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Atherosclerosis (AS) is a chronic inflammatory disease that primarily affects large

and medium-sized arteries and is one of the leading causes of death worldwide.

This article reviews the multifaceted role of mitochondrial DNA (mtDNA) in AS,

including its structure, function, release, and relationship with inflammation.

Damage and release of mtDNA are considered central drivers in the

development of AS, as they participate in the progression of AS by activating

inflammatory pathways and affecting lipid metabolism. Therefore, therapeutic

strategies targetingmtDNA and its downstream effects may provide new avenues

to address this global health challenge.
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1 Introduction

AS is a chronic inflammatory disease that primarily affects large and medium-sized

arteries and is a leading cause of morbidity and mortality worldwide, accounting for

approximately 50% of all deaths (1–3). With the changing global lifestyle, the incidence of

this disease is gradually increasing, particularly in Western countries. This insidious disease

is characterized by the accumulation of lipids, inflammatory cells, and fibrous components

within the arterial wall, which, as the disease progresses, can ultimately lead to severe

cardiovascular diseases (CVDs), including myocardial infarction, stroke, and peripheral

artery disease (4).

AS is driven by lipid accumulation, inflammation, and plaque stability. Endothelial

dysfunction initiates the process by allowing LDL-C oxidation and chronic inflammation,

which are key in plaque formation (5). This leads to the recruitment of immune cells and

the formation of foam cells, which are central to plaque development (6). Oxidized LDL-C

further activates immune cells, perpetuating inflammation and plaque progression (7, 8).

Plaque stability is determined by factors smooth muscle cell activity, with stable plaques

featuring a thick fibrous cap (9). Unstable plaques, with a thinner cap, are prone to rupture,

triggering thrombosis and potentially leading to myocardial infarction or stroke (10).
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Although scientists have conducted extensive research on the

prevention and treatment of AS over the years, the treatment of the

disease is still primarily focused on lipid regulation (11). Emerging

research indicates that mitochondrial dysfunction, particularly

mtDNA, plays a crucial role in the initiation and progression of

the disease (12, 13). Studies have identified over 250 diseases closely

related to mtDNA, and a wealth of research has demonstrated that

mitochondria are involved in various life processes such as human

growth, aging, disease, and death (14, 15). The complex interplay

between mtDNA mutations, copy number abnormalities, release,

and inflammation is increasingly recognized as a central driving

factor in AS (13, 16, 17). This article delves into the multifaceted

role of mtDNA in AS, summarizing the latest findings on its

structure, release, mutations, copy number variations, and their

interactions with the development and progression of AS. We

further explore the relationship between mtDNA and

inflammation, which plays a key role in the formation and

progression of atherosclerotic plaques.
2 mtDNA

2.1 Structure and function of mtDNA

Human mtDNA is a circular double-stranded molecule

consisting of 16,569 base pairs, composed of an inner light strand

and an outer heavy strand, located within the mitochondrial matrix.

It encodes 37 genes that are crucial for mitochondrial function,

including 13 mRNAs required for the oxidative phosphorylation

(OXPHOS) process, which is the cellular process for energy

production (18). Additionally, mtDNA encodes 22 transfer RNAs

(tRNAs) and 2 ribosomal RNAs (rRNAs), which are essential for

mitochondrial protein synthesis (18, 19). mtDNA is particularly

susceptible to damage due to the lack of histone protection and its

proximity to the source of reactive oxygen species (ROS) (20).

Furthermore, mtDNA lacks effective repair mechanisms, making it

more vulnerable to ROS generated during the OXPHOS

process (21).

mtDNA possesses three promoter regions, namely the Light

Strand Promoter (LSP) region for encoding genes on the L-strand,

and the Heavy Strand Promoter 1 (HSP1) and Heavy Strand

Promoter 2 (HSP2) regions for encoding genes on the H-strand.

