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Deep learning for malignant
lymph node segmentation and
detection: a review
Wenxia Wu, Adrien Laville, Eric Deutsch* and Roger Sun*

Unité Mixte de Recherche (UMR) 1030, Gustave Roussy, Department of Radiation Oncology,
Université Paris-Saclay, Villejuif, France
Radiation therapy remains a cornerstone in the treatment of cancer, with the

delineation of Organs at Risk (OARs), tumors, and malignant lymph nodes playing

a critical role in the planning process. However, the manual segmentation of

these anatomical structures is both time-consuming and costly, with inter-

observer and intra-observer variability often leading to delineation errors. In

recent years, deep learning-based automatic segmentation has gained

increasing attention, leading to a proliferation of scholarly works on OAR and

tumor segmentation algorithms utilizing deep learning techniques. Nevertheless,

similar comprehensive reviews focusing solely on malignant lymph nodes are

scarce. This paper provides an in-depth review of the advancements in deep

learning for malignant lymph node segmentation and detection. After a brief

overview of deep learning methodologies, the review examines specific models

and their outcomes for malignant lymph node segmentation and detection

across five clinical sites: head and neck, upper extremity, chest, abdomen, and

pelvis. The discussion section extensively covers the current challenges and

future trends in this field, analyzing how they might impact clinical applications.

This review aims to bridge the gap in literature by providing a focused overview

on deep learning applications in the context of malignant lymph node

challenges, offering insights into their potential to enhance the precision and

efficiency of cancer treatment planning.
KEYWORDS

deep learning, lymph node, segmentation, detection, delineation
1 Introduction

Radiation therapy stands as one of the most common modalities for cancer treatment,

with more than 50% of cancer patients treated. Precise targeting and sparing of healthy

tissues are paramount for its effectiveness. A critical step in planning radiation therapy is

the delineation of anatomical structures in medical imaging, which includes the

segmentation of the target volume (GTV, gross tumor volume) and organs at risk

(OAR) (1). Proper delineation of these volumes is required to achieve the most of the

tumor versus normal tissue differential effects of current high technologies image guided
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radiotherapy machines translating into improvements in tumor

cure rates and minimization of side effects.

Traditionally, this task is achieved by radiation oncologists, relying

heavily on manual delineation processes. However, these conventional

methods are fraught with potential pitfalls, notably the subjective

variability that can arise both within and between observers,

potentially leading to inconsistencies in treatment planning.

In recent years, the advent of machine learning and deep

learning technologies has heralded significant advancements in the

field of automatic segmentation, offering promising solutions to

overcome the limitations of manual segmentation. Notably, stateof-

the-art (SOTA) algorithms have been developed for OAR

segmentation (2), showcasing the potential of these technologies in

enhancing the accuracy and efficiency of treatment planning. In fact,

there are already commercially available, EMA and FDA-approved

software solutions for the segmentation of normal tissues, based

largely on machine learning (ML) and deep learning (DL)

methodologies, like Annotate (3), Contour+ by MVision AI (4),

Contour ProtégéAI by Mim Software (5), and Limbus Contour by

Limbus AI (6). Moreover, comprehensive reviews have summarized

the progress in tumor auto-segmentation in medical imaging.

However, the automatic segmentation of metastatic lymph nodes

(GTV N) remains an area relatively unexplored, despite its critical

importance in cancer diagnosis and treatment. As shown in Figure 1,

representative tumor types involving lymph node metastasis in

different anatomical regions illustrate the heterogeneity of

metastatic spread, further emphasizing the need for advanced

segmentation techniques.
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Lymph nodes and tumor-infiltrated lymph nodes present

distinct challenges in medical imaging. Lymph nodes can be

classified as either tumor-negative (benign) or tumor-positive

(malignant), and this distinction is crucial in clinical practice.

Benign lymph nodes function as part of the immune system and

are classified as organs-at-risk (OARs), requiring protection during

radiotherapy to avoid unnecessary damage. In contrast, malignant

or tumor-infiltrated lymph nodes are potential therapeutic targets,

as they may harbor metastases (7) and thus need to be identified

and treated, often through surgical removal or radiation.

Additionally, conventional imaging modalities such as CT, MR,

and PET/CT frequently fail to reliably detect or distinguish tumor-

positive lymph nodes when their diameter is less than 10-12mm.

This presents a further complication in the segmentation task, as it

is difficult to discern small malignant nodes from benign ones based

solely on imaging features. Consequently, more advanced methods

are needed to ensure accurate differentiation and treatment

planning, ensuring that malignant nodes are targeted, while

benign lymph nodes are preserved as OARs.

The analysis of lymph nodes, particularly in identifying and

segmenting malignant ones, is crucial for cancer staging, prognosis

assessment, and treatment planning. As key components of the

immune system, lymph nodes serve as sentinels, signaling the

presence of cancerous cells (8).

In radiotherapy, automatic segmentation can shorten the

planning workflow and improve reproducibility. (9, 10). Beyond

radiotherapy, lymph nodes are also central to the success of

immunotherapies, including immune checkpoint inhibitors
FIGURE 1

Representative tumors types involving lymph node metastasis in different anatomical regions.
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(ICIs), which have significantly refined cancer management.

However, despite their effectiveness (11, 12), only a fraction of

patients achieve a sustained response (13). This variability is

influenced by the complex interactions between the immune

system and tumors, where lymph nodes play a vital role in T cell

priming and activation. Radiomics analysis of lymph nodes, with

accurate autosegmentation, could help to better understand factors

implied in ICI response (14–16). For example, identifying lymph

nodes with T-cells exposed to responsive antigens could be crucial

for targeting lesions in stereotactic body radiotherapy (14, 17).

Lymph node dissection is invasive and induce morbidity. It’s

controversial if lymph node dissection is critical for tumor response

to ICI (18, 19). Accurate segmentation of lymph nodes could

improve patient selection for nodal classification in several

cancers (20). Tumor draining lymph nodes are involved in

immune priming responsible of tumor control (12, 21, 22) could

help to explore these regions to improve radiation and

immunotherapy combination (11). Enhanced targeting of

pathological lymph nodes could allow sparing the unaffected

lymphatic system, potentially reducing lymphopenia and

significantly impacting patient outcomes (23).

In recent years, several works based on deep learning have been

proposed to address the inherent difficulties associated with lymph

node analysis in medical imaging 1, as shown in Figure 2. However,

these methods still face a multitude of challenges. Beyond the issue of

limited data availability, the segmentation and detection of malignant

lymph nodes present unique problems, which include:(a)Uncertainty

of the prediction of involved lymph node, especially for small

adenopathies;(b) Variations in the shape, location, and size of

lymph nodes add complexity to the segmentation process. Normal

lymph nodes typically exhibit a regular ovoid shape, which can be

clearly distinguished in imaging scans. In contrast, malignant lymph
Frontiers in Immunology 03
nodes often deviate from this regular form, displaying irregular,

enlarged, or lobulated contours, further complicating their accurate

detection and differentiation;(c) Lymph nodes can easily be mistaken

for blood vessels or other anatomical structures due to their similar

appearance in imaging scans;(d) Issues such as aliasing, sampling,

reconstruction, and noise during the image acquisition process

compromise image quality;(e) The boundaries of lymph nodes may

be indistinct, especially when they are adjacent to diseased tissues or

have been invaded by tumor cells. These factors collectively

underscore the complexity of developing robust algorithms for

lymph node analysis in the field of medical imaging.

Traditional segmentation methods, such as thresholding, region

growing, and edge detection (24), have historically been used for lymph

node segmentation. In medical imaging, atlas-based segmentation (25)

has also been widely applied, where a pre-defined anatomical model is

used to guide the segmentation process. While atlas-based methods

provide structural guidance, they still struggle with the challenges of

complex medical images, such as irregular shapes, variable lymph node

sizes, and unclear boundaries. These traditional approaches rely heavily

on basic features, making them inadequate for precise lymph node

segmentation in clinical applications.

