development of inhibitors for ETS-1 has

become a research focus. Current approaches to inhibiting ETS-1

include small molecule compounds, antisense oligonucleotides

(ASOs), and CRISPR/Cas9-based gene editing tools. Small

molecule compounds inhibit ETS-1’s transcriptional activity by

binding to its DNA-binding or transcriptional activation domains

(10). ASOs (antisense oligonucleotides) may interfere with the

expression of ETS-1 by binding to its mRNA, thereby blocking its

translation. Although the precise mechanism is not fully established

in the current literature, the role of antisense oligonucleotides in

regulating the expression of transcription factors has been widely

studied, suggesting that they may influence the regulation of ETS-1

(182, 183). CRISPR/Cas9-based gene editing can knock out the

ETS-1 gene, effectively eliminating its expression (164, 184). While

their mechanisms differ, these inhibitors share a common goal of

reducing ETS-1 expression and activity in tumor cells.

Chimeric antigen receptor T cell (CAR-T) therapy, an emerging

immunotherapeutic approach, utilizes genetically engineered T cells

to target and destroy tumour cells (185–187). ETS-1, an
FIGURE 3

The expression of ETS-1 in different tumors. The map contains the role of ETS1 in breast cancer, gastric cancer, colorectal cancer, prostate cancer,
kidney cancer, liver cancer, cervical cancer, pancreatic cancer and nasopharyngeal carcinoma.
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intracellular transcription factor, is a key player in tumorigenesis,

making it a potential target for CAR-T therapies. However,

targeting intracellular proteins like ETS-1 is challenging due to

the traditional focus of CAR-T therapies on cell surface antigens.

Recent advances, such as CRISPR-Cas9 gene editing and novel

vector systems, have enabled the design of CAR-T cells capable of

targeting specific intracellular molecules (188, 189). Additionally,

research is exploring adapter molecules and logic gate designs to

enhance CAR-T specificity and activity (190). While these

innovations offer potential for targeting ETS-1, further

optimization in design, production, and clinical application is

needed. Future directions may include developing CAR structures

that can penetrate the cell membrane or modulating ETS-1

expression through pharmacological and genetic approaches to

enhance therapy efficacy.

Although ETS-1 inhibitors remain in preclinical development,

preliminary data suggest their potential therapeutic value. In animal

models, ETS-1 inhibitors have demonstrated significant

suppression of tumor growth and metastasis, along with

enhancement of anti-tumor immune responses (10, 52). However,

clinical translation faces challenges, including issues of specificity,

efficacy, safety, and optimal administration routes. Future clinical

trials must focus on evaluating the safety, tolerability, and efficacy of

ETS-1 inhibitors in humans to assess their potential as viable

cancer therapeutics.
7 Conclusions and prospects

This review highlights the pivotal role of ETS-1 in tumor

immunity, detailing its aberrant expression across various tumor

types and its significant influence on tumorigenesis, progression,

immune evasion, and sensitivity to immunotherapy. ETS-1

promotes tumor advancement not only by regulating tumor cell

proliferation, migration, and invasion but also by contributing to

immune escape mechanisms through modulation of immune cell

infiltration, activation, and immune checkpoint molecule

expression within the tumor microenvironment. These findings

offer a new perspective on the molecular basis of tumor immunity

and present ETS-1 as a promising target for developing novel anti-

cancer therapies.

The clinical potential of ETS-1 in tumor immunotherapy is vast.

As research into the functional mechanisms of ETS-1 progresses

and therapeutic technologies advance, ETS-1 could emerge as a key

target for cancer immunotherapy. In clinical settings, assessing

ETS-1 expression levels may provide a means to evaluate patient

prognosis and guide personalized treatment decisions. Moreover,

developing targeted therapies and immunotherapeutic strategies

directed at ETS-1 could offer new therapeutic options and improve

outcomes for cancer patients.

To fully realize the potential of ETS-1 as a therapeutic target and

facilitate its clinical translation, future research should prioritize the

following areas: First, a deeper investigation into the molecular

mechanisms of ETS-1 in tumorigenesis, including its interactions
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with key molecules and signaling pathways, is essential. Second,

efforts should be directed toward developing more specific and

efficacious ETS-1 inhibitors while minimizing potential toxicities.

Third, exploring the combined use of ETS-1-targeted therapies with

other immunotherapeutic strategies, such as immune checkpoint

inhibitors or CAR-T cell therapy, could achieve synergistic

therapeutic effects. Fourth, attention must be given to

understanding and overcoming drug resistance mechanisms that

may arise during ETS-1-targeted treatment. Finally, conducting

large-scale clinical trials is crucial to validate the efficacy and safety

of ETS-1-targeted therapies, thus providing robust evidence for

clinical application.
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