These promoter regions are responsible for the simultaneous

transcription of multiple genes, producing a single transcript that

contains multiple coding sequences (22). Additionally, there is a

critical non-coding region within mtDNA, known as the control

region or D-loop region, which plays an important role in

regulating the transcription and replication processes of

mitochondria (23). Due to the higher mutation rate in this

region, especially in the hypervariable sequence segments and

under conditions of increased oxidative stress, it is particularly

susceptible to effects (24). Although these regions do not encode

genes, mutations in them can affect the expression levels of the

corresponding genes, thereby influencing diseases.

Mitochondria play a crucial role in energy production, calcium

homeostasis, and apoptosis regulation. Intact mtDNA is essential
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for the normal functioning of mitochondria. Therefore,

maintaining the integrity of mtDNA is vital for cellular metabolic

homeostasis and overall cell survival. Damage to mtDNA can

disrupt mitochondrial function, leading to a cascade of

detrimental effects (25). If these changes affect genes encoding for

OXPHOS, the OXPHOS process will be impaired, and impaired

OXPHOS increases ROS production, triggering pro-inflammatory

responses and oxidative stress, which are key drivers of AS (26).

Moreover, the release of mtDNA into the cytoplasm and

extracellular space also has significant impacts on cellular

function and the pathogenic microenvironment.
2.2 Release of mtDNA

mtDNA is typically confined within the mitochondrial matrix,

enclosed in the mitochondrial nucleoid (27), and the presence of

mtDNA in the cytoplasm or extracellular space is a result of the loss

of mitochondrial integrity. Despite extensive research on this

phenomenon in recent years, little is known about the molecular

mechanisms that trigger the release of the mitochondrial genome

into the extracellular space. Cellular stress can lead to the release of

mtDNA into the cytoplasm and extracellular space. It is generally

believed that mtDNA release is divided into two modes: active and

passive. On one hand, mtDNA can be actively released through

specific mechanisms, such as the opening of the mitochondrial

permeability transition pore (mPTP) or the formation of

mitochondrial-derived vesicles (MDVs); on the other hand,

mtDNA can be passively released into the cytoplasm and

extracellular space during cell injury, apoptosis, or necrosis (28).

Once released, mtDNA acts as a potent damage-associated

molecular pattern (DAMP), recognized by pattern recognition

receptors (PRRs) such as Toll-like receptor 9 (TLR9) and cyclic

GMP-AMP synthase (cGAS). This recognition triggers downstream

inflammatory pathways, amplifying the inflammatory environment

characteristic of AS (29).
3 The role of mtDNA in the regulation
of AS

3.1 mtDNA mutations and AS

Mitochondrial-related diseases are caused by mutations in

mtDNA. However, a mutation in one of the thousands of

mitochondria within a cell generally does not lead to disease, as

its function can be compensated for by the remaining normal

mitochondria. Dynamic mtDNA heteroplasmy determines the

clinical severity of mitochondrial diseases. Symptoms only

manifest when the threshold of damaged mitochondria reaches

70%-90% (30). An increasing body of evidence suggests that

mtDNA mutations are associated with the occurrence and

progression of AS (31, 32). These mutations, caused by oxidative

stress, environmental damage, or genetic predisposition, typically

disrupt genes encoding components of the electron transport chain

(ETC), which is the core of OXPHOS (13). This disruption leads
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to impaired mitochondrial respiration, resulting in a vicious cycle of

increased ROS production and further mtDNA damage.

Interestingly, mtDNA mutations are not only associated with

mitochondrial diseases. Over the past decades, the impact of

population mtDNA mutations has been extensively studied, and

it has been linked to the pathophysiological conditions of many

diseases, such as aging, cancer, Parkinson’s disease, or CVDs,

among others (33–36). Early literature has reported that at least

16 site mutations are closely related to mitochondrial function (36),

yet coronary artery disease is often associated with mitochondrial

dysfunction (37). Therefore, we speculate that mtDNA mutations

may be involved in AS by regulating the oxidative phosphorylation

process in mitochondria.