Machine learning-based approaches, such as random forests and

support vector machines (SVM) (26), have shown improvement over

these methods by leveraging more advanced feature sets. However,

they still rely on handcrafted features and often face difficulties in

generalizing across different datasets and imaging conditions.

To address these limitations, deep learning, particularly U-Net

(27), has emerged as a powerful tool in medical image segmentation,

offering the capability to automatically learn complex, high-level

features directly from data. U-Net’s encoderdecoder architecture

captures both local and global features, enhancing segmentation

accuracy. Additionally, deep learning’s automated feature extraction
FIGURE 2

Overview of numbers of papers published and cited from 2015 to 2024 regarding deep learning lymph node segmentation.
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and adaptability make it highly effective for varied data and complex

anatomical cases. Despite interpretability challenges, deep learning

remains dominant due to its superior accuracy, automated feature

learning, and adaptability across diverse imaging conditions. Recent

tools like Class Activation Mapping (CAM) have also improved

interpretability, maintaining its clinical relevance as the primary

method for medical image segmentation.

The primary aim of this review is to assess the current state of

deep learning-based techniques for the detection and segmentation of

malignant lymph nodes in medical imaging. Specifically, it seeks to

evaluate the performance of different deep learning models, identify

challenges and limitations in current research, and suggest future

directions for study. By bridging the gap between traditional methods

and the latest technological advancements, this review aspires to

enhance the outcomes of cancer diagnosis and treatment, ultimately

contributing to improved patient care and survival rates.
2 Deep learning medical image
segmentation

2.1 Basis of deep learning

Deep learning, a specialized branch of machine learning, is

distinguished by its capacity to extract features from raw data

autonomously. This capacity is notably augmented by the network’s
Frontiers in Immunology 04
depth, facilitating the formulation of more intricate feature hierarchies.

Deep learning has garnered significant scholarly interest in medical

image segmentation, attributed to its adeptness in accurately

demarcating precise anatomical configurations from medical

imagery. The conventional workflow in this field is comprised of

several critical stages: data preparation, network architecture

development, model training, and performance evaluation, as shown

in Figure 3. Each of these stages is foundational to the construction of

effective segmentation solutions.

2.1.1 Data preparation
This initial phase involves the collection, preprocessing, and

augmentation of medical images to create a comprehensive dataset.

Image preprocessing techniques such as normalization, noise

reduction, and contrast enhancement are employed to improve the

quality of the images (28). These techniques ensure that the images

are standardized, clearer, and more suitable for analysis. Following

preprocessing, data augmentation strategies, including rotation,

scaling, and flipping, are utilized to increase the diversity of the

dataset. This augmentation enhances the model’s ability to generalize

by exposing it to a wider variety of image transformations, which can

help in improving its robustness and accuracy (29).

2.1.2 Network architecture
At this juncture, the focus is on designing a neural network

architecture that is adept at capturing the complexities of medical
FIGURE 3

Deep learning medical image analysis pipeline. Deep learning medical image analysis pipeline. (a) MRI images are acquired, filtered, analyzed, and
preprocessed (e.g., normalization, augmentation) to ensure data quality and consistency before model input. (b) Based on the task and data
characteristics, an appropriate deep learning model is constructed, such as the U-Net, for medical image analysis. (c) The model is trained with
labeled data, optimized iteratively through forward and backward propagation (e.g., gradient descent), and validated to assess performance. (d) The
trained model is tested on unseen data (test set), and results are evaluated using metrics such as confusion matrices, ROC curves, and survival
analysis to assess predictive power.
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images. This process involves selecting the appropriate type of

neural networks, such as Convolutional Neural Networks (CNNs)

or Transformer-based models, based on the specific requirements of

the medical imaging task, as illustrated in Table 1. The

configuration of the network’s layers and connections is crucial to

optimizing feature extraction and segmentation accuracy. Key

considerations include the number and type of layers (e.g.,

convolutional layers, pooling layers, fully connected layers),

activation functions, and the network’s depth. The architecture

must balance computational efficiency with the need for deep,

intricate learning structures, ensuring it can effectively process

high-dimensional data while maintaining practical training and

inference times.

2.1.3 Model training
The training process involves optimizing the network’s weights

through the iterative processing of the prepared dataset. This phase

employs backpropagation and gradient descent algorithms to

minimize the loss function, which measures the discrepancy

between the predicted segmentation and the ground truth. The

choice of optimizer (such as Adam or SGD), learning rate, and

regularization techniques (such as dropout or weight decay) plays a

pivotal role in ensuring the model converges to a solution that

generalizes well to unseen data. Proper tuning of these

hyperparameters is crucial for balancing the trade-off between

underfitting and overfitting, ultimately enhancing the model’s

performance on new, unseen medical images.
Frontiers in Immunology 05
2.1.4 Performance evaluation
The performance evaluation phase assesses the model’s

effectiveness using task-specific metrics. For classification tasks,

metrics such as accuracy, precision, recall, and the F1 score are

used, alongside a confusion matrix to detail true and false

classifications. Segmentation tasks often use the Dice coefficient,

Intersection over Union (IoU), and pixel accuracy to measure

overlap and correct pixel classification. Detection tasks rely on

mean Average Precision (mAP), precision, and recall to evaluate

performance. Table 2 outlines common segmentation and detection

metrics. These metrics ensure the model’s robustness and accuracy,

guiding further optimization to enhance its generalization to

unseen data.
2.2 Deep learning models for medical
image segmentation

The evolution of deep learning models has revolutionized

medical image segmentation, offering unprecedented accuracy

and efficiency. These models can be categorized into three

primary classes: CNN-based models, Transformer-based models,

and other innovative approaches.

2.2.1 CNN-based models
Convolutional Neural Networks (CNNs), as shown in Figure 4

are a type of deep learning model commonly used in image
TABLE 1 Comparison between CNNs and transformer-based models.

Aspect CNNs based Models Transformer-based Models

Architecture Uses convolutional layers to capture spatial hierarchies and patterns Utilizes self-attention mechanisms to capture long- range dependencies.

Core Mechanism Convolutions over local regions (filtering and pooling) Self-attention: each token attends to every other token in a sequence.

Main
Application Areas

Image classification, object detection, image segmentation. Natural language processing, translation, text generation, image
understanding (e.g., Vision Transformers)

Computational
Complexity

O(n) per convolutional layer for image size n × n. Complexity increases
with depth and larger filters.

O(n2) due to self-attention, where n is the input length. Scales
quadratically with sequence length.

Receptive Field Limited to local regions, expands with depth but requires multiple
layers for global context.

Global receptive field from the first layer due to self-attention. Each
token attends to all others directly.

Representative
Models Efficiency

AlexNet, VGG, ResNet, EfficientNet Computationally efficient for
smaller images and tasks due to local filters.

BERT, GPT, Vision Transformer (ViT), BART. Requires more compute
and memory due to the self-attention mechanism.

Receptive Field Limited to local regions, expands with depth but requires multiple
layers for global context.

Global receptive field from the first layer due to self- attention. Each
token attends to all others directly.

Inductive Bias Strong spatial locality bias (fixed receptive fields) No inherent spatial or sequential bias (fully data- driven)

Multimodal Task
Adaptability
Scalability

Less naturally suited for multimodal tasks, but can be adapted. Scales
efficiently with respect to spatial data but may struggle with long-
range dependencies

Well-suited for multimodal tasks, such as combining vision and language
Scales effectively for large datasets and long sequences due to
parallelizable self-attention

Training Difficulty Typically easier to train, especially on smaller datasets. Pretraining on
large datasets not always necessary.

Requires large-scale datasets and pretraining to achieve good
performance. Training can be more challenging due to sensitivity to
hyperparameters and large memory consumption.

Interpretability Generally more interpretable due to local operations of convolutional
filters. Feature maps can be visualized to understand spatial patterns.

Harder to interpret due to global self-attention mechanism. Attention
maps provide some insight, but the model’s decision process is
often opaque.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1526518
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2025.1526518
recognition tasks. At their core, CNNs use a mathematical

operation called convolution. Convolution involves sliding a small

matrix, known as a filter or kernel, over an image. At each position,

the filter performs element-wise multiplication with the overlapping

pixels, then sums these products to produce a single value. This

process creates a feature map, which highlights important features

like edges and textures in the image. By stacking multiple

convolutional layers, CNNs can learn to detect complex patterns,

making them highly effective for tasks such as identifying objects

in images.
Frontiers in Immunology 06
CNN-based models, such as FCN (Fully Convolutional Networks)

(30) and U-Net (27), have been instrumental in establishing the

groundwork for medical image segmentation. These models leverage

an architecture that integrates convolutional layers, pooling, and

upsampling techniques. Such a design is adept at capturing spatial

hierarchies and feature maps, making them highly effective for

segmentation tasks. FCN pioneered the use of fully convolutional

networks for pixel- wise segmentation, demonstrating significant

improvements over traditional methods that relied on fully

connected layers for classification tasks. With its unique encoder-
TABLE 2 Segmentation and detection performance metrics.

(a) Segmentation Metrics

Category Metric Name Formula

Overlap-based Accuracy
Acc =

TP + TNj j
TP + FP + FN + TNj j

Precision (PPV)
PPV =

TP
TP + FP

Recall (Sensitivity)
Sens =

TP
TP + FN

F1-score
F1   =   2� Precision � Recall

Precision + Recall

Intersection over Union (IoU)
IoU =

G ∩ Sj j
G ∪ Sj j

Dice Similarity Coefficient (DSC)
DSC =

2 G ∩ Sj j
Gj j + Sj j

Absolute Volume Difference (AVD)
AVD =

Vp − Vg

�� ��
Vg

� 100

Hausdorff Distance (HD) HD = max

supx∈G inf y∈S d(x, y), supy∈S inf x∈G d(x, y)
� �

Distance-based Average Hausdorff Distance (AHD)
AHD =

1
2

1
Pj jop∈P inf g∈G d(p, g) +

1
Gj jog∈G infp∈P d(p, g)

� �

Boundary-based F1-score
F1bound = 2� Precisionbound � Recallbound

Precisionbound + Recallbound
(b) Detection Metrics

Metric Name Formula Explanation

Precision (PPV)
PPV =

TP
TP + FP

Measures prediction reliability.

Recall (Sensitivity)
Recall =

TP
TP + FN

Measures model’s ability to capture true positives.

F1-score
F1   =   2� Precision� Recall

Precision + Recall
Harmonic mean of Precision and Recall.

Intersection over Union (IoU)
IoU =

G ∩ Pj j
G ∪ Pj j

Measures overlap between predicted and true boxes.

Average Precision (AP)
AP =

Z 1

0
p(r) dr

Precision-Recall curve’s area under the curve (AUC).

mean Average Precision (mAP)
mAP =

1
No

N

i=1

APi
Average of AP across all classes.

GIoU (Generalized IoU)
GIoU = IoU −

C − (G ∪ P)j j
Cj j

Considers both IoU and spatial relationship of boxes.
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decoder structure and skip connections, as shown in Figure 5, U-Net

(27) effectively captures both context and localization information,

making it especially suitable for medical image segmentation where

precision is critical. Its variants, like 3D U-Net (31) and U-Net++ (32),

further extend its applicability to volumetric data and enhance

segmentation accuracy through architectural innovations (33).

2.2.2 Transformer-based models
Vision Transformers (ViTs) (34) represent a significant

advancement in the field of computer vision, taking inspiration

from the success of Transformers in natural language processing.

Unlike traditional Convolutional Neural Networks (CNNs), which

rely on convolutional layers to extract local features from images,
Frontiers in Immunology 07
Vision Transformers leverage a self-attention mechanism to capture

global relationships between different parts of an image

simultaneously, as shown in Figure 6. Instead of processing

images through localized filters, ViTs split the image into fixed-

size patches and use self-attention to model the dependencies

between these patches across the entire image.

The self-attention mechanism in Vision Transformers operates

through the following key steps:
1. Calculating Attention Weights: For each image patch, the

model generates three vectors: Query (Q), Key (K), and

Value (V). The Query vector represents the patch in focus,

while the Key and Value vectors represent all other patches
FIGURE 4

Architecture of a classical CNN. It uses convolutional layers with learnable filters to automatically extract spatial features and hierarchical patterns
from input data.
FIGURE 5

Architecture of U-Net (27). It features a symmetric U-shaped structure with an encoder to capture context and a decoder to enable
precise localization.
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Fron
in the image. The similarity between the Query and each

Key is calculated using a dot product, producing a set of

raw attention weights W.

2. Normalization: The raw attention weights W are passed

through a softmax function, ensuring that the weights are

normalized and sum to 1. This step determines how much

attention the model should pay to each patch in relation to

the current patch.

3. Weighted Sum of Values: The normalized attention weights

are multiplied by the corresponding Value vectors of the

patches. The resulting products are summed to produce the

final attention output for the patch, allowing the model to

capture contextual information from the entire image.
After applying self-attention to the feature map X, a residual

connection is typically added to retain the original information
tiers in Immunology 08
while incorporating the global context: Y = X +self_attention(X), as

is shown in Figure 7. This integration allows Vision Transformers to

capture complex relationships across the entire image, providing a

powerful alternative to traditional CNNs.

The advent of Transformer-based models, such as TransUnet

(35) and Swin-Unet (36), represents a pivotal leap forward in the

domain of medical image segmentation. By harnessing self-

attention mechanisms, these models adeptly model long-range

dependencies, addressing the CNNs’ limitations in capturing

global context—a crucial factor in comprehending the

complexities of medical images. The self-attention mechanism

works by weighing the importance of different input tokens

relative to each other, allowing the model to focus on the most

relevant parts of the input when making predictions.

Transformer-based models excel in modeling spatial

relationships and feature interactions throughout the image,
FIGURE 6

Architecture of Vision Transformer (34). The Vision Transformer divides an image into patches and applies self-attention mechanisms to model
relationships between them using Transformer architecture.
FIGURE 7

Summary of the differences between lymph node segmentation and detection.
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facilitating a deeper and more nuanced understanding of medical

images. This enhanced capability has been instrumental in their

successful deployment across a variety of segmentation tasks, where

they have demonstrated significant improvements in delineating

fine details and intricate structures. TransUnet (35) exemplifies this

progress by melding the robust feature extraction capabilities

inherent in CNNs with the Transformer’s adeptness at modeling

long-range dependencies. This fusion establishes new benchmarks

in segmentation performance. On the other hand, SwinUnet (36)

introduces a hierarchical Transformer architecture that mirrors the

inherent structure of medical images. This alignment significantly

boosts both efficiency and accuracy in segmentation tasks,

showcasing the transformative potential of these models in

medical image analysis.

2.2.3 Other models
The pursuit of more advanced medical image segmentation

techniques has driven the exploration of novel architectures beyond

traditional CNNs and Transformers, each offering unique

mechanisms and distinct advantages.

Generative Adversarial Networks (GANs) (37) consist of two

main components: the generator and the discriminator. The

generator creates synthetic images, while the discriminator

evaluates them against real images to improve the generator’s

performance over time (38). There are several methods to

enhance segmentation performance using GANs. Firstly, GANs

address issues of multi-center datasets, imbalance, incompleteness,

and poor quality in medical imaging by generating realistic

synthetic images. These synthetic samples are used to augment

existing datasets (39), effectively enhancing the training of

segmentation models and improving their performance.