Recent studies suggest that mtDNA mutations may be directly

or indirectly linked to AS. Vilne et al. analyzed 265 mt-SNVs in

approximately 500,000 British individuals and found certain

mtDNA variants were more common in patients with myocardial

infarction and/or revascularization (38). A small-sample study from

China using high-throughput detection found the A5592G

mutation associated with CAD patients and identified two new

rare mutations, T5628C and T681C (39). Another Asian study

explored the association between mtDNA variants and lipidomic

profiles in Chinese coronary heart disease patients, discovering

significant correlations between mtDNA variants and traditional

blood lipid levels (40). Additionally, a meta-analysis from Japan

showed that the m.5178C>A variant in the Japanese population is

associated with higher HDL-C and lower LDL-C levels, potentially

reducing the risk and extending lifespan for CAD in Japan (41).

Despite these studies indicating a causal relationship between

mtDNA and AS, including lipid levels as risk factors, large-

sample, prospective, multicenter controlled studies are still needed

to further elucidate this relationship. Statins, the first-line treatment

for AS, may cause muscle symptoms, and research found that

Chinese coronary artery disease patients on statins have the

m.12630G > A mutation, potentially affecting the prevalence of

SAMS (42). These findings suggest that mtDNA mutations may be

involved in the development of AS by affecting lipid metabolism.
3.2 mtDNA copy number and AS

The number of mtDNA copies in a cell, known as mtDNA-CN, is

an indicator of mitochondrial health and biogenesis. A reduction in

mtDNA-CN is typically associated with mitochondrial dysfunction

and is therefore generally observed to be decreasing in

cardiomyocytes from patients with CVDs. Studies have reported

that mtDNA-CN levels are negatively correlated with the risk of

coronary heart disease (43–45). For instance, researchers have found

that mtDNA damage is associated with an increased risk of long-term

major adverse cardiac events and all-cause mortality in patients with

CAD, emphasizing the importance of mitochondrial dysfunction in

AS (46). Concurrently, their findings support the use of mtDNA 4977

deletion and mtDNA-CN as potential prognostic biomarkers for

assessing the risk in CAD patients (46). Subsequently, a study by

Vasan and colleagues elucidated this relationship. They found that
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mtDNA-CN has a significant correlation with obesity, hypertension,

diabetes, and hyperlipidemia (47).

However, the findings on mtDNA-CN in AS have not yielded a

consensus. The results obtained by Liu et al. were in direct contrast

to previous studies (48). Yet, they found that low-density

lipoprotein cholesterol (LDL-C) has a causal effect on mtDNA-

CN. This suggests that the relationship between mtDNA-CN and

AS still warrants further exploration, but lipid-lowering may have

clinical significance for improving mitochondrial function. The

reasons for this phenomenon may be related to differences in the

study subjects or the statistical methods used by the researchers.

It is noteworthy that in the ApoE-/- mouse model, a reduction in

mtDNA-CN and mitochondrial respiration is associated with an

increase in mitochondrial ROS (49). Further validation of the

impact of reducing mtDNA damage and increasing mitochondrial

respiration on AS was achieved by overexpressing the

mitochondrial helicase Twinkle. The results indicated a reduction

in the necrotic core area and an increase in the fibrous cap area in

atherosclerotic model mice, demonstrating at the animal level that

increasing mtDNA-CN may be beneficial for AS (49). A decrease in

mtDNA-CN in atherosclerotic plaques is associated with impaired

mitochondrial function, increased ROS production, and

exacerbated inflammation. The decline in mtDNA-CN may

reflect an inability to compensate for mtDNA damage, ultimately

impairing cellular energy production and promoting an

atherosclerotic environment.
3.3 mtDNA damage and mitochondrial
dynamics in atherosclerosis

Mitochondria l dynamics , which general ly include

mitochondrial fusion and fission, are controllers of mitochondrial

biogenesis and have been proven to be associated with AS (21, 50).