Commonly used approaches include CycleGAN (40) for unpaired

data and Pix2Pix (41) for paired data. Secondly, the concept of

adversarial training inspired by GANs has been utilized to enhance

segmentation methods. In this approach, the segmentation network

is trained to produce accurate segmentation maps, while the

discriminator distinguishes between the predicted maps and the

actual ground truth maps. The adversarial loss helps the

segmentation network refine its predictions to be more accurate

and realistic. Several studies have demonstrated that adversarial

training and adversarial loss can significantly improve the

performance of segmentation models.

State Space Models (SSMs) (42), particularly the Mamba model

(43) with selection mechanisms and hardware-aware architecture,

have recently garnered significant interest in sequential modeling

and visual representation learning. These models challenge the

dominance of transformers by providing infinite context lengths

and maintaining substantial efficiency with linear complexity

relative to the input sequence. Numerous studies have explored

applications based on this model. For instance, Wang et al.

introduced Mamba-UNet (44), a novel architecture that combines

the strengths of the U-Net (27) in medical image segmentation with

Mamba’s capabilities. Mamba-UNet (44) adopts a VMamba-based

encoder-decoder structure, incorporating skip connections to retain

spatial information across different network scales. Additionally,
Frontiers in Immunology 09
hybrid structures like U-Mamba have been developed, combining

CNNs and SSMs to form a robust framework. This hybrid approach

leverages CNNs’ proficiency in extracting local features and SSMs’

capacity to capture extensive relationships within images.

Structured with an encoder-decoder setup, this architecture

enhances its effectiveness in managing long-range data and adapts

well to diverse segmentation tasks.

Vision Foundation Models (VFMs) are pre-trained on large-scale

datasets using selfsupervised or semi-supervised learning, enabling

their adaptation to various downstream tasks. Examples include

CLIPSeg (45), SegGPT (46), and SAM (47). Recently, SAM has

been widely explored in medical image segmentation. MedSAM

(48) fine-tunes SAM on extensive medical segmentation datasets,

extending its applicability to general medical image segmentation. It

outperforms SAM on 21 3D and 9 2D segmentation tasks. AutoSAM

(49) introduces a fully automated prompt generation solution for

SAM, where an auxiliary encoder network generates alternative

prompts based on input images. With fewer trainable parameters,

AutoSAM achieves comparable segmentation performance. In

ophthalmic multi-target segmentation, a fine-tuned SAM with a

learnable prompt layer accurately segments structures such as

vessels, lesions, or retinal layers across different imaging modalities.

Medical SAM Adapter (50) is specifically designed for medical image

segmentation, accommodating the high-dimensional nature (3D) of

medical data and incorporating unique visual prompts like points

and boxes. These advancements demonstrate the potential of VFMs

in enhancing medical image analysis.
2.3 Loss functions

Cross-Entropy Loss (CE) stands as a cornerstone for evaluating

the discrepancy between the predicted probabilities and the ground

truth labels across multiple classes. It is formally expressed as:

LCE = −
1
No

N

i=1
o
C

c=0
gci log (pci) (1)

where N denotes the total number of pixels, C the class count, gci the

ground truth, and pci the predicted probability for class c at pixel i.

This loss function is particularly adept at handling problems with

multiple classes but requires adjustments, such as Weighted Cross-

Entropy or Focal Loss, to effectively manage class imbalance issues

prevalent in medical datasets.

Dice Loss, derived from the Sørensen-Dice coefficient,

emphasizes the overlap between the predicted segmentation and

the ground truth, making it especially suitable for datasets where

positive samples are scarce. The loss is computed as:

LD = 1 −
2oN

i=1gipi

oN
i=1(gi + pi)

(2)

highlighting its utility in directly optimizing for segmentation accuracy.

Tversky Loss introduces an asymmetric factor to the traditional

Dice framework, allowing for fine-tuned control over the model’s

sensitivity to false positives and negatives. This is crucial for
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addressing class imbalances by adjusting the model’s focus toward

underrepresented classes.

LTversky = 1 −
TP

TP + aFP + bFN
(3)

Boundary Loss targets the precise delineation of object

contours, a critical aspect in medical imaging, where accurate

boundary identification can significantly impact diagnostic

outcomes. This loss function seeks to minimize the distance

between the predicted and actual boundaries, enhancing the

model’s ability to capture detailed structural information.

LBoundary = o
p∈P

F(p,By) +oq ∈ Byy (q,P) (4)

In summary, these loss functions each specialize in improving

model performance for different aspects of tasks like segmentation,

class imbalance, and boundary precision, especially in medical

datasets (Equations 1–4).
2.4 Evaluation metrics

The performance of segmentation models is typically evaluated

using a blend of volume based, distance-based metrics, and

comparisons against expert variability, each offering unique

insights into the model’s capabilities.

Volume-based metrics like the Dice Similarity Coefficient

(DSC) and Jaccard Index measure the overlap between the

model’s predictions and the ground truth, providing a direct

indication of segmentation accuracy.

DSC =
2 · A ∩ Bj j
Aj j + Bj j (5)

where A is the set of predicted segmentation points, and B is the set

of ground truth segmentation points.

Distance-based metrics, including Mean Surface Distance

(MSD) and Hausdorff Distance (HD), evaluate the geometric

fidelity of the predicted segmentation, assessing the maximum

discrepancy between the model’s output and the ground truth

boundaries.

MSD =
1

Sj j + Tj j o
s∈S

d(s,T) + o
t∈T

d(t, S)

 !
(6)

where S and T are the sets of surface points of the predicted and

ground truth segmentations, respectively, and d(x,Y) denotes the

shortest distance from point x to set Y.

HD(S,T) = max  sup
s∈S

 d(s,T), sup
t∈T

 d(t, S)

� �
(7)

Expert variability comparisons gauge the model’s performance

relative to human experts, using metrics such as inter- and intra-

observer variability. This comparison helps contextualize the

model’s accuracy within the bounds of human performance,

offering a pragmatic assessment of its practical utility.
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In synthesizing these elements, it becomes evident that the

interplay between well-designed loss functions and robust

evaluation metrics—such as DSC, MSD, and HD shown in

Equations 5–7—is crucial for driving advancements in medical

image segmentation and ensuring clinical applicability. This

synergy not only guides the model optimization process but also

ensures the relevance and applicability of the developed models to

real-world medical diagnostics and treatment planning.
3 Site specific advances in malignant
lymph nodes segmentation

In the field of medical imaging, two fundamental tasks,

detection and segmentation, play crucial roles but serve distinct

purposes. Detection involves identifying the presence and location

of objects, such as lymph nodes, within an image. Segmentation, on

the other hand, goes a step further by delineating the exact contours

of an object, providing more detailed spatial information about its

shape and size. The main differences between segmentatoin and

detection are listed in Figure 7. Malignant lymph node

segmentation and detection have two primary pipelines: single-

stage and multi-stage approaches, as shown in Figure 8.

In the single-stage pipeline, the focus is on directly identifying

and segmenting malignant lymph nodes. This method classifies

pixels into two categories: malignant lymph node pixels and other

pixels. The primary advantage of this approach lies in its simplicity

and directness, as it does not require intermediate steps or

additional classification processes. This method is particularly

effective when supported by high-quality annotated datasets, as it

allows the model to learn the features of malignant lymph nodes

more accurately.

The multi-stage pipeline, in contrast, involves a more complex

procedure. Initially, this approach detects and segments all lymph

nodes, distinguishing between lymph node pixels and non-lymph

node pixels. Subsequently, the segmented lymph nodes are classified

as benign or malignant using a neural network. This two-step

process allows for a more refined analysis, as it isolates the task of

lymph node detection from the classification of malignancy. The

multi-stage pipeline can potentially achieve higher accuracy by

focusing on different aspects of the problem in separate stages.