Studies have shown that there is a complex regulatory relationship

between mtDNA damage and mitochondrial dynamics.

Mitochondrial fusion mainly promotes self-communication and

material exchange (mtDNA and proteins), which on one hand can

protect intact mtDNA, and on the other hand can compensate for

damaged mtDNA, maintaining its normal function (51). Disrupted

mitochondrial dynamics can lead to mtDNA damage; moreover,

the accumulation of damaged mtDNA can further exacerbate

mitochondrial dysfunction, while mitochondrial fission allows the

separation of damaged parts of the mitochondria, including

damaged mtDNA, through peripheral fission and clearance via

the process of mitophagy (52, 53). These processes play an

important role in AS.
3.4 mtDNA and inflammation in AS

Inflammation is a hallmark characteristic of AS, and the pro-

inflammatory effect of mtDNA was first demonstrated in 2004 (54),

suggesting a close relationship between the two. mtDNA itself is a

double-stranded circular DNA molecule that, due to its hypo-

methylated state and similarity to bacterial DNA, is easily
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recognized by the immune system as a “foreign” molecule and can

trigger various inflammatory pathways. As mentioned earlier,

mtDNA released into the cytoplasm or extracellular environment

acts as a DAMP, activating PRRs such as TLR9, cGAS, and the

NLRP3 inflammasome (28). This activation triggers downstream

signaling cascades, leading to the production of pro-inflammatory

cytokines and chemokines (such as TNF-a, IL-6, and MCP-1).

These signaling molecules perpetuate the inflammatory response,

recruit immune cells into the arterial wall, and promote the

formation and progression of atherosclerotic plaques. The

mechanism by which mtDNA is involved in the regulation of

inflammation in AS is shown in Figure 1.

TLR9 is an endosomal DNA recognition receptor that can

identify both pathogen DNA and self-DNA. Previous studies have

demonstrated that mtDNA can activate TLR9-associated

inflammatory responses and participate in the regulation of blood

lipids (55). Furthermore, in animal and cellular models of AS,

damaged mitochondria release mtDNA into the cytoplasm or

extracellular environment (56, 57). By recognizing mtDNA in the

environment through TLR9 on the cell surface, immune cells in the

blood are recruited to the lesion area, thereby triggering the

secretion of pro-inflammatory cytokines such as TNF-a and IL-

1b, which exacerbate the microenvironment of the lesion area (58).
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This indicates that the mtDNA-TLR9 axis plays an important role

in the development and progression of AS.

The cGAS-STING signaling pathway is responsible for

monitoring the abnormal presence of DNA in the cytoplasm and

triggering the release of inflammatory factors (59). When cGAS

detects abnormal DNA in the cytoplasm, it catalyzes the reaction

between guanosine triphosphate and adenosine triphosphate,

generating cGAMP molecules, which in turn promote the

activation of the immune response. STING, as a cytoplasm-

localized protein, can initiate the interferon response by binding

to double-stranded DNA or being activated by cyclic dinucleotides.

When mtDNA binds to cGAS, cGAS begins to recruit STING,

which activates the TANK-binding kinase and NF-kB signaling

pathways, leading to the phosphorylation of interferon regulatory

factor 3 (IRF3). The activated IRF3 then mediates the transcription

of type I and type III interferons and interferon-stimulated genes,

initiating an mtDNA-mediated inflammatory response (60). In AS,

mtDNA released from damaged endothelial cells leads to the

activation of the cGAS-STING pathway, mediating pyroptosis

and thus promoting the progression of AS (61, 62). Additionally,

the plasma levels of mt-cfDNA may serve as a useful biomarker for

AS (61). Therefore, drug development targeting the mtDNA-cGAS-

STING pathway shows great potential in the treatment of AS.
FIGURE 1

The involvement of mtDNA in regulating inflammatory response in AS.
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A substantial body of literature has demonstrated that the