For segmentation tasks, the most commonly used network is the

U-Net (27). It has gained widespread popularity due to its encoder-

decoder structure, which efficiently captures context and spatial

information. Notable benchmark methods include nnU-Net (51),

which has set a high standard in medical image segmentation with

its robust and adaptable architecture. Recently, the Segment

Anything Model (SAM) (52) has gained attention for its

versatility in various segmentation tasks. MedSAM (48), a

specialized version of SAM tailored for medical applications,

leverages SAM’s generalization capabilities and is fine-tuned on

medical imaging data. This adaptation allows MedSAM to address

the unique challenges of medical images, such as subtle anatomical

variations and varying contrast levels, showing potential for

becoming a significant tool in medical image segmentation.
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Detection tasks often utilize sophisticated models like

nnDetection (53) and Mask R-CNN (54). These models are

designed to identify objects within images and have been adapted

for the detection of lymph nodes. Additionally, some studies have

employed U-Net (27) to generate candidates for detection,

achieving remarkable results. By leveraging the strengths of

segmentation networks to propose regions of interest, these

methods can enhance the detection process, ensuring that

candidate regions are thoroughly analyzed for the presence of

malignant lymph nodes.

The segmentation and detection of malignant lymph nodes are

essential components of modern medical imaging. However,

defining a single best method is challenging, as model accuracy

depends on the dataset. Various strategies can enhance

generalizable lymph node identification and detection, including

incorporating diverse, multi-institutional data to improve

robustness, employing ensemble methods to combine different

models for better performance, and leveraging self-supervised

learning with advanced data augmentation techniques to enhance

feature generalization. The following sections will discuss the

segmentation and detection of malignant lymph nodes in various

body regions, providing a detailed overview of recent work and

advancements in each area.
3.1 Head and neck

The treatment of head and neck cancer (HNC) encompasses a

range of modalities including surgery, radiation therapy,

chemotherapy, and immunotherapy. Within this therapeutic

framework, the automatic segmentation of tumors and metastatic

lymph nodes plays a pivotal role. The effectiveness and prognosis of

HNC treatment significantly depend on the local control of the

tumor and the accurate identification and treatment of metastatic
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lymph nodes. However, the automatic segmentation of malignant

lymph nodes in the head and neck region remains challenging due

to the complex anatomy and the proximity of target volumes to

organs at risk. Table 3 summarizes related work on head and neck

lymph node segmentation.

Medical imaging modalities such as Computed Tomography

(CT), Magnetic Resonance Imaging (MRI), and Positron Emission

Tomography/Computed Tomography (PET/CT) are commonly

employed in the diagnostic and treatment processes of HNC.

Numerous studies have focused on developing algorithms for the

automatic segmentation of cancerous lymph nodes using these

imaging modalities. As part of these efforts, Groendahl (55) and

colleagues compared and evaluated conventional PET thresholding

methods, six classical machine learning algorithms, and a 2D U-Net

convolutional neural network (CNN) for automatic gross tumor

volume (GTV) segmentation of HNC in PET/CT images. Their

research was conducted on a dataset of 197 patients. The PET/CT-

based CNN model demonstrated superior performance, with an

average Dice coefficient of 0.75, compared to the best thresholding

methods, which achieved an average Dice of 0.66, and classical

machine learning models, which obtained an average Dice of 0.68.

This validates the superiority of deep learning methods over

traditional and machine learning approaches, with multi-modality

models showing better results than those using a single modality.

The significance of 3D medical imaging is highlighted by Taku

et al. (56), who demonstrated the successful auto-detection and

segmentation of involved lymph nodes in HPV-associated

oropharyngeal cancer using a 3-dimensional (3D) residual UNet

architecture. Furthermore, Bollen (59) developed an automated GTV

delineation approach for primary tumors and pathological lymph

nodes based on a 3D CNN, exploiting multi-modality imaging(CT,

PET and MRI) inputs as required in clinical practice. Their findings

further validated the positive effects of multimodal fusion, especially

PET, in enhancing segmentation performance.
FIGURE 8

Deep learning lymph node detection and segmentation pipeline.
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Moreover, Tekchandani et al. (57) introduced a computer-aided

diagnosis system for cervical lymph nodes in CT images, termed

LNdtnNet. This system combines an architecture based on

attention mechanisms and residual concepts with the base U-Net

model (27) for detection, and employs a squeeze-andexcitation

network for diagnosis. Wu et al. (58) integrated features from

lymph node stations for metastatic lymph node detection by

employing a GCN-based structure to model the relationships

among different lymph node stations, achieving state-of-the-art

performance in accuracy and sensitivity. Liao et al. (61) proposed

a two-stage transfer learning approach for head and neck cancer

(HNC) segmentation, leveraging a large-scale organ-at-risk (OAR)

segmentation dataset to pretrain nnUNet, followed by fine tuning

on a lymph node segmentation dataset. Their nnUNet-based

method significantly improved segmentation performance,

achieving a mean DSC of 0.72–0.74 and a mean HD95 of 2.73–

3.78 mm, demonstrating enhanced model robustness and accuracy

in HNC segmentation. Hasan et al. (62) proposed an Attentional U-

Net-based approach for small lymph node segmentation,

incorporating a feature filtering mechanism that enhances

relevant contextual information from encoder features before

integration with decoder features. Their method demonstrated

high effectiveness in detecting and segmenting cervical lymph

nodes measuring 5–10 mm, achieving a Dice score of 0.8084,

highlighting its robustness in this challenging task.

In conclusion, the integration of advanced imaging modalities

with innovative segmentation algorithms, particularly those

leveraging deep learning techniques, offers significant potential for

improving the accuracy and effectiveness of HNC treatment. The

evolution of these technologies underscores the critical importance

of precise tumor and lymph node segmentation in achieving

favorable treatment outcomes for HNC patients.
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3.2 Upper extremity

In the diagnosis and treatment of breast cancer, imaging

modalities such as mammography, ultrasound, and MRI play

critical roles. These technologies facilitate the identification and

assessment of axillary lymph nodes (LNs), which are crucial for

determining the stage and prognosis of the disease. Axillary LNs,

including the apical axillary, interpectoral (Rotter’s), central

axillary, lateral axillary, posterior axillary, and anterior axillary

nodes, are key sites for the metastasis of breast cancer, occurring

in approximately 33% of patients. These metastases significantly

impact patient outcomes, making accurate lymph node

segmentation a priority for effective treatment planning.

An overview of existing studies on upper extremity lymph node

segmentation is provided in Table 4. Recent advancements in

imaging analysis have introduced advanced algorithms to

enhance the accuracy of LN segmentation and diagnosis. Zhang

et al. (63) evaluated the Back-Propagation Neural Network (BPNN)

algorithm for ultrasound image segmentation, demonstrating its

superior diagnostic performance over conventional ultrasound

methods in identifying axillary lymph node metastasis in breast

cancer patients. The BPNNmodel exhibited greater specificity and a

larger area under the curve (AUC) on the two-dimensional receiver

operating characteristic (ROC) analysis compared to manual

segmentation techniques.

Additionally, Cabrera et al. (64) presented an innovative

approach that combines CNNs with Component-Trees (C-Trees),

building upon the U-Net architecture. This method utilizes a multi-

modal U-Net, integrating PET and CT imaging data, along with a

hierarchical model derived from PET scans to add high-level region

based features as additional input channels. Their approach,

validated against expert-defined ground truth, yielded promising
TABLE 3 Head and neck.

Publication Year Purpose Image
Modality

Patients Ground
Truth

Key Innovation Outcome

Groendahl
et al. (55)

2021 Tumors and
involved
nodes segmentation

PET/CT 197 Manual
GTV delineation

Comparison of Traditional Methods with
Machine Learning and Deep
Learning Approaches

Dice = 0.75

Taku et al. (56) 2022 Involved
LN segmentation

CT 110 Pathological
Report

Use DL-CNN to segment GTVT for HPV-
associated OPC

Dice = 0.92

Tekchandani
et al. (57)

2022 LN segmentation
and metastatic
analysis

CT 175 Pathological
Report

Introduced LNdtnNet: combines attention,
residual UNet, squeeze-excitation for CT

Dice = 0.94

Wu et al. (58) 2022 Metastatic
LN detection

CT 114 Pathologically
Confirmed

Integrated lymph node features with GCN for
top performance.

mFROC
= 0.63

Bollen
et al. (59)

2023 GTV segmentation CT/PET/MRI 170 GTV delineation Developed automated GTV delineation using
3D CNN with multimodal imaging

mDice = 0.89

Ariji et al. (60) 2022 Metastatic cervical
LN segmentation

CT 158 Histopathological
diagnosis

Utilize the U-Net architecture to segment
metastatic cervical lymph nodes

F1 = 0.83

Liao et al. (61) 2025 Involved
LN segmentation

CT 626 Manual
segmentation

Used a two-stage transfer learning approach
with nnUNet pretraining

Dice = 0.72

Al Hasan et
al. (62)

2024 Small normal lymph
nodes segmentation

CT 221 Manual
segmentation

Enhanced Attentional U- Net by filtering
encoder features for segmentation

Dice = 0.81
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outcomes, with segmentation achieving a Dice score of 0.867 and

detection achieving a Dice score of 0.894.

To address challenges in ultrasound imaging, Xu et al. (65)

introduced a novel bi-network architecture that incorporates a

spatial attention module (SAM) and a graph based energy model

with spatial attention constraints. This model is designed to

enhance performance on complex images by providing additional

discriminative information and capturing pixel relationships,

significantly outperforming existing deep learning methods in LN

segmentation tasks. Specifically, their approach improved

segmentation accuracy by 5.14% compared to previous models.

These technological advancements underscore the importance

of precise LN segmentation in breast cancer management, offering

new avenues for improving the accuracy of diagnostics and the

efficacy of treatment modalities such as radiotherapy and lymph

node dissection (LND). As research progresses, these innovative

imaging and segmentation techniques promise to refine our

approach to breast cancer care, emphasizing the integration of

advanced computational models for better patient outcomes.
3.3 Chest

In thoracic oncology, particularly lung and esophageal cancer,

CT, PET, and MR imaging are crucial for diagnosis. Recent

advances focus on thoracic lymph node segmentation to improve

staging accuracy (see Table 5 for a summary). Singh et al. (71)

introduces a U-Net based method for generating candidate lymph
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nodes from chest CT volumes, employing different 3D

representations to train CNNs, achieving 84% sensitivity with

2.88 false positives per volume. Mathai et al. (67) employ

anatomical insights from 28 distinct structures to improve the

performance, integrating these with lymph node labels to train

three 3D nnUNet (51) models for automated segmentation. This

approach attains a Dice score of 72.2 ± 22.3 for lymph nodes

exceeding 8mm in size and 54.8 ± 23.8 for all lymph nodes,

demonstrating the method’s efficacy in enhancing segmentation

accuracy. Building upon these methods, Manjunatha et al. (68)

propose a two-step approach for lymph node detection, starting

with candidate generation via a modified U-Net with ResNet (72) to

produce volumes of interest (VOIs), despite increasing false

positives. This is followed by a reduction of these false positives

using a 3D CNN classifier. The method achieves sensitivities of 87%

at 2.75 FP/vol. and 79% at 1.74 FP/vol., illustrating its efficiency in

detecting lymph nodes. Yan et al. (69) propose an end-to-end

framework that enhances lymph node detection in esophageal

cancer by leveraging station information with a multi-head

detector, each focused on differentiating LN from non-LN

structures at specific stations. Utilizing pseudo station labels for

multi-task learning, this method notably increases detection

sensitivity of thoracic lymph nodes to 71.4% and 85.5% at two

false positives per patient, outperforming established methods like

nnUNet (51), nnDetection, and LENS (73).

Bouget et al. (70) propose a 2D pipeline that combines U-Net’s

pixelwise segmentation with Mask R-CNN’s instance detection,

addressing data imbalance with a specific loss function and further
TABLE 4 Upper extremity.

Publication Year Purpose Image
Modality

Patients Ground
Truth

Key Innovation Outcome

Zhang et al. (63) 2021
LN segmentation and
metastatic analysis US 90

Pathological
examination

Evaluated BPNN for ultrasound
image segmentation Acc = 0.97

Farfan Cabrera
et al. (64) 2021

Pathological
ALN segmentation PET/CT 52

Manual
delineation

Leveraging CT anatomy and PET function;
enhancing CNN with C-Tree analysis Dice = 0.87

Xu et al. (65) 2022 All ALN segmentation US 216
Manual
delineation

Novel bi-network with SAM and graph model
enhances LN segmentation Dice = 0.83
TABLE 5 Chest.

Publication Year Purpose
Image
Modality Patients

Ground
Truth Key Innovation Outcome

Singh et al. (66) 2020
Enlarged
LNs detection CT 90

Manual
delineation

U-Net based method for lymph node detection in
chest CT volumes Sen=0.84

Mathai
et al. (67) 2024

Mediastinal
LN segmentation CT 104

Manual
delineation

Utilize anatomical insights and lymph node labels
for training 3D nnUNet models Dice=0.72

Manjunatha
et al. (68) 2023

Mediastinal
LN detection CT 90

Manual
delineation

Two-step approach for lymph node detection: U-
Net VOIs, 3D CNN Sen=0.79

Yan et al. (69) 2023 LN detection CT 173
Manual
delineation

Propose end-to-end framework enhancing lymph
node detection using multi-head detector Sen=0.80&0.86

Bouget
et al. (70) 2019

LN segmentation and
malignancy analysis CT 120

Manual
delineation

2D pipeline combines U-Net segmentation, Mask
R-CNN detection, tracks 3D Dice=0.65
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refining pixel-wise labels through a final stage that leverages a

tracking approach for 3D instance detection. This method, which

represents detected instances with 3D masks, bounding volumes,

and centroids, achieves an average Dice score of 76% across fifteen

anatomical structures and a 75% recall at nine false positives per

patient in lymph node detection, while maintaining an average

centroid position error of 3mm in each dimension.

Guo et al. (74) introduce a segmentation framework that

stratifies thoracic lymph node (LN) stations into three super

stations and learns station-specific LN size variations. Conducting

four-fold cross-validation on the NIH 89-patient dataset, this

approach significantly surpasses prior works, yielding a 74.2%

average Dice score, marking a 9.9% improvement, and a 72.0%

detection recall, indicating a 15.6% enhancement, while reducing

false positives to 4.0 per patient. Xu et al. (75) tackle LN

segmentation challenges by introducing a cosine-sine (CS) loss

function for voxel class imbalance and a multi-stage, multi-scale

Atrous spatial pyramid pooling sub-module (MSASPP) into

SegNet, termed DiSegNet (Dilated SegNet). These innovations

lead to a marked improvement in performance, with DiSegNet

achieving a 77% Dice similarity coefficient, surpassing the baseline

SegNet’s 71% using cross-entropy loss.
3.4 Abdomen

The abdominal lymphatic drainage pathways run parallel to the

blood vessels that supply or drain blood from organs, with many

abdominal lymph nodes located in mesenteries, such as the

mesentery of the intestine, mesocolon, and peritoneal ligaments,

serving as potential sites for metastasis from gastric, liver, kidney,
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pancreatic, intestinal, or gallbladder tumors. However, the

automatic segmentation of abdominal lymph nodes presents a

significant challenge due to their high variability, low contrast,

fuzzy boundaries, and clustering. To address this issue, researchers

have proposed numerous innovative methods (see Table 6).