activation of the NLRP3 inflammasome and the inflammatory

cascade it induces are detrimental factors in AS (63, 64). In 2011,

Nakahira et al. first reported that mtDNA can activate the

inflammasome (65). They found that the depletion of autophagy-

related proteins leads to mitochondrial dysfunction and accumulation,

with these mitochondria producing excessive ROS. Under stimulation

with lipopolysaccharide (LPS) or ATP, these mitochondria are more

prone to release mtDNA into the cytoplasm, a process that depends

on the formation of the NLRP3 inflammasome. Nakahira et al. also

proposed that NLRP3 not only acts after the release of mtDNA but

may also promote the formation of mPTP on the mitochondria

upstream, thereby facilitating the release of mtDNA (65).

Subsequently, researchers reported that in damaged cells,

mtDNA is released into the cytoplasm and directly binds to

NLRP3 (66, 67). Importantly, NLRP3 appears to have a

preference for binding to oxidized mtDNA, which explains the

key role of ROS in inflammasome activation (68). Further studies

found that the deletion of the autophagy receptor p62 hinders the

clearance of damaged mitochondria, exacerbating the formation of

the inflammasome and the secretion of IL-1b (69). Recent research

has pointed out that newly synthesized and oxidized mtDNA is the

main component that binds to NLRP3 (70).

Interestingly, there are differences in the activation of the

NLRP3 inflammasome by cytosolic mtDNA and extracellular

mtDNA. Unlike cytosolic mtDNA, extracellular mtDNA binds to

TLR9 as a DAMP, thereby activating the NLRP3 inflammasome

(71). Furthermore, the activation of the NLRP3 inflammasome can

further activate the pyroptosis pathway, where the cell membrane is

disrupted by GSDMD, increasing the release of inflammatory

factors and mtDNA (72). Recently, Miao et al.’s study was the

first to report the molecular mechanism by which GSDMD

mediates mitochondrial damage (73). Activated GSDMD binds to

the phospholipid membrane of mitochondria, forming

mitochondrial pores, which disrupts both mitochondrial

membranes, leading to the release of mtROS and mtDNA from

the mitochondria into the cytoplasm. This evidence all confirms

that the positive feedback regulation of mtDNA and NLRP3 is a

vicious cycle event in the process of cellular inflammatory necrosis.

In addition to this, mtDNA mutations can also induce and

exacerbate inflammation. Impaired OXPHOS caused by mtDNA

mutations leads to increased ROS production (74–76). Excessive ROS

further activate sensitive transcription factors, such as NF-kB, which
is the master regulator of inflammation. The activation of NF-kB
amplifies the expression of pro-inflammatory genes, thereby further

promoting the chronic inflammatory state characteristic of AS.
4 Future directions and conclusion

Although existing studies have shown an association between

mtDNA and AS as well as its risk factors, such as blood lipid levels,
Frontiers in Immunology 05
these studies have limitations, including retrospective design and

small sample sizes. Therefore, large-sample, prospective,

multicenter controlled studies are needed to more rigorously

elucidate the causal relationship between mtDNA and AS.

The multifaceted role of mtDNA in the development of AS

suggests that therapeutic strategies targeting mtDNA may have

potential for the prevention and treatment of AS. Research on the

mechanisms of mtDNA and the development of drugs targeting its

inflammatory responses will become a hot topic in future AS

prevention and treatment. Given the complex regulatory

relationship between mtDNA and oxidative stress and

mitochondrial dynamics, targeting oxidative stress and

mitochondrial dynamics to regulate mtDNA for the prevention

and treatment of atherosclerosis may also become a new perspective

for drug development.

In summary, mtDNA has a significant impact on AS due to its

structure, function, and characteristics. This article focuses on

reviewing the role of mtDNA mutations, copy number, and its

regulation of inflammatory responses in the occurrence and

development of AS, revealing the potential of mtDNA as a

biomarker and therapeutic target in AS.
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