For instance Hoogi et al. (76) introduced a fully-automated

technique leveraging machine learning and convolutional neural

networks for the detection and segmentation of liver and lymph

node lesions. When tested on CT scans featuring both liver lesions

and pathological lymph nodes, this method demonstrated a

detection sensitivity of 0.53 and a segmentation Dice score of 0.71

± 0.15, underscoring its effectiveness and precision in such complex

tasks. Furthermore, Zheng et al. (77) innovatively utilize anatomical

spatial context and guiding attention maps from adjacent organs to

enhance pancreatic lymph node (LN) segmentation, focusing

segmentation on anatomically relevant areas and bypassing

unlikely regions. Their approach integrates a pre-trained

segmentation network with a new classification head for

identifying metastasized LNs and employs a LN metastasis status

prediction network that combines LN segmentation results with

deep imaging features from tumors. Conducting extensive

validation on a dataset of 749 pancreatic ductal adenocarcinoma

(PDAC) patients and further external evaluations across two

hospitals with 191 patients, their methodology significantly

outperforms established benchmarks like nnUNet (51), CT-

reported statuses, radiomics, and other deep learning models in

LN detection and segmentation, achieving an improvement in

accuracy by 1.8%.

To enhance malignant lymph node detection, Bian’s study (78)

introduced an attention mechanism in a deep learning model,

guided by the spatial context of surrounding organs and vessels,
TABLE 6 Abdomen.

Publication Year Purpose Image
Modality

Patients Ground
Truth

Key Innovation Outcome

Hoogi et al. (76) 2017 Pathological
LN segmentation

CT 86 Pathologically
confirmed

Fully-automated technique using machine
learning for liver and lymph node
lesion detection

Dice = 0.71

Zheng et al. (77) 2023 LN segmentation and
metastasis prediction

CT 940 Pathologically
confirmed

Enhances pancreatic LN segmentation using
anatomical context and attention maps

AUC = 0.85

Bian et al. (78) 2023 LN segmentation and
metastasis analysis

CT 734 Manual
delineation

Introduced attention mechanism improves
pancreatic LN localization and
metastasis prediction

Acc = 0.85

Manjunatha
et al. (68)

2023 Abdominal
LN detection

CT 86 Manual
delineation

Proposed two- stage lymph node detection with
modified U-Net and 3D CNN

Sen
= 0.80&0.86

Wang et al. (79) 2022 Abnormal
LN Detection

MR 584 RECIST
bookmarks
on hand

Innovative MR detection network for LN
identification using pseudo masks

AP25 = 0.55

Li et al. (80) 2021 LN segmentation CT 176 Manual
delineation

Presented a DRLLNS model using unsupervised
RECIST-slices for segmentation

Dice = 0.77

Yu et al. (81) 2024 LN segmentation CT 138 Manual
delineation

Integrated LN-DDPM and nnUNet to enhance
lymph node segmentation

Dice = 0.57
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specifically targeting pancreatic LN locations. This approach,

alongside a combined tumor and LN patient-level metastasis

status prediction model based on automated LN segmentation

and tumor annotations, outperformed conventional methods.

After comparing with clinical and radiomics models, the deep

learning approach emerged as the most effective, demonstrating

superior accuracy in LNmetastasis detection. Manjunatha et al. (68)

proposed a two-stage approach for lymph node detection,

beginning with candidate generation via a modified U-Net with

ResNet architecture to identify volumes of interest (VOI) with high

sensitivity, albeit increasing false positives. The subsequent stage

employs a 3D CNN classifier for false positive reduction,

complemented by an analysis of different deep learning models’

performance on decomposed 3D VOI representations. The

methodology demonstrated efficacy on mediastinal and

abdominal LN datasets, achieving sensitivities of 87% and 79%

with manageable false positives per volume.

Building on this, Wang and colleagues (79) introduced an

innovative detection network for MR image-based abnormal LN

identification, utilizing pseudo masks from RECIST bookmarks for

training instead of extensive pixel-wise annotations. Their network

enhances the Mask R-CNN framework with global-local attention

for context encoding and a multi-task uncertainty loss to balance

multiple objectives, resulting in superior performance across a

diverse abnormal abdominal LN dataset. Yu et al. (81) proposed a

pipeline integrating a conditional diffusion model (LN-DDPM) for

lymph node generation with nnUNet for segmentation, enhancing

abdominal lymph node segmentation through realistic synthetic

data. Their method, leveraging global and local conditioning

mechanisms, achieved superior synthesis quality and improved

segmentation performance, reaching a Dice score of 0.57 on

abdominal lymph node datasets.

Further advancing LN detection techniques, Li (80) presented a

deep reinforcement learning-based lymph node segmentation

(DRLLNS) model, leveraging unsupervised segmentation of

RECIST-slices for pseudo ground truth generation. This novel

DRLLNS model, integrating U-Net with a policy network,

optimizes LN bounding boxes and segmentation outcomes,
Frontiers in Immunology 15
showcasing remarkable performance against traditional image

segmentation networks on a thoracoabdominal CT dataset in

terms of Dice similarity coefficient and IoU metrics.
3.5 Pelvis

Pelvic lymph nodes (LNs), encompassing obturator, sacral,

common iliac, external iliac, and internal iliac nodes, are critical

for assessing the spread of pelvic urogenital or gastrointestinal

tumors. LN staging plays a pivotal role in evaluating disease

progression and guiding treatment decisions, as a high LN ratio

(LNR) correlates with poorer survival outcomes. Furthermore, the

International Federation of Gynecology and Obstetrics (FIGO) has

developed a staging system for gynecologic malignancies,

underscoring the importance of LN evaluation. Despite the

critical role of LN metastasis status in patient management, the

precise automatic segmentation of pelvic LNs remains challenging

due to factors such as image intensity inhomogeneity, poor contrast,

noise, and sensitivity to initial point selection. These issues highlight

the need for advanced solutions in LN analysis to improve

diagnostic and therapeutic strategies. A comparative overview of

pelvic lymph node segmentation techniques is presented in Table 7.

Zhao (82) employed fused T2-weighted and diffusion-weighted

images to feed into Mask R-CNN via transfer learning, creating the

auto-LNDS model for lymph node (LN) analysis. Validated on

internal and external datasets of 935 and 1198 LNs respectively, the

model outperformed junior radiologists in detection, with

sensitivities of 80.0% and 62.6%, and PPVs of 73.5% and 64.5%,

on the internal and external datasets, respectively. For LN

segmentation, it achieved a Dice similarity coefficient (DSC) of

0.81-0.82, showcasing its efficacy and precision.

Bnouni et al. (83) present a computer-aided framework for

enhancing pelvic lymph node (PLN) segmentation and

classification by integrating ensemble preprocessing methods,

iterative correction of initial segmentation points, and fusion of

MRI modalities. They also utilize morphological and intensity

features from segmented PLNs for accurate classification. This
TABLE 7 Pelvis.

Publication Year Purpose
Image
Modality Patients

Ground
Truth Key Innovation Outcome

Zhao et al. (82) 2020
Pelvic LN detection
and segmentation MR 293

Manual
delineation

Employed fused T2- weighted and diffusion-
weighted images for LN analysis Sen = 0.80

Bnouni et al. (83) 2018
LN Segmentation
and Classification MR 10

Manual
delineation

Enhances PLN segmentation/classification using
ensemble preprocessing and MRI fusion Dice = 0.71

Liu et al. (84) 2021
Pelvic LN detection
and segmentation MR 393

Manual
delineation

Investigates 3D U-Net efficacy in automating
lymph node segmentation in DWI Dice = 0.85

Wang et al. (85) 2021 Pelvic LN detection CT 236
Manual
delineation

Introduces two-level calibration and a novel
keyframe- lymph node detection system mFROC = 0.48

Wen et al. (86) 2024
Pelvic
LN segmentation CT 160

Manual
delineation

Developed CMU-net for multi- head LNR
classification and segmentation Dice = 0.85
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approach significantly improved segmentation accuracy from

61.37% to 66.53% (p¡0.05) and achieved a classification accuracy

of 78.50% in distinguishing suspect from non-suspect PLNs,

showcasing its effectiveness in PLN analysis.

Liu et al. (84) investigate the efficacy of the 3D U-Net algorithm in

automating the detection and segmentation of lymph nodes (LNs) in

pelvic diffusion-weighted imaging (DWI) for patients suspected of

prostate cancer (PCa). Segmentation accuracy was evaluated against

manual annotations of pelvic LNs. Initial results demonstrated a high

Dice score of 0.85 for the segmentation of suspicious LNs, indicating

promising performance of the 3D U-Net in LN detection and

segmentation in DWI images of PCa patients. Similarly, Wang

et al.’s (85) research introduced a two-level annotation calibration

alongside a novel system that combines keyframe localization and

lymph node detection networks, leveraging spatial and anchor priors

for CT image analysis. Demonstrating significant improvements on

PLNDataset and CTLNDataset, this approach outperforms existing

methods and holds promise for clinical application in enhancing pelvic

lymph node detection accuracy. Wen et al. (86) proposed a multi-head

classification and segmentation framework, CMU-net, for pelvic lymph

node region (LNR) detection and segmentation, leveraging ResNet-50

for classification and U-Net++ for segmentation. Their approach

effectively addressed overlapping segmentation issues and improved

spatial understanding, achieving DSC scores between 0.851 and 0.942,

demonstrating high accuracy and clinical applicability.

These studies have utilized deep learning techniques, such as

Mask R-CNN that integrates multi-modal images, methods that

iteratively refine initial segmentation points, and 3D U-Net

algorithms, achieving significant advancements in the automatic

segmentation and detection of pelvic lymph nodes (LNs). These

findings demonstrate that deep learning methods have significant

potential in overcoming traditional challenges and improving the

accuracy of automatic segmentation and detection of pelvic lymph

nodes, having a positive impact on the integration into clinical

workflows and patient prognosis.
3.6 Universal malignant lymph node
detection

Table 8 provides a summary of key methods developed for

universal lymph node segmentation. Mathai et al. (87) propose an

automated lymph node detection method in T2 MRI using neural

network ensembles. By employing multiple state-of-the-art
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detection networks and bounding box fusion techniques, the

method significantly reduces false positives and boosts detection

accuracy. On a test set of 376 T2 MRI scans, the method achieved a

precision of 71.75% and a sensitivity of 91.96% with 4 false positives

per image. Subsequently, they (88) propose a universal computer-

aided detection and segmentation pipeline that leverages T2 fat-

suppressed (T2FS) and diffusion-weighted imaging (DWI) series

from multiparametric MRI (mpMRI) studies. The T2FS and DWI

series from 38 patients were co-registered and augmented, after

which a Mask RCNN model was trained for universal 3D lymph

node detection and segmentation. The experiments on 18 test

mpMRI studies showed the proposed pipeline achieved a

precision of 58%, sensitivity of 78%, and a dice score of 81%.

Hou et al. (89) propose a deep learning-based automatic clinical

target volume (CTV) segmentation method, clinically evaluated on

multi-site tumor data from a single institution. The study involved

577 patients with nasopharyngeal, esophageal, breast, cervical,

prostate, and rectal carcinomas, assessing Flexnet, Unet, Vnet,

and Segresnet models. The results demonstrated high geometric

consistency between auto-segmented and manually contoured

CTVs, with most patients achieving Dice similarity coefficients

(DSC) above 0.8. Additionally, 82.65% of auto-generated CTVs

were either clinically accepted or required only minor revisions.

These studies highlight the progress in developing universal

lymph node detection and segmentation methods using deep

learning techniques. Despite these advancements, universal lymph

node segmentation remains uncommon due to challenges such as

anatomical variability across different body regions and the need for

large, diverse datasets. Addressing these challenges presents a

valuable direction for future research, as improved universal

segmentation methods could significantly enhance diagnostic

accuracy and treatment planning across various types of cancer.
4 Discussion

Despite advancements in deep learning, automatic segmentation of

malignant lymph nodes remains fraught with significant challenges.

Variability in imaging protocols poses significant challenges in medical

imaging, particularly affecting the performance and generalizability of

deep learning models (90). Differences in imaging parameters, device

models, and scanning procedures across institutions lead to disparities

in image quality and characteristics, which hamper a model’s ability to

generalize effectively to new datasets. While standardizing imaging
TABLE 8 Universal.

Publication Year Purpose
Image
Modality Patients

Ground
Truth Key Innovation Outcome

Mathai et al. (87) 2023
LN detection
and segmentation MR 56

Radiology
report

Employed a Mask RCNN model for universal 3D
lymph node detection and segmentation Dice = 0.81

Mathai et al. (87) 2023 LN detection MR 376
Radiology
report

Employed various deep learning detectors and
improved detection performance through weighted
box fusion Dice = 0.81
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protocols is essential to mitigate these disparities, practical obstacles—

such as the diversity of equipment manufacturers, variations in clinical

workflows, and individualized patient needs—make this difficult to

achieve. Additionally, accurately segmenting small targets with

indistinct borders (58), like malignant lymph nodes, remains a

substantial hurdle. The invasive nature of malignant cells blurs the

boundaries between lymph nodes and surrounding tissues,

complicating segmentation tasks even for advanced models (48).

Moreover, the “black-box” nature of deep learning models raises

concerns about interpretability and clinical applicability. Clinicians

need to understand the rationale behind a model’s predictions to trust

and effectively use them in patient care. Finally, models that perform

well on training datasets may underperform when applied to data from

different centers or imaging devices, limiting their widespread

adoption. These challenges underscore the need for solutions that

enhance model robustness, interpretability, and generalizability in

varied clinical environments.

To address these challenges, future directions in the field are

focusing on innovative approaches that can enhance the feasibility

and effectiveness of deep learning models in clinical applications.

Weakly supervised (91) and semi-supervised learning methods,

which leverage unlabeled data to improve model performance,

show promise in reducing the dependence on extensive annotated

datasets. Enhancing model interpretability has also become a

priority (92), as greater transparency can facilitate clinical

decision-making and foster trust among healthcare professionals.

Multimodal learning (93), integrating data from multiple imaging

modalities such as CT, MRI, and PET, offers a more comprehensive

view of malignant lymph nodes and has the potential to improve

segmentation accuracy. Collaboration and standardization across

healthcare centers are essential for enhancing model generalization;

establishing common standards for data collection, preprocessing,

and sharing can improve model robustness and facilitate

application across diverse clinical scenarios. Additionally,

federated learning (94) presents a viable solution for training

models across multiple institutions without sharing raw data,

addressing data privacy concerns and contributing to the

advancement of deep learning techniques in medical image

analysis. Collectively, these innovations hold promise for

overcoming current limitations and advancing the field toward

more reliable and clinically applicable models.
5 Conclusion

In conclusion, this paper has reviewed the advancements in

deep learning-based segmentation and detection of malignant

lymph nodes across multiple anatomical regions. Despite notable

progress, challenges such as data limitations, model robustness, and

variability in clinical conditions persist. Addressing these challenges

will require not only further development of advanced algorithms

but also the integration of AI into clinical workflows to achieve

more automated, reliable, and precise analysis. The integration of

innovative deep learning approaches holds the promise of not only
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enhancing the accuracy and efficiency of malignant lymph node

detection and segmentation but also paving the way toward more

personalized and effective cancer treatment strategies. By improving

diagnostic accuracy and optimizing treatment planning, these

technologies can help in reducing clinician workload and

improving patient quality of care. As deep learning technologies

evolve, they are expected to play a pivotal role in advancing

oncological diagnostics and therapeutics, ultimately contributing

to improved patient outcomes, more effective resource utilization,

and a deeper understanding of cancer biology. Continued

collaboration between AI researchers and clinicians will be

essential to fully realize these potentials and bridge the gap

between technical advancements and clinical needs.
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